Set up the data
CAN <- disData("CAN")
EnvPO <- c("alt", "asp2", "ontprec", "ontprec4", "ontprecsd", "ontslp",
"onttemp", "onttempsd", "onttmin4", "ontveg", "watdist")
Species <- "can02"
SpData <- rbind(CAN$po[CAN$po$spid==Species,c("occ", EnvPO)], CAN$bg[,c("occ", EnvPO)])
SpData[,EnvPO] <- apply(SpData[,EnvPO], 2, scale) # scale covariatesBecause Nimble wants the data in its own format, we have a function to do the conversion. here we just use linear features, rather than everything.
Unfortunately when we run the code below we currently get an an error (it works when copying and pasting the code, but not when rendering the vignette).
output <- FitMaxEnt(maxdat=ToNimble, parallel = FALSE, adaptInterval=50,
nchains=2, nburnin = 50, niter=150, thin=1)
#> Error:
#> ! In sizeAssignAfterRecursing: 'rbern_vec' is not available or its output type is unknown. This may occur if a user-defined function name is the same as the name of a function in a package that `nimble` uses.
#> This occurred for: eigenBlock(model_y,1:11477) <<- rbern_vec(=1,p=model_Prob[1:11477],wt=model_W[1:11477])
#> This was part of the call: {
#> eigenBlock(model_y,1:11477) <<- rbern_vec(=1,p=model_Prob[1:11477],wt=model_W[1:11477])
#> }With 100 iterations we cannot see much, and at the moment this code is parked until the error above is sorted out.