Top 41 genes in common to the multiple sclerosis patients participating and the comparison commercial store bought multiple sclerosis patient from the top 50 and bottom 50 or top 50 enhancer and bottom 50 silencer complementary DNA fragments of 20 base pairs long each called barcodes on study GSE293036 of NCBI.

This finds the top 100 complementary DNA strands of fragments in 20 nucleic DNA base pairs long of multiple sclerosis patients Mean values in two MS patients, a commercial MS patient for comparison, and a control of a healthy patient. The study is from GSE293036 but find the data and information detail on the data extraction portion of the data that makes this very large 8.8 Million row size data frame by 19 features here.

data <- read.csv('allSampleRepeatsControlsMS1MS2Commercial.csv',sep=',',header=T, na.strings=c('',' ','na','NA'))
str(data)
## 'data.frame':    8838657 obs. of  19 variables:
##  $ ID_REF                         : chr  "TTTTTTTTTTTTTTCGTCCC" "TTTTTTTTTTTTTCCTTGCT" "TTTTTTTTTTTTGCAGTGAT" "TTTTTTTTTTTTCTGCTATG" ...
##  $ control1.4362                  : int  4 2 4 4 5 1 4 3 2 5 ...
##  $ control2.4363                  : int  4 1 1 1 5 2 3 1 3 2 ...
##  $ control3.4364                  : int  3 5 1 2 8 4 1 2 3 3 ...
##  $ MS1_r1_4370                    : int  3 5 3 3 15 23 2 4 11 11 ...
##  $ MS1_r2_4371                    : int  1 4 4 8 23 15 10 4 4 6 ...
##  $ MS1_r3_4372                    : int  3 3 3 2 16 7 5 10 7 1 ...
##  $ MS1_r4_4373                    : int  5 9 3 4 43 17 18 22 24 17 ...
##  $ MS1_r5_4374                    : int  6 12 5 9 26 12 21 8 5 8 ...
##  $ MS2_r1_4375                    : int  4 5 3 1 19 9 8 12 12 6 ...
##  $ MS2_r2_4376                    : int  8 3 7 8 27 19 6 7 13 5 ...
##  $ MS2_r3_4377                    : int  11 10 8 7 25 19 6 6 8 6 ...
##  $ MS2_r4_4378                    : int  3 8 4 4 19 22 11 8 20 4 ...
##  $ MS2_r5_4379                    : int  4 9 5 5 17 21 9 8 14 8 ...
##  $ commercial1o.commercial_r1_4365: int  5 5 6 9 24 14 6 4 7 5 ...
##  $ commercial2o.commercial_r2_4366: int  8 8 8 13 16 16 8 6 7 6 ...
##  $ commercial3o.commercial_r3_4367: int  5 3 5 6 33 17 8 4 13 6 ...
##  $ commercial4o.commercial_r4_4368: int  9 8 4 3 29 12 4 7 8 4 ...
##  $ commercial5o.commercial_r5_4369: int  1 8 2 2 16 10 6 5 18 1 ...
colnames(data)
##  [1] "ID_REF"                          "control1.4362"                  
##  [3] "control2.4363"                   "control3.4364"                  
##  [5] "MS1_r1_4370"                     "MS1_r2_4371"                    
##  [7] "MS1_r3_4372"                     "MS1_r4_4373"                    
##  [9] "MS1_r5_4374"                     "MS2_r1_4375"                    
## [11] "MS2_r2_4376"                     "MS2_r3_4377"                    
## [13] "MS2_r4_4378"                     "MS2_r5_4379"                    
## [15] "commercial1o.commercial_r1_4365" "commercial2o.commercial_r2_4366"
## [17] "commercial3o.commercial_r3_4367" "commercial4o.commercial_r4_4368"
## [19] "commercial5o.commercial_r5_4369"
data$controlMeans <- rowMeans(data[,2:4],na.rm=F,dims=1)
data$MS1_Means <- rowMeans(data[,5:9], na.rm=F, dims=1)
data$MS2_Means <- rowMeans(data[,10:14], na.rm=F, dims=1)
data$commercial_Means <- rowMeans(data[,15:19],na.rm=F, dims=1)
summary(data)
##     ID_REF          control1.4362    control2.4363    control3.4364   
##  Length:8838657     Min.   :  1.00   Min.   :  1.00   Min.   :  1.00  
##  Class :character   1st Qu.:  6.00   1st Qu.:  5.00   1st Qu.:  6.00  
##  Mode  :character   Median : 10.00   Median : 10.00   Median : 10.00  
##                     Mean   : 12.06   Mean   : 11.66   Mean   : 11.76  
##                     3rd Qu.: 16.00   3rd Qu.: 16.00   3rd Qu.: 16.00  
##                     Max.   :724.00   Max.   :634.00   Max.   :693.00  
##   MS1_r1_4370       MS1_r2_4371       MS1_r3_4372       MS1_r4_4373     
##  Min.   :   1.00   Min.   :   1.00   Min.   :   1.00   Min.   :   1.00  
##  1st Qu.:  12.00   1st Qu.:  14.00   1st Qu.:  10.00   1st Qu.:  21.00  
##  Median :  25.00   Median :  26.00   Median :  18.00   Median :  37.00  
##  Mean   :  33.24   Mean   :  33.42   Mean   :  23.49   Mean   :  47.73  
##  3rd Qu.:  45.00   3rd Qu.:  44.00   3rd Qu.:  31.00   3rd Qu.:  62.00  
##  Max.   :2287.00   Max.   :2734.00   Max.   :2089.00   Max.   :3993.00  
##   MS1_r5_4374       MS2_r1_4375       MS2_r2_4376       MS2_r3_4377     
##  Min.   :   1.00   Min.   :   1.00   Min.   :   1.00   Min.   :   1.00  
##  1st Qu.:  18.00   1st Qu.:  16.00   1st Qu.:  16.00   1st Qu.:  14.00  
##  Median :  32.00   Median :  28.00   Median :  27.00   Median :  25.00  
##  Mean   :  40.83   Mean   :  34.06   Mean   :  33.71   Mean   :  30.51  
##  3rd Qu.:  53.00   3rd Qu.:  45.00   3rd Qu.:  44.00   3rd Qu.:  40.00  
##  Max.   :3215.00   Max.   :2398.00   Max.   :2412.00   Max.   :2127.00  
##   MS2_r4_4378       MS2_r5_4379      commercial1o.commercial_r1_4365
##  Min.   :   1.00   Min.   :   1.00   Min.   :   1.00                
##  1st Qu.:  16.00   1st Qu.:  15.00   1st Qu.:  14.00                
##  Median :  28.00   Median :  25.00   Median :  25.00                
##  Mean   :  34.03   Mean   :  31.16   Mean   :  31.17                
##  3rd Qu.:  45.00   3rd Qu.:  41.00   3rd Qu.:  41.00                
##  Max.   :2298.00   Max.   :2173.00   Max.   :2496.00                
##  commercial2o.commercial_r2_4366 commercial3o.commercial_r3_4367
##  Min.   :   1.00                 Min.   :   1.00                
##  1st Qu.:  13.00                 1st Qu.:  15.00                
##  Median :  23.00                 Median :  26.00                
##  Mean   :  29.57                 Mean   :  34.86                
##  3rd Qu.:  39.00                 3rd Qu.:  45.00                
##  Max.   :2226.00                 Max.   :3084.00                
##  commercial4o.commercial_r4_4368 commercial5o.commercial_r5_4369
##  Min.   :   1.00                 Min.   :   1.00                
##  1st Qu.:  11.00                 1st Qu.:  11.00                
##  Median :  19.00                 Median :  20.00                
##  Mean   :  25.01                 Mean   :  25.54                
##  3rd Qu.:  33.00                 3rd Qu.:  34.00                
##  Max.   :1908.00                 Max.   :1908.00                
##   controlMeans      MS1_Means         MS2_Means       commercial_Means 
##  Min.   :  1.00   Min.   :   1.00   Min.   :   1.00   Min.   :   1.00  
##  1st Qu.:  6.00   1st Qu.:  17.20   1st Qu.:  16.40   1st Qu.:  13.80  
##  Median : 10.00   Median :  28.20   Median :  26.80   Median :  23.00  
##  Mean   : 11.83   Mean   :  35.74   Mean   :  32.69   Mean   :  29.23  
##  3rd Qu.: 15.67   3rd Qu.:  45.60   3rd Qu.:  42.20   3rd Qu.:  37.60  
##  Max.   :683.67   Max.   :2853.20   Max.   :2281.60   Max.   :2324.40

Lets use fold change of the MS1, MS2, and commercial MS patient sample compared to the control mean to get our changes in pathology compared to healthy.

data$foldchange_MS1_vs_control <- data$MS1_Means/data$controlMeans
summary(data$foldchange_MS1_vs_control)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##   0.06076   2.14054   2.92258   3.31576   4.03333 161.40000
data$foldchange_MS2_vs_control <- data$MS2_Means/data$controlMeans
summary(data$foldchange_MS2_vs_control)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##   0.0625   2.1600   2.7120   2.9620   3.4645 110.4000
data$foldchange_commercialMS_vs_control <- data$controlMeans/data$commercial_Means
summary(data$foldchange_commercialMS_vs_control)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##  0.007023  0.302144  0.415225  0.470008  0.575540 17.916667

top50 and bottom 50 genes when ordered by fold change type.

top50bottom50_MS1_FC <- data[order(data$foldchange_MS1_vs_control,decreasing=T)[c(1:50,8838608:8838657)],]

top100_MS1_cDNA <- top50bottom50_MS1_FC$ID_REF
top100_MS1_cDNA
##   [1] "GAGTCGTTTAAAGGCTCTCT" "CACCGTCGTTTTTGTGACCG" "CCCATAGCGATCTAACTTTT"
##   [4] "CTCCAGAGCCGTTTTCGGTG" "TTTAGAGTCGGTGGTAGATC" "GGCTCGGAGTCGCTGAAAAT"
##   [7] "GTGATTCCACAGTCGTTAAT" "TCTGCTCTCTTTACTTATAC" "GTAGAGTCGTTACCCGACAC"
##  [10] "GTACCGTCGGTTGCTCGTGC" "CCAGTCGATTCTTTTCATAT" "CCTCTCACCAGTCGTTTTGG"
##  [13] "AGAGTCGATTTGTCCAATCG" "TTTCGGGGAACCGAGTCGAT" "ATCGTCGGTCTTAGCGGTCA"
##  [16] "AGAGTCGCTCGTTAGGATCT" "GGAGTCGTCTTTTTATCCCC" "GCTTCGCAGTCGTTAGAGTT"
##  [19] "CCAGCAGAGTCGCTCGAAAT" "TAGACATGCAGTCGTTTCGA" "ATCTTCGTTTTTCTTTCGGA"
##  [22] "AGATTAACCCAATACATTAT" "CGGTTAGAGTCGATAGCTTT" "CTATCAACAGAGTCGCTAAT"
##  [25] "GGTGTTGTCAGAGTCGTTAA" "GTGAGGATACAGTCGGTTTT" "ACCCCCGTCGTTAATTCGAC"
##  [28] "ATCGTCGTTTTAGCCGTAGG" "AGAGTCGCTCAACTCCGACT" "CTTGCTCCAGGTCAGAGCGA"
##  [31] "ATGAGTCGTTTCGTGTTTGG" "GGATGATACTGTCGTTTTCG" "TTAGAGTCGTCGGTTTTACT"
##  [34] "TTAATGTCGTTTTTTGGCGA" "CGAGTCGTTTGACCGGCGCA" "ATTCGGGTACCGTCGGTTTT"
##  [37] "CATTGTCGTTTTGAGACCGG" "AGACCCGAGCCGTTTTCTTC" "AGAGGCGTTCGATCTTAGAC"
##  [40] "AACATTTAAGATCCGGGTTG" "TGAATTTTAGAGTCGGTTTC" "GCCGAGTCGTTATGGACCCA"
##  [43] "AGGAGTCGTTAATTCTGATC" "GAGTCGTTCTCGTTTCGCAG" "ACCGTCGCTTGAGGTCAGAT"
##  [46] "CAGCGTCGTTTCTTCGTAGT" "GACACCGGTCGTTTGTCAGC" "GGGGGAGTCGTTTCGCTCCA"
##  [49] "ACTGTCGTTTCAACGTTGAA" "GGTGCGTGGTCGTTTTGAGA" "TAGAGTACCGTTTTTGAACT"
##  [52] "AACCAGAGTAGCGTTTGCTT" "ACCCGGACCCTTGACTCACC" "GCATCCCGGGCGCGTCTAAC"
##  [55] "TGCCCGCGCCTACAGTAGTG" "AAGTGTGGCCCTTTGGGTTT" "CATGCCGGTCCCTTTATCTT"
##  [58] "ACTTCCGGGTCCCTTTCGTC" "GGCTTTTTTTTTTCTTTGTG" "GCAGTCCTGTTTTACTCCCG"
##  [61] "TAGGGCCCTTTCTTCGCCAG" "TCCGGTCGCGTGGCTCATAC" "CGCCTCCCCGGGCCTTAATT"
##  [64] "CCGTGGCTTTTTTTCTTACG" "TGAGAGTACCCGGGCCTTTC" "ATCCGGGTGGCGCTTTTTTC"
##  [67] "ACGGCCCCTCTTTGCCCATT" "CTGTCCGGCCCTGTCTTATT" "GCACAATTTTCATGTGGGAC"
##  [70] "GGGCGTGTTTTTCTGGAGTA" "CAGGGGCGTGAGCTTTCTGT" "CTATGGTCCCTTAGTGTTTA"
##  [73] "CGGGCCTTTCTAGTCATCAG" "GGCGGGTCTTGTGTTTTGCT" "GCCGTCCTGTCTTTCTCATT"
##  [76] "GCGGTCCCTTAGCTCTTCCG" "ACCGGCCTTTTTGGCAGGTC" "GCCCGGGCTTGTAGGTCTTT"
##  [79] "ATGCTGGCCTTTGTATTTAC" "CGGGTGGCGGGGTTTTTATC" "AACGCACGGGCGTGTTAGTC"
##  [82] "GTGCGGGCCCTTCGTCCTGT" "ACACTGGCGCGTTTTTCCCA" "ACGGTGGCTTCTCTTACGTG"
##  [85] "ATGTCGCGGCGTGTGGTTTT" "TAGTGGCGTGAGATTTGCGT" "TAGACACGGGCCTTTGCTAC"
##  [88] "TGCGGTCGCGACCTTTCAGC" "GGGGTCCTTTTATCCTAATC" "GTGGCACAGGGTCGCGTAAA"
##  [91] "TTGGTGTGGTGTTTGTTCCA" "GGTCCTGTCTTTTCTGCTGA" "CGGGCCTGAGTTTTCTACGC"
##  [94] "GTGGGCCCCTTTGATTCTTC" "AGGGTCCTTTGGGGTCAGAA" "TTACGGCCGCGGTTTTACTG"
##  [97] "TGTCGCGTATTTTCTCCAAA" "CCATGGTCGTGTACCGTTAA" "GGCCGGCCCTTTAGGCTTGA"
## [100] "TTCACGGTCCTTTTGGTCAC"
top50bottom50_MS2_FC <- data[order(data$foldchange_MS2_vs_control,decreasing=T)[c(1:50,8838608:8838657)],]
top100_MS2_cDNA <- top50bottom50_MS2_FC$ID_REF
top100_MS2_cDNA
##   [1] "GAGTCGTTTAAAGGCTCTCT" "ATCGTCGGTCTTAGCGGTCA" "GTAGAGTCGTTACCCGACAC"
##   [4] "CTCCAGAGCCGTTTTCGGTG" "TAGACATGCAGTCGTTTCGA" "GGCTCGGAGTCGCTGAAAAT"
##   [7] "ACCCCCGTCGTTAATTCGAC" "AGAGTCGCTCGTTAGGATCT" "CCAGTCGATTCTTTTCATAT"
##  [10] "ACCGCGAGTCGCTTGAACTC" "GGAGTCGTCTTTTTATCCCC" "CACCGTCGTTTTTGTGACCG"
##  [13] "GGTGTTGTCAGAGTCGTTAA" "AGAGTCGATTTGTCCAATCG" "CCAGCAGAGTCGCTCGAAAT"
##  [16] "CCTCTCACCAGTCGTTTTGG" "AGACCCGAGCCGTTTTCTTC" "TTTAGAGTCGGTGGTAGATC"
##  [19] "GAGTCGTTCTCGTTTCGCAG" "CGGTTAGAGTCGATAGCTTT" "AGAGTCGCTCAACTCCGACT"
##  [22] "TGTATCCACCCCCGCCCTAT" "CAGCGTCGTTTCTTCGTAGT" "CGAGTCGTTTGACCGGCGCA"
##  [25] "TCCGAGTCGATTTCGCTAAC" "CGACCAGTCGTTTATACACC" "GTGATTCCACAGTCGTTAAT"
##  [28] "TAACGGAGTCGTTTTTCAAG" "AGATTAACCCAATACATTAT" "ATCGTCGTTTTAGCCGTAGG"
##  [31] "GTGAGGATACAGTCGGTTTT" "GCTTCGCAGTCGTTAGAGTT" "TAGAGTCGTTCTCTACGCGA"
##  [34] "GTACCGTCGGTTGCTCGTGC" "GGGTTCCGAGTCGTTCAAGT" "GCTATCGGCGTTTTCGTATT"
##  [37] "ATGAGTCGTTTCGTGTTTGG" "TTTCGGGGAACCGAGTCGAT" "ACTGTCGTTTCAACGTTGAA"
##  [40] "TAGCGCCGTTGTTGTTCTTA" "TTAGAGTCGTCGGTTTTACT" "AGAGGCGTTCGATCTTAGAC"
##  [43] "ACCGTCGCTTGAGGTCAGAT" "GCCGAGTCGTTATGGACCCA" "AGATGCCAGTCGTTTCTCTT"
##  [46] "TGAATTTTAGAGTCGGTTTC" "CTAAAGCGTCGCTTGTAGTT" "TTTACCGGGGCCGAGTCGCT"
##  [49] "CTATCAACAGAGTCGCTAAT" "ATTCGGGTACCGTCGGTTTT" "TTGTTATCGTTATAGGCGTG"
##  [52] "TGAAAAGTGGCGAGTCTATT" "GGTGGCGGGCCTTTATACCT" "TGCGTATGGTCGCGTCTTGC"
##  [55] "CTCGATGGCGTGTAGTGTAG" "CTTTATCTGATACAGTAGTG" "TAATAAACCCGATAGTGTAG"
##  [58] "TGCGCGGGCGCGTTTCGATA" "GCCAGGGCCCCTTTCGTCAT" "GGTCACAGTAGTGTCGAGCT"
##  [61] "GGAACCAGTGTAGTGAAGAG" "TGCGGTCGCGACCTTTCAGC" "ACTTCCACTTTTTAGTGGCG"
##  [64] "ACGGCCCCTCTTTGCCCATT" "TGTAGTGCTATTGGCGTGTC" "TTGTAGGCGTGTATTTTCTA"
##  [67] "TCGGTGTATTTTTAGCGGCG" "GGCTACCTCGAAGAGTAGTG" "GGGCGTGTTTTTCTGGAGTA"
##  [70] "GTCAGTGGCCTGTACGTTTC" "CGCTCGGGCCTGTTTTCTCA" "TCATAGCGTAGTGTGGCTTA"
##  [73] "TGAAGTGTAGTGGATCATTT" "GCTGATACCGCGTAGTGTAG" "AATTGCGGCCCTTCCATTTT"
##  [76] "TAGAGTACCGTTTTTGAACT" "TAGTGAAGTGTCCCATCGCA" "AGCTCTAGGGCCCCTTTTCG"
##  [79] "CGGTCTGTAGGAGTGTCGTG" "GGTCCTGTCTTTTCTGCTGA" "TCTATGTACTTACCGTAGTG"
##  [82] "AACGCACGGGCGTGTTAGTC" "CGTTCCATGGTAGTCTAGTG" "CTATCCCAAGTAGTGTATTG"
##  [85] "ACCGGCCTTTTTGGCAGGTC" "TGTAGATTACTGTAGTGGCG" "TAGTGGCGTGAGATTTGCGT"
##  [88] "GTGGGCCCCTTTGATTCTTC" "GCCGTCCTGTCTTTCTCATT" "TCATACTTACCTGCCTTTAA"
##  [91] "TTTGCCACGGGCGCGTTTCA" "TGAAATACGTCAGTGTAGTG" "TCCCGGGGCCTCTGTTTTAT"
##  [94] "AACCAGAGTAGCGTTTGCTT" "TACAGTCCTTTCTGTTGACG" "TGCCCGCGCCTACAGTAGTG"
##  [97] "TTCTAGTAGTGTCCTGTACC" "CTATGGTCCCTTAGTGTTTA" "TTCACGGTCCTTTTGGTCAC"
## [100] "CTTCTGTTAGTGTAGTGTTG"
top50bottom50_commercial_FC <- data[order(data$foldchange_commercialMS_vs_control,decreasing=T)[c(1:50,8838608:8838657)],]
top100_commercialMS_cDNA <- top50bottom50_commercial_FC$ID_REF
top100_commercialMS_cDNA
##   [1] "TTACGGCCGCGGTTTTACTG" "TTAGCGACGTGTACAGCCTG" "TCTGCTTACGGTCCCTTTTA"
##   [4] "TTCACGGTCCTTTTGGTCAC" "GCCAGGGCCCCTTTCGTCAT" "TGAAAAGTGGCGAGTCTATT"
##   [7] "TGCGGTCGCGACCTTTCAGC" "GTCAGTGGCCTGTACGTTTC" "GACAGTGTAGTGAATATTGT"
##  [10] "TCGGTGGTAGGGTCCTTTTC" "TAGTGGCGTGAGATTTGCGT" "TGTAGATTACTGTAGTGGCG"
##  [13] "TGCCCGCGCCTACAGTAGTG" "GCATTCAGAGTAGTGTGTCT" "GGCGCCTAAATTTATCTTTT"
##  [16] "GCCGTCCTGTCTTTCTCATT" "CAAATCAACCCTTAGTGGCG" "AACGCACGGGCGTGTTAGTC"
##  [19] "ACAGGCCTGTCTTATGTTTG" "CGGTCTGTAGGAGTGTCGTG" "ACAGTAGGGTCTTGGCTGCT"
##  [22] "GGTCCTGTCTTTTCTGCTGA" "TAGAGTACCGTTTTTGAACT" "ATGGACCTGTTTTCTTTTAG"
##  [25] "CGCTCGGGCCTGTTTTCTCA" "CTTCTGTTAGTGTAGTGTTG" "CTGTCCGGCCCTGTCTTATT"
##  [28] "CAATATCGGTCCTGTTTTTT" "CGGGCCTTTCTAGTCATCAG" "CGGGTGGCGGGGTTTTTATC"
##  [31] "TGCGTATGGTCGCGTCTTGC" "GGTCACAGTAGTGTCGAGCT" "GGGCGTGTTTTTCTGGAGTA"
##  [34] "GCTCGTGGGCCCTTTTTCGT" "ACTTCCGGGTCCCTTTCGTC" "ATCCGGGTGGCGCTTTTTTC"
##  [37] "GGGGGTCCTTTTTGAATTCG" "ATTGGCCTGTATTATTGCGC" "ACGGGCCTCTTTGCTCGTGT"
##  [40] "ACCCGGACCCTTGACTCACC" "AATACGGGCCCGTGTTACCC" "GTGCGGGCCCTTCGTCCTGT"
##  [43] "CAAGCAGTCCTTTCTTTTAA" "CGCACCGGGGTCCCGTTTTT" "CGGACCCGGTAGTGTAGCTT"
##  [46] "AGTTCAGGGGCCCTTTCTCG" "GCCCTGGCCCTTTATCTTGA" "GCCTCCGGCCCTTTTCCTTC"
##  [49] "AAACCGCGGGCCCTTTAGGA" "CTATGGTCCCTTAGTGTTTA" "AACATTTAAGATCCGGGTTG"
##  [52] "AGTGCACATTTTAACCGATC" "GGGGGAGTCGTTTCGCTCCA" "GAGTCGTTCTCGTTTCGCAG"
##  [55] "AGTCTGTGGGCGGAAAGATG" "TTTTACAGTCGTTCGGATGT" "TGTCAAGTCGTTTGTGTTGA"
##  [58] "GTGAGGATACAGTCGGTTTT" "TAACGGAGTCGTTTTTCAAG" "AGCTTCGTTTTTCGTTACGG"
##  [61] "ACCGCGAGTCGCTTGAACTC" "CGGACCCGGTCGATTCGGTA" "CCAGTCGTTTTGACTAGGCC"
##  [64] "TGAATTTTAGAGTCGGTTTC" "CCTCTCACCAGTCGTTTTGG" "CGGTTAGAGTCGATAGCTTT"
##  [67] "ATCGTCGTTTTAGCCGTAGG" "TTAATGTCGTTTTTTGGCGA" "AGAGGCGTTCGATCTTAGAC"
##  [70] "CGAGTCGTTTGACCGGCGCA" "GCCGAGTCGTTATGGACCCA" "AGATTAACCCAATACATTAT"
##  [73] "GTGATTCCACAGTCGTTAAT" "CAAGGGATATCCACTTGCGT" "TAGAGTCGTTCTCTACGCGA"
##  [76] "CTATCAACAGAGTCGCTAAT" "TCCGAGTCGATTTCGCTAAC" "ACTGTCGTTTCAACGTTGAA"
##  [79] "CCAGTCGATTCTTTTCATAT" "GCTTCGCAGTCGTTAGAGTT" "CGGGGCTAGGTACAGTGATC"
##  [82] "ACCCCCGTCGTTAATTCGAC" "GGAGTCGTCTTTTTATCCCC" "TTTCGGGGAACCGAGTCGAT"
##  [85] "GGTCATGACCGTTCCGTTAA" "AGAGTCGATTTGTCCAATCG" "TTTAGAGTCGGTGGTAGATC"
##  [88] "GGCTCGGAGTCGCTGAAAAT" "AGAGTCGCTCGTTAGGATCT" "GTACCGTCGGTTGCTCGTGC"
##  [91] "GGTGTTGTCAGAGTCGTTAA" "ATCGTCGGTCTTAGCGGTCA" "TAGACATGCAGTCGTTTCGA"
##  [94] "CTCCAGAGCCGTTTTCGGTG" "GTAGAGTCGTTACCCGACAC" "CCAGCAGAGTCGCTCGAAAT"
##  [97] "ATGTTTTAATTGCTATAAGA" "CACCGTCGTTTTTGTGACCG" "CTATCCCGAGATCCGGCTGG"
## [100] "GAGTCGTTTAAAGGCTCTCT"

Are there any strands in the fold change groups common to all 3 sets of top 100 genes?

common1 <- top100_commercialMS_cDNA[which(top100_commercialMS_cDNA %in% top100_MS1_cDNA)]
common2 <- top100_MS1_cDNA[which(top100_MS1_cDNA %in% top100_MS2_cDNA)]
commonAll3 <- common1[which(common1 %in% common2 )]
commonAll3
##  [1] "TTCACGGTCCTTTTGGTCAC" "TGCGGTCGCGACCTTTCAGC" "TAGTGGCGTGAGATTTGCGT"
##  [4] "TGCCCGCGCCTACAGTAGTG" "GCCGTCCTGTCTTTCTCATT" "AACGCACGGGCGTGTTAGTC"
##  [7] "GGTCCTGTCTTTTCTGCTGA" "TAGAGTACCGTTTTTGAACT" "GGGCGTGTTTTTCTGGAGTA"
## [10] "CTATGGTCCCTTAGTGTTTA" "GAGTCGTTCTCGTTTCGCAG" "GTGAGGATACAGTCGGTTTT"
## [13] "TGAATTTTAGAGTCGGTTTC" "CCTCTCACCAGTCGTTTTGG" "CGGTTAGAGTCGATAGCTTT"
## [16] "ATCGTCGTTTTAGCCGTAGG" "AGAGGCGTTCGATCTTAGAC" "CGAGTCGTTTGACCGGCGCA"
## [19] "GCCGAGTCGTTATGGACCCA" "AGATTAACCCAATACATTAT" "GTGATTCCACAGTCGTTAAT"
## [22] "CTATCAACAGAGTCGCTAAT" "ACTGTCGTTTCAACGTTGAA" "CCAGTCGATTCTTTTCATAT"
## [25] "GCTTCGCAGTCGTTAGAGTT" "ACCCCCGTCGTTAATTCGAC" "GGAGTCGTCTTTTTATCCCC"
## [28] "TTTCGGGGAACCGAGTCGAT" "AGAGTCGATTTGTCCAATCG" "TTTAGAGTCGGTGGTAGATC"
## [31] "GGCTCGGAGTCGCTGAAAAT" "AGAGTCGCTCGTTAGGATCT" "GTACCGTCGGTTGCTCGTGC"
## [34] "GGTGTTGTCAGAGTCGTTAA" "ATCGTCGGTCTTAGCGGTCA" "TAGACATGCAGTCGTTTCGA"
## [37] "CTCCAGAGCCGTTTTCGGTG" "GTAGAGTCGTTACCCGACAC" "CCAGCAGAGTCGCTCGAAAT"
## [40] "CACCGTCGTTTTTGTGACCG" "GAGTCGTTTAAAGGCTCTCT"

Great, there are some top genes common to all 3 sets of fold change values top 100 genes each. Totaling 41 genes. Lets make this its own data frame of common 41 cDNA gene base pair strands.

top41 <- data[which(data$ID_REF %in% commonAll3),]
summary(top41)
##     ID_REF          control1.4362    control2.4363    control3.4364   
##  Length:41          Min.   : 1.000   Min.   : 1.000   Min.   : 1.000  
##  Class :character   1st Qu.: 1.000   1st Qu.: 1.000   1st Qu.: 1.000  
##  Mode  :character   Median : 2.000   Median : 1.000   Median : 2.000  
##                     Mean   : 7.512   Mean   : 7.634   Mean   : 7.927  
##                     3rd Qu.: 4.000   3rd Qu.: 6.000   3rd Qu.: 4.000  
##                     Max.   :33.000   Max.   :46.000   Max.   :38.000  
##   MS1_r1_4370      MS1_r2_4371      MS1_r3_4372      MS1_r4_4373 
##  Min.   :  1.00   Min.   :  1.00   Min.   :  1.00   Min.   :  1  
##  1st Qu.: 17.00   1st Qu.: 31.00   1st Qu.: 34.00   1st Qu.: 61  
##  Median : 78.00   Median : 76.00   Median : 55.00   Median :103  
##  Mean   : 78.76   Mean   : 79.66   Mean   : 55.98   Mean   :115  
##  3rd Qu.:120.00   3rd Qu.:114.00   3rd Qu.: 75.00   3rd Qu.:180  
##  Max.   :225.00   Max.   :247.00   Max.   :206.00   Max.   :298  
##   MS1_r5_4374     MS2_r1_4375      MS2_r2_4376      MS2_r3_4377    
##  Min.   :  1.0   Min.   :  1.00   Min.   :  1.00   Min.   :  2.00  
##  1st Qu.: 42.0   1st Qu.: 34.00   1st Qu.: 43.00   1st Qu.: 21.00  
##  Median : 99.0   Median : 69.00   Median : 71.00   Median : 77.00  
##  Mean   :100.1   Mean   : 67.07   Mean   : 67.17   Mean   : 64.29  
##  3rd Qu.:134.0   3rd Qu.: 93.00   3rd Qu.: 89.00   3rd Qu.: 91.00  
##  Max.   :311.0   Max.   :256.00   Max.   :228.00   Max.   :200.00  
##   MS2_r4_4378      MS2_r5_4379     commercial1o.commercial_r1_4365
##  Min.   :  1.00   Min.   :  1.00   Min.   :  1.00                 
##  1st Qu.: 36.00   1st Qu.: 26.00   1st Qu.: 50.00                 
##  Median : 75.00   Median : 64.00   Median : 71.00                 
##  Mean   : 69.49   Mean   : 60.73   Mean   : 72.17                 
##  3rd Qu.: 95.00   3rd Qu.: 87.00   3rd Qu.: 98.00                 
##  Max.   :241.00   Max.   :177.00   Max.   :251.00                 
##  commercial2o.commercial_r2_4366 commercial3o.commercial_r3_4367
##  Min.   :  1.00                  Min.   :  1.00                 
##  1st Qu.: 23.00                  1st Qu.: 54.00                 
##  Median : 70.00                  Median : 94.00                 
##  Mean   : 68.54                  Mean   : 85.85                 
##  3rd Qu.: 98.00                  3rd Qu.:111.00                 
##  Max.   :200.00                  Max.   :254.00                 
##  commercial4o.commercial_r4_4368 commercial5o.commercial_r5_4369
##  Min.   :  1.00                  Min.   :  1.00                 
##  1st Qu.: 24.00                  1st Qu.: 29.00                 
##  Median : 67.00                  Median : 60.00                 
##  Mean   : 60.68                  Mean   : 57.95                 
##  3rd Qu.: 86.00                  3rd Qu.: 77.00                 
##  Max.   :207.00                  Max.   :185.00                 
##   controlMeans      MS1_Means       MS2_Means      commercial_Means
##  Min.   : 1.000   Min.   :  1.6   Min.   :  1.40   Min.   :  1.80  
##  1st Qu.: 1.000   1st Qu.: 51.6   1st Qu.: 42.20   1st Qu.: 41.60  
##  Median : 1.667   Median : 88.8   Median : 73.60   Median : 71.80  
##  Mean   : 7.691   Mean   : 85.9   Mean   : 65.75   Mean   : 69.04  
##  3rd Qu.: 4.333   3rd Qu.:125.0   3rd Qu.: 87.00   3rd Qu.: 91.60  
##  Max.   :34.333   Max.   :248.0   Max.   :220.40   Max.   :212.20  
##  foldchange_MS1_vs_control foldchange_MS2_vs_control
##  Min.   :  0.06076         Min.   :  0.06835        
##  1st Qu.: 51.60000         1st Qu.: 41.00000        
##  Median : 64.40000         Median : 48.60000        
##  Mean   : 55.81724         Mean   : 43.15910        
##  3rd Qu.: 75.40000         3rd Qu.: 61.40000        
##  Max.   :161.40000         Max.   :110.40000        
##  foldchange_commercialMS_vs_control
##  Min.   : 0.007023                 
##  1st Qu.: 0.016129                 
##  Median : 0.019707                 
##  Mean   : 2.523062                 
##  3rd Qu.: 0.024039                 
##  Max.   :14.629630

Lets write the data and the top41 genes out to csv to use as needed.

write.csv(data,'foldchange3setsVsControlMeans.csv',row.names=F)
write.csv(top41,'top41genesCommonToAllFoldchangeValues3groupsMS.csv',row.names=F)

We will test these genes out in bioconductor to see if it is working today. And also with random forest modeling later to see if we can use these genes to predict the class of the sample as healthy or Multiple Sclerosis pathology.

=====================================================================

Machine Learning with top 41 gene allele variants in multiple sclerosis data.

top41 <- read.csv('top41genesCommonToAllFoldchangeValues3groupsMS.csv',sep=',', header=T, na.strings=c('',' ','na','NA'))
ID_REF <- top41$ID_REF
samples <- colnames(top41)[2:19]
colnames(top41)
##  [1] "ID_REF"                             "control1.4362"                     
##  [3] "control2.4363"                      "control3.4364"                     
##  [5] "MS1_r1_4370"                        "MS1_r2_4371"                       
##  [7] "MS1_r3_4372"                        "MS1_r4_4373"                       
##  [9] "MS1_r5_4374"                        "MS2_r1_4375"                       
## [11] "MS2_r2_4376"                        "MS2_r3_4377"                       
## [13] "MS2_r4_4378"                        "MS2_r5_4379"                       
## [15] "commercial1o.commercial_r1_4365"    "commercial2o.commercial_r2_4366"   
## [17] "commercial3o.commercial_r3_4367"    "commercial4o.commercial_r4_4368"   
## [19] "commercial5o.commercial_r5_4369"    "controlMeans"                      
## [21] "MS1_Means"                          "MS2_Means"                         
## [23] "commercial_Means"                   "foldchange_MS1_vs_control"         
## [25] "foldchange_MS2_vs_control"          "foldchange_commercialMS_vs_control"
samplesOnly <- top41[,c(2:19)]
ML_data <- data.frame(t(samplesOnly))
colnames(ML_data) <- ID_REF
head(ML_data)
##               TTTCGGGGAACCGAGTCGAT TTTAGAGTCGGTGGTAGATC TTCACGGTCCTTTTGGTCAC
## control1.4362                    1                    1                   31
## control2.4363                    1                    1                   23
## control3.4364                    3                    1                   25
## MS1_r1_4370                    119                   99                    2
## MS1_r2_4371                    106                   89                    2
## MS1_r3_4372                    101                   49                    2
##               TGCGGTCGCGACCTTTCAGC TGCCCGCGCCTACAGTAGTG TGAATTTTAGAGTCGGTTTC
## control1.4362                   21                   27                    2
## control2.4363                   22                   24                    4
## control3.4364                   30                   32                    2
## MS1_r1_4370                      1                    1                  135
## MS1_r2_4371                      2                    1                  124
## MS1_r3_4372                      2                    4                   99
##               TAGTGGCGTGAGATTTGCGT TAGAGTACCGTTTTTGAACT TAGACATGCAGTCGTTTCGA
## control1.4362                   28                   20                    1
## control2.4363                   29                   26                    1
## control3.4364                   23                   13                    2
## MS1_r1_4370                      1                    1                   61
## MS1_r2_4371                      1                    2                  114
## MS1_r3_4372                      3                    4                   65
##               GTGATTCCACAGTCGTTAAT GTGAGGATACAGTCGGTTTT GTAGAGTCGTTACCCGACAC
## control1.4362                    2                    2                    1
## control2.4363                    1                    1                    1
## control3.4364                    4                    2                    1
## MS1_r1_4370                    209                   76                   82
## MS1_r2_4371                    176                  124                   67
## MS1_r3_4372                    135                   52                   55
##               GTACCGTCGGTTGCTCGTGC GGTGTTGTCAGAGTCGTTAA GGTCCTGTCTTTTCTGCTGA
## control1.4362                    3                    1                   33
## control2.4363                    2                    1                   30
## control3.4364                    3                    2                   37
## MS1_r1_4370                    225                  102                    2
## MS1_r2_4371                    167                   62                    2
## MS1_r3_4372                    113                   58                    2
##               GGGCGTGTTTTTCTGGAGTA GGCTCGGAGTCGCTGAAAAT GGAGTCGTCTTTTTATCCCC
## control1.4362                   32                    1                    2
## control2.4363                   33                    1                    1
## control3.4364                   38                    1                    1
## MS1_r1_4370                      7                   70                  155
## MS1_r2_4371                      4                   69                   78
## MS1_r3_4372                      2                   53                   44
##               GCTTCGCAGTCGTTAGAGTT GCCGTCCTGTCTTTCTCATT GCCGAGTCGTTATGGACCCA
## control1.4362                    3                   28                    1
## control2.4363                    1                   16                    1
## control3.4364                    1                   23                    1
## MS1_r1_4370                    123                    1                   44
## MS1_r2_4371                    123                    3                   52
## MS1_r3_4372                     59                    2                   52
##               GAGTCGTTTAAAGGCTCTCT GAGTCGTTCTCGTTTCGCAG CTCCAGAGCCGTTTTCGGTG
## control1.4362                    1                    1                    1
## control2.4363                    1                    1                    2
## control3.4364                    1                    1                    1
## MS1_r1_4370                    125                   70                  141
## MS1_r2_4371                    185                   59                   84
## MS1_r3_4372                     97                   38                   61
##               CTATGGTCCCTTAGTGTTTA CTATCAACAGAGTCGCTAAT CGGTTAGAGTCGATAGCTTT
## control1.4362                   15                    2                    1
## control2.4363                   15                    2                    1
## control3.4364                   22                    2                    3
## MS1_r1_4370                      1                  139                   89
## MS1_r2_4371                      2                  105                  107
## MS1_r3_4372                      1                   86                   58
##               CGAGTCGTTTGACCGGCGCA CCTCTCACCAGTCGTTTTGG CCAGTCGATTCTTTTCATAT
## control1.4362                    4                    1                    1
## control2.4363                    6                    4                    1
## control3.4364                    3                    1                    2
## MS1_r1_4370                    178                  120                  105
## MS1_r2_4371                    247                  152                   76
## MS1_r3_4372                    206                   81                   72
##               CCAGCAGAGTCGCTCGAAAT CACCGTCGTTTTTGTGACCG ATCGTCGTTTTAGCCGTAGG
## control1.4362                    1                    1                    1
## control2.4363                    1                    1                    1
## control3.4364                    1                    1                    1
## MS1_r1_4370                     85                  103                   78
## MS1_r2_4371                     47                   63                   34
## MS1_r3_4372                     65                   85                   50
##               ATCGTCGGTCTTAGCGGTCA AGATTAACCCAATACATTAT AGAGTCGCTCGTTAGGATCT
## control1.4362                    1                    2                    2
## control2.4363                    1                    1                    1
## control3.4364                    1                    2                    1
## MS1_r1_4370                     17                  160                   94
## MS1_r2_4371                     81                   66                  101
## MS1_r3_4372                     70                   75                   49
##               AGAGTCGATTTGTCCAATCG AGAGGCGTTCGATCTTAGAC ACTGTCGTTTCAACGTTGAA
## control1.4362                    2                    3                    1
## control2.4363                    2                    4                    1
## control3.4364                    2                    1                    1
## MS1_r1_4370                     70                   63                   49
## MS1_r2_4371                    172                  180                   31
## MS1_r3_4372                     68                  107                   35
##               ACCCCCGTCGTTAATTCGAC AACGCACGGGCGTGTTAGTC
## control1.4362                    1                   25
## control2.4363                    1                   46
## control3.4364                    1                   32
## MS1_r1_4370                     25                    1
## MS1_r2_4371                    104                    2
## MS1_r3_4372                     34                    1
sampleClassLabels <- row.names(ML_data)
sampleClassLabels
##  [1] "control1.4362"                   "control2.4363"                  
##  [3] "control3.4364"                   "MS1_r1_4370"                    
##  [5] "MS1_r2_4371"                     "MS1_r3_4372"                    
##  [7] "MS1_r4_4373"                     "MS1_r5_4374"                    
##  [9] "MS2_r1_4375"                     "MS2_r2_4376"                    
## [11] "MS2_r3_4377"                     "MS2_r4_4378"                    
## [13] "MS2_r5_4379"                     "commercial1o.commercial_r1_4365"
## [15] "commercial2o.commercial_r2_4366" "commercial3o.commercial_r3_4367"
## [17] "commercial4o.commercial_r4_4368" "commercial5o.commercial_r5_4369"

There are 3 healthy control samples and 15 Multiple Sclerosis samples, lets add a feature for class as those class labels.

class <- as.factor(c("healthy","healthy","healthy",
           "MS","MS","MS","MS","MS",
           "MS","MS","MS","MS","MS",
           "MS","MS","MS","MS","MS"))
ML_data$class <- class

summary(ML_data$class)
## healthy      MS 
##       3      15
write.csv(ML_data, "ML_data_15MS_3Healthy.csv",row.names=F)
rm( "class",                       "common1" ,                   
  "common2"          ,           "commonAll3"  ,               
  "data"            ,            "ID_REF"       ,              
 "ML_data"         ,            "sampleClassLabels",          
 "samples"        ,             "samplesOnly"       ,         
 "top100_commercialMS_cDNA"    ,"top100_MS1_cDNA"    ,        
"top100_MS2_cDNA"             ,"top41"                ,      
"top50bottom50_commercial_FC", "top50bottom50_MS1_FC"  ,     
 "top50bottom50_MS2_FC"       
)
ML41data <- read.csv("ML_data_15MS_3Healthy.csv",header=T, sep=',',na.string=c('',' ','na','NA'))
ML41data$class <- as.factor(ML41data$class)  
summary(ML41data)
##  TTTCGGGGAACCGAGTCGAT TTTAGAGTCGGTGGTAGATC TTCACGGTCCTTTTGGTCAC
##  Min.   :  1.00       Min.   :  1.00       Min.   : 1.000      
##  1st Qu.: 63.50       1st Qu.: 44.25       1st Qu.: 1.000      
##  Median : 90.00       Median : 52.50       Median : 2.000      
##  Mean   : 82.39       Mean   : 56.83       Mean   : 5.833      
##  3rd Qu.:104.75       3rd Qu.: 84.50       3rd Qu.: 3.000      
##  Max.   :200.00       Max.   :108.00       Max.   :31.000      
##  TGCGGTCGCGACCTTTCAGC TGCCCGCGCCTACAGTAGTG TGAATTTTAGAGTCGGTTTC
##  Min.   : 1.000       Min.   : 1.000       Min.   :  2.00      
##  1st Qu.: 2.000       1st Qu.: 1.000       1st Qu.: 98.25      
##  Median : 3.000       Median : 3.500       Median :112.50      
##  Mean   : 6.167       Mean   : 6.889       Mean   :104.56      
##  3rd Qu.: 4.500       3rd Qu.: 5.000       3rd Qu.:123.75      
##  Max.   :30.000       Max.   :32.000       Max.   :235.00      
##  TAGTGGCGTGAGATTTGCGT TAGAGTACCGTTTTTGAACT TAGACATGCAGTCGTTTCGA
##  Min.   : 1.000       Min.   : 1.000       Min.   :  1.00      
##  1st Qu.: 1.250       1st Qu.: 2.000       1st Qu.: 64.25      
##  Median : 3.000       Median : 2.000       Median : 87.50      
##  Mean   : 6.556       Mean   : 5.222       Mean   : 76.61      
##  3rd Qu.: 4.000       3rd Qu.: 3.750       3rd Qu.:104.50      
##  Max.   :29.000       Max.   :26.000       Max.   :116.00      
##  GTGATTCCACAGTCGTTAAT GTGAGGATACAGTCGGTTTT GTAGAGTCGTTACCCGACAC
##  Min.   :  1.0        Min.   :  1.00       Min.   : 1.00       
##  1st Qu.:103.2        1st Qu.: 53.75       1st Qu.:51.00       
##  Median :114.0        Median : 73.50       Median :68.00       
##  Mean   :120.0        Mean   : 70.83       Mean   :61.78       
##  3rd Qu.:151.5        3rd Qu.: 90.25       3rd Qu.:82.00       
##  Max.   :242.0        Max.   :166.00       Max.   :99.00       
##  GTACCGTCGGTTGCTCGTGC GGTGTTGTCAGAGTCGTTAA GGTCCTGTCTTTTCTGCTGA
##  Min.   :  2.0        Min.   :  1.00       Min.   : 1.000      
##  1st Qu.:112.2        1st Qu.: 63.25       1st Qu.: 2.250      
##  Median :145.5        Median : 77.00       Median : 3.500      
##  Mean   :138.9        Mean   : 70.78       Mean   : 8.444      
##  3rd Qu.:183.2        3rd Qu.: 97.50       3rd Qu.: 6.000      
##  Max.   :269.0        Max.   :111.00       Max.   :37.000      
##  GGGCGTGTTTTTCTGGAGTA GGCTCGGAGTCGCTGAAAAT GGAGTCGTCTTTTTATCCCC
##  Min.   : 1.000       Min.   :  1.00       Min.   :  1.00      
##  1st Qu.: 2.250       1st Qu.: 51.50       1st Qu.: 49.00      
##  Median : 4.500       Median : 62.00       Median : 76.50      
##  Mean   : 9.056       Mean   : 61.28       Mean   : 71.11      
##  3rd Qu.: 7.000       3rd Qu.: 76.75       3rd Qu.: 95.75      
##  Max.   :38.000       Max.   :128.00       Max.   :155.00      
##  GCTTCGCAGTCGTTAGAGTT GCCGTCCTGTCTTTCTCATT GCCGAGTCGTTATGGACCCA
##  Min.   :  1.00       Min.   : 1.000       Min.   : 1.00       
##  1st Qu.: 62.00       1st Qu.: 2.000       1st Qu.:32.00       
##  Median : 86.50       Median : 2.000       Median :44.00       
##  Mean   : 80.39       Mean   : 5.556       Mean   :40.67       
##  3rd Qu.:108.00       3rd Qu.: 3.750       3rd Qu.:58.75       
##  Max.   :166.00       Max.   :28.000       Max.   :69.00       
##  GAGTCGTTTAAAGGCTCTCT GAGTCGTTCTCGTTTCGCAG CTCCAGAGCCGTTTTCGGTG
##  Min.   :  1.00       Min.   : 1.00        Min.   :  1.00      
##  1st Qu.: 99.75       1st Qu.:31.25        1st Qu.: 65.25      
##  Median :118.00       Median :46.50        Median : 90.50      
##  Mean   :115.22       Mean   :41.33        Mean   : 87.28      
##  3rd Qu.:149.25       3rd Qu.:54.00        3rd Qu.:108.00      
##  Max.   :209.00       Max.   :71.00        Max.   :190.00      
##  CTATGGTCCCTTAGTGTTTA CTATCAACAGAGTCGCTAAT CGGTTAGAGTCGATAGCTTT
##  Min.   : 1.000       Min.   :  2.00       Min.   :  1.00      
##  1st Qu.: 1.000       1st Qu.: 77.25       1st Qu.: 61.50      
##  Median : 2.000       Median : 88.00       Median : 86.00      
##  Mean   : 4.333       Mean   : 87.83       Mean   : 77.22      
##  3rd Qu.: 3.000       3rd Qu.:109.50       3rd Qu.: 96.50      
##  Max.   :22.000       Max.   :180.00       Max.   :163.00      
##  CGAGTCGTTTGACCGGCGCA CCTCTCACCAGTCGTTTTGG CCAGTCGATTCTTTTCATAT
##  Min.   :  3.0        Min.   :  1.00       Min.   :  1.00      
##  1st Qu.:177.2        1st Qu.: 81.50       1st Qu.: 69.00      
##  Median :206.5        Median : 96.00       Median : 75.50      
##  Mean   :189.8        Mean   : 99.11       Mean   : 71.67      
##  3rd Qu.:250.0        3rd Qu.:119.75       3rd Qu.: 84.00      
##  Max.   :311.0        Max.   :217.00       Max.   :172.00      
##  CCAGCAGAGTCGCTCGAAAT CACCGTCGTTTTTGTGACCG ATCGTCGTTTTAGCCGTAGG
##  Min.   : 1.0         Min.   :  1.00       Min.   : 1.00       
##  1st Qu.:53.5         1st Qu.: 56.50       1st Qu.:34.25       
##  Median :59.0         Median : 64.50       Median :48.00       
##  Mean   :55.5         Mean   : 71.22       Mean   :43.56       
##  3rd Qu.:67.0         3rd Qu.:101.25       3rd Qu.:62.75       
##  Max.   :96.0         Max.   :142.00       Max.   :78.00       
##  ATCGTCGGTCTTAGCGGTCA AGATTAACCCAATACATTAT AGAGTCGCTCGTTAGGATCT
##  Min.   :  1.00       Min.   :  1.00       Min.   :  1.00      
##  1st Qu.: 46.50       1st Qu.: 68.25       1st Qu.: 70.00      
##  Median : 69.00       Median : 80.00       Median : 83.00      
##  Mean   : 60.61       Mean   : 77.89       Mean   : 74.39      
##  3rd Qu.: 84.00       3rd Qu.: 91.75       3rd Qu.: 97.25      
##  Max.   :110.00       Max.   :160.00       Max.   :152.00      
##  AGAGTCGATTTGTCCAATCG AGAGGCGTTCGATCTTAGAC ACTGTCGTTTCAACGTTGAA
##  Min.   :  2.0        Min.   :  1.00       Min.   : 1.00       
##  1st Qu.: 71.0        1st Qu.: 97.25       1st Qu.:25.75       
##  Median :118.0        Median :115.50       Median :48.00       
##  Mean   :109.4        Mean   :108.78       Mean   :41.39       
##  3rd Qu.:130.5        3rd Qu.:140.50       3rd Qu.:62.75       
##  Max.   :224.0        Max.   :203.00       Max.   :72.00       
##  ACCCCCGTCGTTAATTCGAC AACGCACGGGCGTGTTAGTC     class   
##  Min.   :  1.00       Min.   : 1.000       healthy: 3  
##  1st Qu.: 36.00       1st Qu.: 3.000       MS     :15  
##  Median : 56.00       Median : 3.500                   
##  Mean   : 50.78       Mean   : 8.722                   
##  3rd Qu.: 69.50       3rd Qu.: 6.000                   
##  Max.   :104.00       Max.   :46.000

The data frame is ready to use in a simple random forest machine learning model to predict class. Lets do the bootstrap setting and Accuracy for metric

# intrain <- sample(1:13,.8*13)
training <- ML41data[c(2,3,4,5,6,7,8,9,10,13,11,15),]
testing <- ML41data[c(1,11,14),]
table(testing$class)
## 
## healthy      MS 
##       1       2
table(training$class)
## 
## healthy      MS 
##       2      10

Manually picked training and testing to make sure at least one healthy class is in the testing set.

library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
set.seed(123)
ML41.rf <- randomForest(class ~ ., data=training, ntree=10000, keep.forest=TRUE,
                          importance=TRUE)
print(ML41.rf)
## 
## Call:
##  randomForest(formula = class ~ ., data = training, ntree = 10000,      keep.forest = TRUE, importance = TRUE) 
##                Type of random forest: classification
##                      Number of trees: 10000
## No. of variables tried at each split: 6
## 
##         OOB estimate of  error rate: 0%
## Confusion matrix:
##         healthy MS class.error
## healthy       2  0           0
## MS            0 10           0

Call: randomForest(formula = class ~ ., data = training, ntree = 10000, keep.forest = TRUE, importance = TRUE) Type of random forest: classification Number of trees: 10000 No. of variables tried at each split: 6

    OOB estimate of  error rate: 0%

Confusion matrix: healthy MS class.error healthy 2 0 0 MS 0 10 0

The model trained 100% accuracy on training set with 10,000 trees. Predict on the testing set to see how it performs.

ML41rf_predict <- predict(ML41.rf, newdata = testing)
ML41rf_predict
##       1      11      14 
## healthy      MS      MS 
## Levels: healthy MS
1       11      14 

healthy MS MS Levels: healthy MS

predictResults <- data.frame(Predicted=ML41rf_predict,Actual=testing$class)
predictResults
##    Predicted  Actual
## 1    healthy healthy
## 11        MS      MS
## 14        MS      MS
sum(predictResults$Predicted==predictResults$Actual)/length(predictResults$Predicted)
## [1] 1

[1] 1

The predicted results are 100% on the testing set, so these alleles must be risk loci in the genes that are silenced or enhanced in multiple sclerosis.

Now to find the genes that these allele cDNA 20 base pair nucleotides go to in order to find what gene therapies could be used for stem cell cultures of the defective ones to make the proteins that demyelinate the CNS in MS patients.

Bioconductor wasn’t working earlier but maybe it will when ran. until a manual search for the gene the strand belongs to from ENSMBLE, the UCSC lab,BLAST, Genecards.org might turn up something.

Here are those top 41 genes next to their fold change values.

FC41 <- read.csv('top41genesCommonToAllFoldchangeValues3groupsMS.csv', header=T, sep=',', na.strings=c('',' ','na','NA'))
FCvalues41 <- FC41[order(FC41$foldchange_commercialMS_vs_control, decreasing=T),c(1,24:26)]
FCvalues41
##                  ID_REF foldchange_MS1_vs_control foldchange_MS2_vs_control
## 3  TTCACGGTCCTTTTGGTCAC                0.06075949                0.06835443
## 4  TGCGGTCGCGACCTTTCAGC                0.08219178                0.14794521
## 7  TAGTGGCGTGAGATTTGCGT                0.08250000                0.11250000
## 5  TGCCCGCGCCTACAGTAGTG                0.10843373                0.09397590
## 20 GCCGTCCTGTCTTTCTCATT                0.08955224                0.10746269
## 41 AACGCACGGGCGTGTTAGTC                0.08737864                0.12233010
## 15 GGTCCTGTCTTTTCTGCTGA                0.07800000                0.12600000
## 8  TAGAGTACCGTTTTTGAACT                0.11186441                0.13220339
## 16 GGGCGTGTTTTTCTGGAGTA                0.09320388                0.13980583
## 25 CTATGGTCCCTTAGTGTTTA                0.09230769                0.08076923
## 23 GAGTCGTTCTCGTTTCGCAG               54.00000000               52.60000000
## 11 GTGAGGATACAGTCGGTTTT               63.00000000               47.04000000
## 6  TGAATTTTAGAGTCGGTTTC               54.45000000               41.17500000
## 29 CCTCTCACCAGTCGTTTTGG               75.80000000               54.50000000
## 27 CGGTTAGAGTCGATAGCTTT               66.36000000               52.20000000
## 33 ATCGTCGTTTTAGCCGTAGG               60.80000000               47.40000000
## 38 AGAGGCGTTCGATCTTAGAC               54.90000000               42.67500000
## 28 CGAGTCGTTTGACCGGCGCA               57.23076923               50.86153846
## 21 GCCGAGTCGTTATGGACCCA               54.40000000               42.20000000
## 35 AGATTAACCCAATACATTAT               68.52000000               48.60000000
## 10 GTGATTCCACAGTCGTTAAT               84.60000000               49.20000000
## 26 CTATCAACAGAGTCGCTAAT               64.40000000               41.00000000
## 39 ACTGTCGTTTCAACGTTGAA               51.60000000               44.00000000
## 30 CCAGTCGATTCTTTTCATAT               76.35000000               62.10000000
## 19 GCTTCGCAGTCGTTAGAGTT               71.76000000               46.68000000
## 40 ACCCCCGTCGTTAATTCGAC               61.60000000               64.20000000
## 18 GGAGTCGTCTTTTTATCCCC               73.05000000               61.50000000
## 1  TTTCGGGGAACCGAGTCGAT               75.00000000               44.16000000
## 37 AGAGTCGATTTGTCCAATCG               75.40000000               60.40000000
## 2  TTTAGAGTCGGTGGTAGATC               88.80000000               53.20000000
## 17 GGCTCGGAGTCGCTGAAAAT               87.60000000               70.40000000
## 36 AGAGTCGCTCGTTAGGATCT               74.10000000               63.45000000
## 13 GTACCGTCGGTTGCTCGTGC               77.55000000               45.90000000
## 14 GGTGTTGTCAGAGTCGTTAA               63.90000000               61.20000000
## 34 ATCGTCGGTCTTAGCGGTCA               74.60000000               77.40000000
## 9  TAGACATGCAGTCGTTTCGA               68.85000000               71.40000000
## 24 CTCCAGAGCCGTTTTCGGTG               94.80000000               71.55000000
## 12 GTAGAGTCGTTACCCGACAC               80.00000000               71.60000000
## 31 CCAGCAGAGTCGCTCGAAAT               69.40000000               58.00000000
## 32 CACCGTCGTTTTTGTGACCG              103.40000000               61.40000000
## 22 GAGTCGTTTAAAGGCTCTCT              161.40000000              110.40000000
##    foldchange_commercialMS_vs_control
## 3                        14.629629630
## 4                        12.166666667
## 7                        11.111111111
## 5                        10.641025641
## 20                       10.151515152
## 41                        9.537037037
## 15                        9.259259259
## 8                         8.939393939
## 16                        8.583333333
## 25                        7.878787879
## 23                        0.024038462
## 11                        0.023607177
## 6                         0.022259321
## 29                        0.021052632
## 27                        0.020990764
## 33                        0.020833333
## 38                        0.020544427
## 28                        0.020420986
## 21                        0.020325203
## 35                        0.019794141
## 10                        0.019707207
## 26                        0.019193858
## 39                        0.018939394
## 30                        0.018365473
## 19                        0.018315018
## 40                        0.017730496
## 18                        0.017590150
## 1                         0.017182131
## 37                        0.016501650
## 2                         0.016129032
## 17                        0.016129032
## 36                        0.015948963
## 13                        0.015741834
## 14                        0.015290520
## 34                        0.015243902
## 9                         0.015151515
## 24                        0.014556041
## 12                        0.014245014
## 31                        0.013927577
## 32                        0.010989011
## 22                        0.007022472

The values in the MS1 and MS2 participating clients weren’t in the same direction as the commercial MS patientin how expressed.Many were lower in expression when the commercial was higher expression, and vice versa.

But incredibly the random forest classifier was able to predict 100% accuracy in these MS allele risk variants of cDNA.

To get the protein made,the complementary base pair substituting T for U would be the mRNA that amino acids in triplet codons would map to. Software already does this but I haven’t personally been able to use it.