y1 单项,总分 and 医联体总分

##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
## Warning: Removed 1168 rows containing non-finite values (`stat_bin()`).

hospital <- read.csv("1-街道医联体得分.csv", skip = 1) %>%
clean_names %>%
select(hospital, total)
hist(hospital$total, main = "hosptial sum distribution")

street <- read.csv("2-街道医院.csv") %>%
clean_names
street <- left_join(street, hospital, by="hospital")
library(dplyr)
street_scores <- street %>%
group_by(`town_name`) %>%
summarise(street_score = ifelse(n() == 1,
first(total),
mean(total, na.rm = TRUE)))
street<-left_join(street, street_scores, by="town_name")
residents<-left_join(residents, street_scores, by="town_name")
lm_model <- lm(street_score ~ factor(m33_cleaned), data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ factor(m33_cleaned), data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.54 -9.83 4.17 10.46 18.17
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 79.5409 0.1427 557.217 <2e-16 ***
## factor(m33_cleaned)1 -1.7104 0.1865 -9.172 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.48 on 24850 degrees of freedom
## Multiple R-squared: 0.003374, Adjusted R-squared: 0.003334
## F-statistic: 84.13 on 1 and 24850 DF, p-value: < 2.2e-16
boxplot(street_score ~ m33_cleaned, data = residents,
main = "Street Score by m33_cleaned Category")

lm_model <- lm(street_score ~ factor(m34_cleaned), data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ factor(m34_cleaned), data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.768 -9.534 4.466 10.466 18.466
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 79.7677 0.1368 583.20 <2e-16 ***
## factor(m34_cleaned)1 -2.2340 0.1844 -12.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.46 on 24850 degrees of freedom
## Multiple R-squared: 0.005872, Adjusted R-squared: 0.005832
## F-statistic: 146.8 on 1 and 24850 DF, p-value: < 2.2e-16
boxplot(street_score ~ m34_cleaned, data = residents,
main = "Street Score by m34_cleaned Category")

lm_model <- lm(street_score ~ factor(m70_cleaned), data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ factor(m70_cleaned), data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.209 -10.200 4.791 10.800 17.800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 79.2094 0.2809 282.025 < 2e-16 ***
## factor(m70_cleaned)1 -1.0095 0.3661 -2.757 0.00584 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.83 on 6776 degrees of freedom
## (18074 observations deleted due to missingness)
## Multiple R-squared: 0.001121, Adjusted R-squared: 0.0009734
## F-statistic: 7.603 on 1 and 6776 DF, p-value: 0.005842
boxplot(street_score ~ m70_cleaned, data = residents,
main = "Street Score by m70_cleaned Category")

lm_model <- lm(street_score ~ factor(m80_cleaned), data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ factor(m80_cleaned), data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.161 -10.429 4.839 10.571 17.571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 79.1612 0.4361 181.519 <2e-16 ***
## factor(m80_cleaned)1 -0.7324 0.5687 -1.288 0.198
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.64 on 2734 degrees of freedom
## (22116 observations deleted due to missingness)
## Multiple R-squared: 0.0006062, Adjusted R-squared: 0.0002407
## F-statistic: 1.658 on 1 and 2734 DF, p-value: 0.1979
boxplot(street_score ~ m80_cleaned, data = residents,
main = "Street Score by m80_cleaned Category")

lm_model <- lm(street_score ~ factor(lz112_cleaned), data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ factor(lz112_cleaned), data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.294 -5.294 4.706 10.706 17.146
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 78.8541 0.1686 467.687 <2e-16 ***
## factor(lz112_cleaned)1 0.4397 0.3129 1.405 0.16
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.57 on 10524 degrees of freedom
## (14326 observations deleted due to missingness)
## Multiple R-squared: 0.0001876, Adjusted R-squared: 9.258e-05
## F-statistic: 1.975 on 1 and 10524 DF, p-value: 0.16
boxplot(street_score ~ lz112_cleaned, data = residents,
main = "Street Score by lz112_cleaned Category")

lm_model <- lm(street_score ~ factor(m137_cleaned), data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ factor(m137_cleaned), data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.838 -10.493 3.507 10.507 17.507
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 80.8379 0.6640 121.748 < 2e-16 ***
## factor(m137_cleaned)1 -2.3449 0.6704 -3.498 0.00047 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.5 on 24848 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.0004921, Adjusted R-squared: 0.0004518
## F-statistic: 12.23 on 1 and 24848 DF, p-value: 0.0004704
boxplot(street_score ~ m137_cleaned, data = residents,
main = "Street Score by m137_cleaned Category")

lm_model <- lm(street_score ~ factor(lz134_cleaned), data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ factor(lz134_cleaned), data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -41.306 -4.770 3.694 10.230 17.230
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 81.3060 0.5490 148.087 < 2e-16 ***
## factor(lz134_cleaned)1 -2.5357 0.6161 -4.116 3.96e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.77 on 3055 degrees of freedom
## (21795 observations deleted due to missingness)
## Multiple R-squared: 0.005515, Adjusted R-squared: 0.005189
## F-statistic: 16.94 on 1 and 3055 DF, p-value: 3.959e-05
boxplot(street_score ~ lz134_cleaned, data = residents,
main = "Street Score by lz134_cleaned Category")

lm_model <- lm(street_score ~ factor(zy168_cleaned), data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ factor(zy168_cleaned), data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.955 -5.377 5.045 10.712 16.623
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 79.9546 0.7935 100.757 <2e-16 ***
## factor(zy168_cleaned)1 -0.5779 0.9142 -0.632 0.527
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.35 on 1324 degrees of freedom
## (23526 observations deleted due to missingness)
## Multiple R-squared: 0.0003017, Adjusted R-squared: -0.0004533
## F-statistic: 0.3996 on 1 and 1324 DF, p-value: 0.5274
boxplot(street_score ~ zy168_cleaned, data = residents,
main = "Street Score by zy168_cleaned Category")

lm_model <- lm(street_score ~ m45, data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ m45, data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.120 -10.048 4.167 10.667 20.096
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 75.547071 0.509875 148.168 < 2e-16 ***
## m45 0.035726 0.006085 5.871 4.4e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.56 on 23682 degrees of freedom
## (1168 observations deleted due to missingness)
## Multiple R-squared: 0.001453, Adjusted R-squared: 0.001411
## F-statistic: 34.47 on 1 and 23682 DF, p-value: 4.397e-09
library(dplyr)
residents <- residents %>%
mutate(y1 = m34 + m33 + m70 + m80 + lz112 + m137 + lz134 + zy168 + m45)
lm_model <- lm(street_score ~ y1, data = residents)
summary(lm_model)
##
## Call:
## lm(formula = street_score ~ y1, data = residents)
##
## Residuals:
## Min 1Q Median 3Q Max
## -36.896 -6.359 4.607 10.090 17.740
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 87.89983 7.96081 11.04 <2e-16 ***
## y1 -0.10879 0.09712 -1.12 0.267
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.65 on 65 degrees of freedom
## (24785 observations deleted due to missingness)
## Multiple R-squared: 0.01894, Adjusted R-squared: 0.003842
## F-statistic: 1.255 on 1 and 65 DF, p-value: 0.2668