All Tests that is in the Version 2.0 of the article

# Variables

#Research Funding (USD) #Total_Amount_Grants = Total amount of all other grants besides: ‘I-Corps’, ‘I-Corps Hubs’, ‘I-Corps-Sites’, ‘I-Corps-Nodes’,‘SBIR_1’, ‘SBIR_2’,‘STTR_1’,‘STTR_2’ # Log Research Funding (USD) #log_Total_Amount_Grants = just log of Total_Amount_Grants +1 to avoid problems # Research (annual count) # Total_Grants = Sum count of all unique research happening in the year (meaning grants) # Log Research (annual count) #log_Total_Grants = LOG of Total_Grants # Program Grants (USD) #Amount_ECO = Amount of all I-Corps grants # Program Grant (annual) #d_ECO = 0 when no Amount_ECO, 1 only for the year/city receiving Amount_ECO # Program Grant (post) #d_f_ECO = 0 until get Amount_ECO, 1 after that and stays 1 forever # University (annual count) #Numb_active_research = Unique Institutions in the current year doing R&D (meaning they got some money) # Ecosystem Grants (annual) #d_HNS = 0 when no Amount_HubsNodesSites, 1 only for the year/city receiving Amount_HubsNodesSites # Ecosystem Grants (post) #d_f_HNS = 0 until get Amount_HubsNodesSites, 1 after that and stays 1 forever # Investigators (annual count) #Total_Investigator = Total (Sum) number of investigators by year by city (this is the sum of Count_Investigator1, 2, 3) # Log Private Funding (USD) #log_funding_total = Total funding CB ANY type of funding (Angel, VC, PE and so on)
# Private Funding (count) #funding_count = Number of funding in the city # Companies Founded (annual count) #companies_founded = sum count of all companies that started in the current year
# Training Grants (USD) #log_Amount_I_Corps = I-Corps Teams – #### Columns not used
# dc_f_Amount_ECO = 0 for cities not treated, 1 for treated (this is separating all the cities never treated against cities treated, which trated meaning I-Corps) # d_2011 = 0 for non treated cities and 0 for cities Amount_ECO (treated) for the years prior to 2011, 1 after 2011. # dA_2011 = 0 for all Cities prior 2011, 1 after 2011 (Just give a dummy for 2011) # Count_Investigator1 = Sum count of all unique research happening in the year (meaning grants) #This is the number of the leading investigators this is also the number o UNIQUE grants, so you might have cases where the same investigator will have 2 or more active grants happening at the same time, so this will count the total (the investigator will appear twice in this example) Count_Investigator2 and Count_Investigator3 are the same case, but you should ignore those columns, instead use the next column # Count_I-Corps = count of I-Corps teams – # log_population = LOG Population equal before 2018 and with current years after that. Most cities are undefined # Unique_NSFID1= This is the unique number of leading investigators, different from the Count_Investigator1, it will exclude duplicates, this can be useful if we need to know if the leading investigator are leading more than one grant at the same time (just by subtracting this from the Count_Investigator1) # I am also including all the columns from the University datasets that were “convertible” to city level. For example, R1 and R2 are not convertible so I am not keeping, but we could “count” that if you want, just be aware that any university level data is only available for a few places so most likely will not be very helpful anyway. # unique_companies_count = number of companies receiving investments by year by city. This is calculated out of the $ amount from CB –

(This is what is in the paper) Hypothsis Basic Specifications

####0
feglm_0 = feglm(companies_founded ~  log_Total_Amount_Grants  + 
                     log_funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = diddata, family = "quasipoisson")
## NOTES: 20,432 observations removed because of NA values (RHS: 20,432).
##        1,836/0 fixed-effects (29,376 observations) removed because of only 0 outcomes or singletons.
summary(feglm_0)
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 14,656
## Fixed-effects: location_id: 916,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                          Estimate Std. Error   t value   Pr(>|t|)    
## log_Total_Amount_Grants -0.001989   0.004231 -0.470038 6.3834e-01    
## log_funding_total        0.038148   0.004771  7.995798 1.3898e-15 ***
## funding_count            0.000316   0.000320  0.987468 3.2343e-01    
## Total_Grants             0.002653   0.000734  3.614042 3.0254e-04 ***
## unique_companies_count  -0.000103   0.000244 -0.421868 6.7313e-01    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.940505
######## feglm_h1

feglm_h1 = feglm(companies_founded ~ d_ECO  + log_Total_Amount_Grants  +
                     log_funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = diddata, family = "quasipoisson")
## NOTES: 20,432 observations removed because of NA values (RHS: 20,432).
##        1,836/0 fixed-effects (29,376 observations) removed because of only 0 outcomes or singletons.
summary(feglm_h1)
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 14,656
## Fixed-effects: location_id: 916,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                          Estimate Std. Error   t value   Pr(>|t|)    
## d_ECO                    0.398119   0.027235 14.618115  < 2.2e-16 ***
## log_Total_Amount_Grants -0.003562   0.004156 -0.857125 3.9139e-01    
## log_funding_total        0.037442   0.004684  7.993645 1.4142e-15 ***
## funding_count            0.000704   0.000314  2.241593 2.5004e-02 *  
## Total_Grants             0.002601   0.000718  3.620809 2.9474e-04 ***
## unique_companies_count  -0.000538   0.000241 -2.230514 2.5729e-02 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.933401
######## feglm_h2 & feglm_h3 - moderations

#MAIN
feglm_h2 = feglm(companies_founded ~ d_ECO * log_Total_Amount_Grants +  
             log_funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = diddata, family = "quasipoisson")
## NOTES: 20,432 observations removed because of NA values (RHS: 20,432).
##        1,836/0 fixed-effects (29,376 observations) removed because of only 0 outcomes or singletons.
summary(feglm_h2)
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 14,656
## Fixed-effects: location_id: 916,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                                Estimate Std. Error   t value   Pr(>|t|)    
## d_ECO                          2.743211   0.256543 10.693004  < 2.2e-16 ***
## log_Total_Amount_Grants       -0.000986   0.004163 -0.236827 8.1279e-01    
## log_funding_total              0.036008   0.004694  7.671614 1.8126e-14 ***
## funding_count                  0.000588   0.000312  1.884170 5.9563e-02 .  
## Total_Grants                   0.002423   0.000716  3.383635 7.1733e-04 ***
## unique_companies_count        -0.000381   0.000240 -1.585100 1.1297e-01    
## d_ECO:log_Total_Amount_Grants -0.137428   0.014965 -9.183345  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.932205
#MAIN
feglm_h3 = feglm(companies_founded ~ d_ECO * log_funding_total  + log_Total_Amount_Grants  +
                          funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = diddata, family = "quasipoisson")
## NOTES: 20,432 observations removed because of NA values (RHS: 20,432).
##        1,836/0 fixed-effects (29,376 observations) removed because of only 0 outcomes or singletons.
summary(feglm_h3) 
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 14,656
## Fixed-effects: location_id: 916,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                          Estimate Std. Error    t value   Pr(>|t|)    
## d_ECO                    2.411103   0.143424  16.810999  < 2.2e-16 ***
## log_funding_total        0.052493   0.005057  10.380346  < 2.2e-16 ***
## log_Total_Amount_Grants -0.003218   0.004152  -0.775203 0.43823300    
## funding_count            0.000258   0.000316   0.817132 0.41386720    
## Total_Grants             0.002408   0.000718   3.351928 0.00080468 ***
## unique_companies_count   0.000093   0.000245   0.378812 0.70483303    
## d_ECO:log_funding_total -0.101260   0.007077 -14.308858  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.940719
######## feglm_h4 (not significant) (d_f_feglm_hNS is significant)

feglm_h4 = feglm(log_Amount_I_Corps ~ d_HNS + log_Total_Amount_Grants + 
           log_funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = diddata)
## NOTE: 20,432 observations removed because of NA values (RHS: 20,432).
summary(feglm_h4)
## GLM estimation, family = gaussian, Dep. Var.: log_Amount_I_Corps
## Observations: 44,032
## Fixed-effects: location_id: 2,752,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                          Estimate Std. Error   t value   Pr(>|t|)    
## d_HNS                   -0.628372   0.095980 -6.546878 5.9440e-11 ***
## log_Total_Amount_Grants  0.002116   0.002235  0.947044 3.4362e-01    
## log_funding_total        0.004989   0.001345  3.708125 2.0907e-04 ***
## funding_count            0.004957   0.002730  1.815916 6.9391e-02 .  
## Total_Grants             0.015481   0.002324  6.661890 2.7372e-11 ***
## unique_companies_count   0.004915   0.002120  2.318708 2.0416e-02 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Log-Likelihood: -73,694.8   Adj. Pseudo R2: 0.119247
##            BIC: 177,040.4     Squared Cor.: 0.449075
#MAIN
feglm_h5 = feglm(companies_founded ~ log_Amount_I_Corps + log_Total_Amount_Grants  +
             log_funding_total + funding_count + Total_Grants + unique_companies_count  | location_id + AwardEffectiveDate, data = diddata, family = "quasipoisson")
## NOTES: 20,432 observations removed because of NA values (RHS: 20,432).
##        1,836/0 fixed-effects (29,376 observations) removed because of only 0 outcomes or singletons.
summary(feglm_h5)
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 14,656
## Fixed-effects: location_id: 916,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                          Estimate Std. Error   t value   Pr(>|t|)    
## log_Amount_I_Corps       0.022860   0.002135 10.705135  < 2.2e-16 ***
## log_Total_Amount_Grants -0.003332   0.004180 -0.797064 4.2543e-01    
## log_funding_total        0.037793   0.004702  8.036809 9.9701e-16 ***
## funding_count            0.000386   0.000317  1.216717 2.2373e-01    
## Total_Grants             0.002084   0.000731  2.850982 4.3649e-03 ** 
## unique_companies_count  -0.000196   0.000242 -0.809500 4.1824e-01    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.935604

Sections with the divisions

ACC

low

low_data_acc<-diddata %>% filter(Total_Amount_Grants_sum_acc ==0)
######## low_acc_h1

low_acc_h1 = feglm(companies_founded ~ d_ECO  + log_Total_Amount_Grants  +
                     log_funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = low_data_acc, family = "quasipoisson")
## NOTES: 20,432 observations removed because of NA values (RHS: 20,432).
##        1,835/0 fixed-effects (29,360 observations) removed because of only 0 outcomes or singletons.
summary(low_acc_h1)
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 13,792
## Fixed-effects: location_id: 862,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                          Estimate Std. Error  t value   Pr(>|t|)    
## d_ECO                    0.606862   0.038646 15.70306  < 2.2e-16 ***
## log_Total_Amount_Grants -0.005703   0.004222 -1.35071 1.7681e-01    
## log_funding_total        0.032305   0.005012  6.44571 1.1915e-10 ***
## funding_count            0.002565   0.000460  5.57457 2.5312e-08 ***
## Total_Grants             0.010593   0.002052  5.16205 2.4789e-07 ***
## unique_companies_count  -0.002175   0.000370 -5.87961 4.2140e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.871594
######## low_acc_h2 & low_acc_h3 - moderations

#MAIN
low_acc_h2 = feglm(companies_founded ~ d_ECO * log_Total_Amount_Grants +  
             log_funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = low_data_acc, family = "quasipoisson")
## NOTES: 20,432 observations removed because of NA values (RHS: 20,432).
##        1,835/0 fixed-effects (29,360 observations) removed because of only 0 outcomes or singletons.
summary(low_acc_h2)
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 13,792
## Fixed-effects: location_id: 862,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                                Estimate Std. Error  t value   Pr(>|t|)    
## d_ECO                          3.499095   0.429660  8.14388 4.1779e-16 ***
## log_Total_Amount_Grants       -0.004297   0.004232 -1.01548 3.0990e-01    
## log_funding_total              0.031955   0.005023  6.36199 2.0588e-10 ***
## funding_count                  0.002026   0.000465  4.35854 1.3195e-05 ***
## Total_Grants                   0.015069   0.002153  6.99935 2.6985e-12 ***
## unique_companies_count        -0.001652   0.000376 -4.39983 1.0920e-05 ***
## d_ECO:log_Total_Amount_Grants -0.181462   0.026864 -6.75487 1.4909e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.874559
#MAIN
low_acc_h3 = feglm(companies_founded ~ d_ECO * log_funding_total  + log_Total_Amount_Grants  +
                          funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = low_data_acc, family = "quasipoisson")
## NOTES: 20,432 observations removed because of NA values (RHS: 20,432).
##        1,835/0 fixed-effects (29,360 observations) removed because of only 0 outcomes or singletons.
summary(low_acc_h3) 
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 13,792
## Fixed-effects: location_id: 862,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                          Estimate Std. Error   t value   Pr(>|t|)    
## d_ECO                    2.698015   0.167405  16.11673  < 2.2e-16 ***
## log_funding_total        0.048743   0.005410   9.00951  < 2.2e-16 ***
## log_Total_Amount_Grants -0.006088   0.004216  -1.44404 1.4875e-01    
## funding_count            0.001249   0.000470   2.65634 7.9091e-03 ** 
## Total_Grants             0.012956   0.002062   6.28389 3.4083e-10 ***
## unique_companies_count  -0.000760   0.000384  -1.97696 4.8068e-02 *  
## d_ECO:log_funding_total -0.108653   0.008464 -12.83741  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.886559
######## low_acc_h4 (not significant) (d_f_hNS is significant)

low_acc_h4 = feols(log_Amount_I_Corps ~ d_HNS + log_Total_Amount_Grants + 
           log_funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = low_data_acc)
## NOTE: 20,432 observations removed because of NA values (RHS: 20,432).
summary(low_acc_h4)
## OLS estimation, Dep. Var.: log_Amount_I_Corps
## Observations: 43,152
## Fixed-effects: location_id: 2,697,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                          Estimate Std. Error  t value   Pr(>|t|)    
## d_HNS                   -0.298725   0.097511 -3.06350 2.1891e-03 ** 
## log_Total_Amount_Grants -0.007852   0.001808 -4.34411 1.4018e-05 ***
## log_funding_total        0.003692   0.001075  3.43339 5.9668e-04 ***
## funding_count           -0.003903   0.002979 -1.31018 1.9014e-01    
## Total_Grants             0.093365   0.003308 28.22452  < 2.2e-16 ***
## unique_companies_count   0.008122   0.002360  3.44195 5.7812e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.05775     Adj. R2: 0.326394
##                 Within R2: 0.023903
#MAIN
low_acc_h5 = feglm(companies_founded ~ log_Amount_I_Corps + log_Total_Amount_Grants  +
             log_funding_total + funding_count + Total_Grants + unique_companies_count  | location_id + AwardEffectiveDate, data = low_data_acc, family = "quasipoisson")
## NOTES: 20,432 observations removed because of NA values (RHS: 20,432).
##        1,835/0 fixed-effects (29,360 observations) removed because of only 0 outcomes or singletons.
summary(low_acc_h5)
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 13,792
## Fixed-effects: location_id: 862,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                          Estimate Std. Error  t value   Pr(>|t|)    
## log_Amount_I_Corps       0.039959   0.003331 11.99497  < 2.2e-16 ***
## log_Total_Amount_Grants -0.005913   0.004234 -1.39658 1.6256e-01    
## log_funding_total        0.032884   0.005012  6.56143 5.5329e-11 ***
## funding_count            0.001502   0.000458  3.27833 1.0470e-03 ** 
## Total_Grants             0.010512   0.002069  5.08085 3.8101e-07 ***
## unique_companies_count  -0.001040   0.000363 -2.86919 4.1220e-03 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.866921

medium

medium_data_acc<-diddata %>% filter(Total_Amount_Grants_sum_acc ==1)
####0

medium_acc_h1 <- feglm(log_companies_founded ~ d_ECO  + log_Total_Amount_Grants  +
            log_funding_total + funding_count + Total_Grants + unique_companies_count , data = medium_data_acc, effect="twoways", index=c("location_id", "AwardEffectiveDate"),  
          model="within") #“within”, “random”, “medium_ht”, “between”, “pooling”,
## Warning: In fixest_env(fml = fml, data = data, family = famil...:
##  feglm(fml = log...: effect, index and model are not valid arguments for
## function feglm()
#coeftest(medium_acc_h1, vcov=vcovmedium_hC, type="medium_hC3")
summary(medium_acc_h1)
## GLM estimation, family = gaussian, Dep. Var.: log_companies_founded
## Observations: 608
## Standard-errors: IID 
##                          Estimate Std. Error   t value   Pr(>|t|)    
## (Intercept)              3.782095   1.707399  2.215121 2.7126e-02 *  
## d_ECO                    0.127182   0.079207  1.605696 1.0887e-01    
## log_Total_Amount_Grants -0.260906   0.100712 -2.590627 9.8126e-03 ** 
## log_funding_total        0.078818   0.007419 10.623820  < 2.2e-16 ***
## funding_count            0.011988   0.004736  2.531149 1.1623e-02 *  
## Total_Grants             0.006563   0.001267  5.180619 3.0229e-07 ***
## unique_companies_count  -0.003165   0.003980 -0.795083 4.2688e-01    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Log-Likelihood:  -804.8   Adj. Pseudo R2: 0.215492
##            BIC: 1,654.4     Squared Cor.: 0.528723
######## medium_h2 & medium_h3 - moderations

#MAIN
medium_acc_h2 = feglm(log_companies_founded ~ d_ECO  * log_Total_Amount_Grants  +
           log_funding_total + funding_count + Total_Grants + unique_companies_count , data = medium_data_acc, effect="twoways", index=c("location_id", "AwardEffectiveDate"),  
         model="within") #“within”, “random”, “medium_acc_ht”, “between”, “pooling”,
## Warning: In fixest_env(fml = fml, data = data, family = famil...:
##  feglm(fml = log...: effect, index and model are not valid arguments for
## function feglm()
summary(medium_acc_h2)
## GLM estimation, family = gaussian, Dep. Var.: log_companies_founded
## Observations: 608
## Standard-errors: IID 
##                                Estimate Std. Error   t value   Pr(>|t|)    
## (Intercept)                    1.295596   2.218721  0.583938 5.5948e-01    
## d_ECO                          5.253536   2.926077  1.795419 7.3090e-02 .  
## log_Total_Amount_Grants       -0.120062   0.128773 -0.932349 3.5153e-01    
## log_funding_total              0.078345   0.007417 10.562767  < 2.2e-16 ***
## funding_count                  0.011211   0.004753  2.358936 1.8647e-02 *  
## Total_Grants                   0.006647   0.001267  5.247592 2.1408e-07 ***
## unique_companies_count        -0.002344   0.004004 -0.585338 5.5854e-01    
## d_ECO:log_Total_Amount_Grants -0.290049   0.165497 -1.752595 8.0182e-02 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Log-Likelihood:  -803.2   Adj. Pseudo R2: 0.216044
##            BIC: 1,657.7     Squared Cor.: 0.531152
#MAIN
medium_acc_h3 = feglm(log_companies_founded ~ d_ECO  *  log_funding_total   +
           log_Total_Amount_Grants + funding_count + Total_Grants + unique_companies_count , data = medium_data_acc, effect="twoways", index=c("location_id", "AwardEffectiveDate"),  
         model="within") #“within”, “random”, “medium_acc_ht”, “between”, “pooling”,
## Warning: In fixest_env(fml = fml, data = data, family = famil...:
##  feglm(fml = log...: effect, index and model are not valid arguments for
## function feglm()
summary(medium_acc_h3) 
## GLM estimation, family = gaussian, Dep. Var.: log_companies_founded
## Observations: 608
## Standard-errors: IID 
##                          Estimate Std. Error   t value   Pr(>|t|)    
## (Intercept)              3.857156   1.711432  2.253759 2.4571e-02 *  
## d_ECO                   -0.097726   0.274277 -0.356305 7.2174e-01    
## log_funding_total        0.075664   0.008289  9.127772  < 2.2e-16 ***
## log_Total_Amount_Grants -0.262505   0.100834 -2.603323 9.4609e-03 ** 
## funding_count            0.012245   0.004751  2.577598 1.0186e-02 *  
## Total_Grants             0.006573   0.001268  5.182477 2.9957e-07 ***
## unique_companies_count  -0.003531   0.004007 -0.881037 3.7865e-01    
## d_ECO:log_funding_total  0.013788   0.016097  0.856576 3.9202e-01    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Log-Likelihood:  -804.4   Adj. Pseudo R2: 0.214888
##            BIC: 1,660.0     Squared Cor.: 0.529306
######## medium_acc_h4 (not significant) (d_f_medium_acc_hNS is significant)

medium_acc_h4 = feglm(log_Amount_I_Corps ~ d_HNS + log_Total_Amount_Grants + 
           log_funding_total + funding_count + Total_Grants + unique_companies_count , data = medium_data_acc, effect="twoways", index=c("location_id", "AwardEffectiveDate"),  
         model="within") #“within”, “random”, “medium_acc_ht”, “between”, “pooling”,
## Warning: In fixest_env(fml = fml, data = data, family = famil...:
##  feglm(fml = log...: effect, index and model are not valid arguments for
## function feglm()
summary(medium_acc_h4)
## GLM estimation, family = gaussian, Dep. Var.: log_Amount_I_Corps
## Observations: 608
## Standard-errors: IID 
##                          Estimate Std. Error   t value   Pr(>|t|)    
## (Intercept)              1.895649  10.150423  0.186756 8.5192e-01    
## d_HNS                   -1.439736   0.736845 -1.953922 5.1174e-02 .  
## log_Total_Amount_Grants -0.114179   0.598608 -0.190741 8.4879e-01    
## log_funding_total        0.169766   0.043044  3.944025 8.9572e-05 ***
## funding_count           -0.035763   0.028032 -1.275787 2.0252e-01    
## Total_Grants             0.023951   0.007520  3.184940 1.5228e-03 ** 
## unique_companies_count   0.037537   0.023536  1.594843 1.1127e-01    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Log-Likelihood: -1,888.1   Adj. Pseudo R2: 0.014368
##            BIC:  3,821.0     Squared Cor.: 0.10467
#MAIN
medium_acc_h5 = feglm(log_companies_founded ~ log_Amount_I_Corps + log_Total_Amount_Grants  +
           log_funding_total + funding_count + Total_Grants + unique_companies_count , data = medium_data_acc, effect="twoways", index=c("location_id", "AwardEffectiveDate"),  
         model="within") #“within”, “random”, “medium_acc_ht”, “between”, “pooling”,
## Warning: In fixest_env(fml = fml, data = data, family = famil...:
##  feglm(fml = log...: effect, index and model are not valid arguments for
## function feglm()
summary(medium_acc_h5)
## GLM estimation, family = gaussian, Dep. Var.: log_companies_founded
## Observations: 608
## Standard-errors: IID 
##                          Estimate Std. Error   t value   Pr(>|t|)    
## (Intercept)              3.636979   1.702745  2.135950 3.3087e-02 *  
## log_Amount_I_Corps       0.015576   0.006864  2.269128 2.3614e-02 *  
## log_Total_Amount_Grants -0.251582   0.100420 -2.505303 1.2498e-02 *  
## log_funding_total        0.078922   0.007303 10.806455  < 2.2e-16 ***
## funding_count            0.011896   0.004715  2.523052 1.1891e-02 *  
## Total_Grants             0.006274   0.001274  4.926214 1.0852e-06 ***
## unique_companies_count  -0.003141   0.003962 -0.792883 4.2816e-01    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Log-Likelihood:  -803.5   Adj. Pseudo R2: 0.216755
##            BIC: 1,651.8     Squared Cor.: 0.530742

high

high_data_acc<-diddata %>% filter(Total_Amount_Grants_sum_acc ==2)
high_acc_h1 = feglm(companies_founded ~ d_ECO  + Total_Amount_Grants  +
             funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = high_data_acc, family = "quasipoisson")
## NOTE: 1/0 fixed-effect (16 observations) removed because of only 0 outcomes or singletons.
summary(high_acc_h1)
## Warning: The VCOV matrix is not positive semi-definite and was 'fixed' (see
## ?vcov).
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 256
## Fixed-effects: location_id: 16,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                             Estimate Std. Error     t value Pr(>|t|) 
## d_ECO                   7.004432e-02 0.06236678  1.12310297  0.26262 
## Total_Amount_Grants    -6.404400e-10 0.00000100 -0.00064044  0.99949 
## funding_total           5.520000e-12 0.00000100  0.00000552  1.00000 
## funding_count          -6.162102e-04 0.00055819 -1.10393539  0.27083 
## Total_Grants            9.415256e-05 0.00111042  0.08479016  0.93251 
## unique_companies_count  3.548796e-04 0.00045152  0.78596923  0.43274 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                          
##   Squared Cor.: 0.9799
######## high_acc_h2 & high_acc_h3 - moderations

#MAIN
high_acc_h2 = feglm(companies_founded ~ d_ECO * Total_Amount_Grants +  
             funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = high_data_acc, family = "quasipoisson")
## NOTE: 1/0 fixed-effect (16 observations) removed because of only 0 outcomes or singletons.
summary(high_acc_h2)
## Warning: The VCOV matrix is not positive semi-definite and was 'fixed' (see
## ?vcov).
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 256
## Fixed-effects: location_id: 16,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                                Estimate Std. Error     t value Pr(>|t|) 
## d_ECO                      9.307736e-04 0.09533584  0.00976310  0.99222 
## Total_Amount_Grants       -1.077490e-09 0.00000100 -0.00107749  0.99914 
## funding_total              5.700000e-12 0.00000100  0.00000570  1.00000 
## funding_count             -5.854982e-04 0.00056296 -1.04004257  0.29947 
## Total_Grants               6.671826e-05 0.00111822  0.05966488  0.95248 
## unique_companies_count     3.208945e-04 0.00045591  0.70385521  0.48227 
## d_ECO:Total_Amount_Grants  6.106400e-10 0.00000100  0.00061064  0.99951 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.979891
#MAIN
high_acc_h3 = feglm(companies_founded ~ d_ECO * funding_total  + Total_Amount_Grants  +
             funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = high_data_acc, family = "quasipoisson")
## NOTE: 1/0 fixed-effect (16 observations) removed because of only 0 outcomes or singletons.
summary(high_acc_h3) 
## Warning: The VCOV matrix is not positive semi-definite and was 'fixed' (see
## ?vcov).
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 256
## Fixed-effects: location_id: 16,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                             Estimate Std. Error   t value  Pr(>|t|)    
## d_ECO                   2.501396e-01 0.08727962  2.865956 0.0045646 ** 
## funding_total           1.290000e-10 0.00000100  0.000129 0.9998973    
## Total_Amount_Grants    -4.510000e-10 0.00000100 -0.000451 0.9996403    
## funding_count          -6.360494e-04 0.00055447 -1.147128 0.2525860    
## Total_Grants           -1.104573e-03 0.00117312 -0.941569 0.3474557    
## unique_companies_count  6.345931e-04 0.00045835  1.384502 0.1676202    
## d_ECO:funding_total    -1.260000e-10 0.00000100 -0.000126 0.9998998    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.980726
######## high_acc_h4 (not significant) (d_f_high_acc_hNS is significant)

high_acc_h4 = feglm(Amount_I_Corps ~ d_HNS + Total_Amount_Grants + 
             funding_total + funding_count + Total_Grants + unique_companies_count   | location_id + AwardEffectiveDate, data = high_data_acc, family = "quasipoisson")
## NOTE: 1/3 fixed-effects (64 observations) removed because of only 0 outcomes or singletons.
summary(high_acc_h4)
## Warning: The VCOV matrix is not positive semi-definite and was 'fixed' (see
## ?vcov).
## GLM estimation, family = quasipoisson, Dep. Var.: Amount_I_Corps
## Observations: 208
## Fixed-effects: location_id: 16,  AwardEffectiveDate: 13
## Standard-errors: IID 
##                             Estimate Std. Error     t value  Pr(>|t|)    
## d_HNS                  -5.758951e-01 0.22338441 -2.57804532 0.0107640 *  
## Total_Amount_Grants    -1.189000e-09 0.00000100 -0.00118900 0.9990527    
## funding_total           4.360000e-12 0.00000100  0.00000436 0.9999965    
## funding_count           2.973420e-03 0.00338288  0.87896111 0.3806346    
## Total_Grants            1.289346e-02 0.00493335  2.61353225 0.0097461 ** 
## unique_companies_count -2.297374e-03 0.00271255 -0.84694174 0.3981910    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                           
##   Squared Cor.: 0.42147
#MAIN
high_acc_h5 = feglm(companies_founded ~ Amount_I_Corps + Total_Amount_Grants  +
             funding_total + funding_count + Total_Grants + unique_companies_count  | location_id + AwardEffectiveDate, data = high_data_acc, family = "quasipoisson")
## NOTE: 1/0 fixed-effect (16 observations) removed because of only 0 outcomes or singletons.
summary(high_acc_h5)
## Warning: The VCOV matrix is not positive semi-definite and was 'fixed' (see
## ?vcov).
## GLM estimation, family = quasipoisson, Dep. Var.: companies_founded
## Observations: 256
## Fixed-effects: location_id: 16,  AwardEffectiveDate: 16
## Standard-errors: IID 
##                             Estimate Std. Error     t value Pr(>|t|) 
## Amount_I_Corps         -8.351938e-08 0.00000100 -0.08347540  0.93355 
## Total_Amount_Grants    -6.259700e-10 0.00000100 -0.00062597  0.99950 
## funding_total           5.280000e-12 0.00000100  0.00000528  1.00000 
## funding_count          -5.666949e-04 0.00056444 -1.00398757  0.31649 
## Total_Grants            2.545217e-04 0.00114207  0.22285925  0.82385 
## unique_companies_count  3.370467e-04 0.00045475  0.74117416  0.45938 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                            
##   Squared Cor.: 0.979585