summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
dim(iris)
## [1] 150 5
There were 150 cases across the three species with 50 cases for each species.
range(iris$Sepal.Length)
## [1] 4.3 7.9
range(iris$Sepal.Width)
## [1] 2.0 4.4
range(iris$Petal.Length)
## [1] 1.0 6.9
range(iris$Petal.Width)
## [1] 0.1 2.5
There are 600 numeric variables, as there are 150 cases for each of the four variables (sepal or petal, and length or width). These are continuous variables as the context of width and length would allow for any real number value greater than 0.
unique(iris$Species)
## [1] setosa versicolor virginica
## Levels: setosa versicolor virginica
There are 150 categorical variables, which take 3 unique values (setosa, versicolor, virginica).
require(graphics)
coplot(weight ~ Time | Chick, data = ChickWeight,
type = "b", show.given = FALSE)
Provided are time series plots for each chick (numbered in dataset) where weight is plotted against time.