Load Packages
Load Data
Sample Descriptives: Number of Participants and Average Group
Size
cat(
"Number of participants:", nrow(df_lab), "\n",
"Number of groups:", length(unique(df_lab$GroupID)), "\n",
"Average group size:", mean(df_lab$TeamSize), "\n",
"Min and max group size:", range(df_lab$TeamSize), "\n"
)
## Number of participants: 219
## Number of groups: 62
## Average group size: 4.794521
## Min and max group size: 3 6
Impression Management and Perceptions of Likeability/Competence
Ordinary Least Squares Regression
# Regression with Cluster-Robust Standard Errors
## Model 1: Main Effect
model <- lm(cbind(Liked,Respected) ~ NewcomerGender + NewcomerRace + Promotion + Ingratiation, data = df_lab)
cluster_se <- vcovCL(model, cluster = ~SessionID)
coeftest(model, vcov = cluster_se)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## Liked:(Intercept) 5.861488 0.109972 53.2999 < 0.0000000000000002 ***
## Liked:NewcomerGender -0.077118 0.089258 -0.8640 0.38857
## Liked:NewcomerRace 0.220256 0.107641 2.0462 0.04196 *
## Liked:Promotion 0.127676 0.109987 1.1608 0.24701
## Liked:Ingratiation 0.176430 0.120217 1.4676 0.14369
## Respected:(Intercept) 6.069880 0.072205 84.0650 < 0.0000000000000002 ***
## Respected:NewcomerGender 0.050584 0.070700 0.7155 0.47510
## Respected:NewcomerRace 0.097557 0.090864 1.0737 0.28419
## Respected:Promotion 0.167033 0.081145 2.0585 0.04076 *
## Respected:Ingratiation 0.051484 0.088853 0.5794 0.56291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Model 2: Interaction
model <- lm(cbind(Liked,Respected) ~ NewcomerGender + Promotion * NewcomerRace + Ingratiation * NewcomerRace, data = df_lab)
cluster_se <- vcovCL(model, cluster = ~SessionID)
coeftest(model, vcov = cluster_se)
##
## t test of coefficients:
##
## Estimate Std. Error t value
## Liked:(Intercept) 5.849704 0.114743 50.9809
## Liked:NewcomerGender -0.085568 0.087816 -0.9744
## Liked:Promotion -0.011141 0.149373 -0.0746
## Liked:NewcomerRace 0.252906 0.112350 2.2511
## Liked:Ingratiation 0.364128 0.156763 2.3228
## Liked:Promotion:NewcomerRace 0.250354 0.210683 1.1883
## Liked:NewcomerRace:Ingratiation -0.377906 0.197268 -1.9157
## Respected:(Intercept) 6.045404 0.080543 75.0584
## Respected:NewcomerGender 0.046389 0.071256 0.6510
## Respected:Promotion 0.101713 0.101821 0.9989
## Respected:NewcomerRace 0.151601 0.158292 0.9577
## Respected:Ingratiation 0.195815 0.096290 2.0336
## Respected:Promotion:NewcomerRace 0.114123 0.206017 0.5539
## Respected:NewcomerRace:Ingratiation -0.290490 0.220805 -1.3156
## Pr(>|t|)
## Liked:(Intercept) < 0.0000000000000002 ***
## Liked:NewcomerGender 0.33097
## Liked:Promotion 0.94061
## Liked:NewcomerRace 0.02541 *
## Liked:Ingratiation 0.02114 *
## Liked:Promotion:NewcomerRace 0.23605
## Liked:NewcomerRace:Ingratiation 0.05675 .
## Respected:(Intercept) < 0.0000000000000002 ***
## Respected:NewcomerGender 0.51574
## Respected:Promotion 0.31897
## Respected:NewcomerRace 0.33929
## Respected:Ingratiation 0.04324 *
## Respected:Promotion:NewcomerRace 0.58020
## Respected:NewcomerRace:Ingratiation 0.18974
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Impression Management and Supportive Behavior
Zero-Inflated Negative Binomial Regression
# Main Effects
zinb_model_M1 <- zeroinfl(
Support ~ NewcomerGender + NewcomerRace + Ingratiation + Promotion | NewcomerGender + NewcomerRace + Promotion + Ingratiation,
data = videoData,
dist = "negbin")
ct <- coeftest(zinb_model_M1, vcov = sandwich)
count_coefs <- ct[grepl("^count_", rownames(ct)), ]
ZINB Count Model Coefficients
| Intercept |
0.6113 |
0.3812 |
1.6036 |
0.1196 |
| Newcomer Gender |
-2.4114 |
0.5772 |
-4.1774 |
0.0002 |
| Newcomer Race |
0.1141 |
0.4820 |
0.2366 |
0.8146 |
| Ingratiation |
1.9381 |
0.6750 |
2.8710 |
0.0076 |
| Self-Promotion |
-0.3009 |
0.4955 |
-0.6071 |
0.5485 |
# Interaction Effects
zinb_model_M2 <- zeroinfl(
Support ~ NewcomerGender + Promotion* NewcomerRace + Ingratiation* NewcomerRace | NewcomerGender + NewcomerRace + Promotion + Ingratiation,
data = videoData,
dist = "negbin")
ZINB Count Model Coefficients
| Intercept |
1.3099 |
0.1714 |
7.6409 |
0.0000 |
| Newcomer Gender |
-2.4237 |
0.4883 |
-4.9637 |
0.0000 |
| Self-Promotion |
-1.1153 |
0.6983 |
-1.5973 |
0.1218 |
| Newcomer Race |
-1.0199 |
0.4586 |
-2.2239 |
0.0347 |
| Ingratiation |
1.1864 |
0.5920 |
2.0041 |
0.0552 |
| Promotion × Race |
1.6213 |
0.9730 |
1.6662 |
0.1072 |
| Ingratiation × Race |
-17.2189 |
0.9116 |
-18.8881 |
0.0000 |