Este documento implementa un pipeline reproducible para proyectar coberturas (ha) por categorías y plantaciones (flujo y stock) desde el año base 2024 hasta 2035. Se prioriza: (i) selección de variables explicativas por capacidad predictiva, (ii) robustez inferencial ante heterocedasticidad, (iii) coherencia contable entre componentes, (iv) cuantificación de incertidumbre mediante intervalos predictivos bootstrap bajo escenarios.
Convenciones
Se trabaja a frecuencia anual.
Variables objetivo de cobertura típicas: TC,
P, A, H, OT y
Area_total_ha.
Plantaciones: Plantaciones_nuevas_ha (flujo) y
Plantaciones_totales_ha (stock).
Se descarga el Google Sheets como XLSX mediante el endpoint de exportación. Se normalizan encabezados, se detecta la columna de año y se convierten campos numéricos controlando separadores de miles y decimales. Si existen años duplicados se agregan por promedio, lo cual evita duplicación de información temporal.
Si una cobertura permanece constante por varios años, usar toda la serie induce sobreponderación de tramos constantes. Por ello, se define un subconjunto de años efectivos donde la variable cambia respecto del año previo, más el año base. En este subconjunto se estima correlación y se ajusta el modelo. Esta estrategia reduce correlación espuria por persistencia (Hamilton, 1994).
Para cada (Y) se evalúan candidatas (X) y rezagos (k). Se aplica un tamiz de correlación (Pearson y Spearman) y se selecciona el mejor modelo según RMSE Leave One Out (LOO), usando un modelo lineal simple: [Y_t = + X_{t-k} + _t] Este criterio privilegia desempeño fuera de muestra, adecuado en muestras cortas (Hastie et al., 2009).
Se ajusta OLS y se reportan errores estándar robustos HC1 (White, 1980). Se computan diagnósticos (Shapiro, Breusch Pagan, Durbin Watson, Ljung Box) para caracterizar supuestos y orientar cautelas. Para intervalos predictivos se utiliza bootstrap por bloques de residuales, mitigando autocorrelación (Efron & Tibshirani, 1993).
Para cada explicativa requerida se estima ARIMA automático y ETS, seleccionando por AICc (Hyndman & Athanasopoulos, 2018). Si la serie es corta, se aplica fallback conservador usando último observado.
Cuando están disponibles TC,P,A,H,OT se impone:
[Area_total = TC + P + A + H + OT] garantizando coherencia contable.
Se modela el flujo de nuevas plantaciones en diferencias, para evitar espurios por tendencia:
[Plant_nuevas_t = + ,X_{t-1} + u_t] Luego se reconstruye el nivel por acumulación y el stock por suma acumulada (Stock & Watson, 2015).
Se simula la distribución predictiva re muestreando residuales por bloques (moving block bootstrap), re estimando el modelo y proyectando para cada réplica. Se reportan cuantiles (/2), 0.5 y (1-/2). Se calculan intervalos para baseline y shock (Davison & Hinkley, 1997).
## Error in col2rgb(x, alpha = TRUE): invalid color name 'F2F4F7'
## Error in col2rgb(x, alpha = TRUE): invalid color name 'F2F4F7'
n_years_total | n_years_step | years_step |
|---|---|---|
25 | 10 | 2006, 2012, 2014, 2016, 2018, 2020, 2021, 2022, 2023, 2024 |
## Error in col2rgb(x, alpha = TRUE): invalid color name 'F2F4F7'
y | x | k | parametro | estimacion | se_robusta | t | p |
|---|---|---|---|---|---|---|---|
A | ExportacionRestokusd | 0 | (Intercept) | -501.4137042720 | 229.55383340700 | -2.184297 | 0.060456149918 |
A | ExportacionRestokusd | 0 | x | 0.0010729399 | 0.00020447695 | 5.247241 | 0.000776431040 |
H | ExportacionMaderatn | 1 | (Intercept) | -21.0563306590 | 3.36452304733 | -6.258340 | 0.000420742537 |
H | ExportacionMaderatn | 1 | x | 0.0001190522 | 0.00001317171 | 9.038475 | 0.000041489363 |
OT | ExportacionMaderakusd | 0 | (Intercept) | 12,216.6664361566 | 1,433.89924580183 | 8.519892 | 0.000027678497 |
OT | ExportacionMaderakusd | 0 | x | -0.1225703949 | 0.01646543296 | -7.444104 | 0.000073054025 |
P | ExportacionRestotn | 0 | (Intercept) | -16,447.0263994387 | 5,004.97103556174 | -3.286138 | 0.011085747548 |
P | ExportacionRestotn | 0 | x | 0.0146815915 | 0.00416136898 | 3.528068 | 0.007753874197 |
TC | ExportacionCarnekusd | 1 | (Intercept) | 53,727.2905195801 | 3,962.54109715459 | 13.558797 | 0.000002790723 |
TC | ExportacionCarnekusd | 1 | x | -0.0218670390 | 0.00311064373 | -7.029747 | 0.000206045119 |
## Error in col2rgb(x, alpha = TRUE): invalid color name 'F2F4F7'
x | model |
|---|---|
ExportacionCarnekusd | ARIMA |
ExportacionMaderakusd | ARIMA |
ExportacionMaderatn | ARIMA |
ExportacionRestokusd | ARIMA |
ExportacionRestotn | ARIMA |
Year | TC | P | A | H | OT | Area_total_ha |
|---|---|---|---|---|---|---|
2,000 | 89,995.410 | 21.44833 | 159.2850 | 0.000000 | 0.0000 | |
2,001 | 89,995.410 | 21.44833 | 159.2850 | 0.000000 | 0.0000 | |
2,002 | 89,995.410 | 21.44833 | 159.2850 | 0.000000 | 0.0000 | |
2,003 | 89,995.410 | 21.44833 | 159.2850 | 0.000000 | 0.0000 | |
2,004 | 89,995.410 | 21.44833 | 159.2850 | 0.000000 | 0.0000 | |
2,005 | 89,995.410 | 21.44833 | 159.2850 | 0.000000 | 0.0000 | |
2,006 | 42,957.103 | 101.48167 | 112.3567 | 299.185000 | 536.9617 | |
2,007 | 42,957.103 | 101.48167 | 112.3567 | 299.185000 | 536.9617 | |
2,008 | 42,957.103 | 101.48167 | 112.3567 | 299.185000 | 536.9617 | |
2,009 | 42,957.103 | 101.48167 | 112.3567 | 299.185000 | 536.9617 | |
2,010 | 42,957.103 | 101.48167 | 112.3567 | 299.185000 | 536.9617 | |
2,011 | 42,957.103 | 101.48167 | 112.3567 | 299.185000 | 536.9617 | |
2,012 | 47,327.695 | 0.00000 | 405.3150 | 50.525000 | 1,705.0950 | |
2,013 | 47,327.695 | 0.00000 | 405.3150 | 50.525000 | 1,705.0950 | |
2,014 | 34,356.600 | 0.00000 | 271.6400 | 0.000000 | 2,311.3000 | |
2,015 | 34,356.600 | 0.00000 | 271.6400 | 0.000000 | 2,311.3000 | |
2,016 | 24,180.430 | 0.00000 | 272.6100 | 0.000000 | 4,570.8150 | |
2,017 | 24,180.430 | 0.00000 | 272.6100 | 0.000000 | 4,570.8150 | |
2,018 | 25,759.525 | 0.00000 | 244.4000 | 0.000000 | 4,594.6350 | |
2,019 | 25,759.525 | 0.00000 | 244.4000 | 0.000000 | 4,594.6350 | |
2,020 | 34,732.300 | 0.00000 | 310.3000 | 0.000000 | 4,917.8000 | |
2,021 | 18,898.100 | 992.12000 | 1,627.0300 | 0.000000 | 0.0000 | |
2,022 | 25,133.800 | 2,100.09000 | 1,748.6700 | 0.000000 | 0.0000 | |
2,023 | 10,505.510 | 5,182.77000 | 996.6300 | 0.000000 | 0.0000 | |
2,024 | 16,883.550 | 8,524.81000 | 1,542.6800 | 0.000000 | 0.0000 | |
2,025 | 13,500.990 | 6,442.12085 | 1,642.7956 | 3.136499 | 398.4267 | 21,987.47 |
2,026 | 11,891.159 | 7,161.55616 | 1,721.9218 | 6.805288 | 1,047.9265 | 21,829.37 |
2,027 | 10,281.327 | 7,880.99147 | 1,801.0481 | 6.805288 | 1,568.1750 | 21,538.35 |
2,028 | 8,671.495 | 8,600.42678 | 1,880.1743 | 6.805288 | 1,883.9047 | 21,042.81 |
2,029 | 7,061.664 | 9,319.86210 | 1,959.3005 | 6.805288 | 2,034.0792 | 20,381.71 |
2,030 | 5,451.832 | 10,039.29741 | 2,038.4268 | 6.805288 | 2,083.0687 | 19,619.43 |
2,031 | 3,842.000 | 10,758.73272 | 2,117.5530 | 6.805288 | 2,083.5446 | 18,808.64 |
2,032 | 2,232.169 | 11,478.16803 | 2,196.6792 | 6.805288 | 2,067.9281 | 17,981.75 |
2,033 | 622.337 | 12,197.60334 | 2,275.8055 | 6.805288 | 2,051.8866 | 17,154.44 |
2,034 | 0.000 | 12,917.03865 | 2,354.9317 | 6.805288 | 2,040.7018 | 17,319.48 |
2,035 | 0.000 | 13,636.47396 | 2,434.0579 | 6.805288 | 2,034.5969 | 18,111.93 |
variable | base_relw_med | base_relw_p90 | base_w_med | base_w_p90 | shock_relw_med | shock_relw_p90 | shock_w_med | shock_w_p90 | relw_med_ratio | relw_p90_ratio | w_med_ratio | w_p90_ratio | top3_years_baseline | top3_years_shock |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TC | 0.8857489 | 3.3312331 | 5,394.687038 | 6,671.763245 | 0.5263759 | 1.5748015 | 5,395.313808 | 6,526.745707 | 0.5942721 | 0.4727383 | 1.0001162 | 0.9782640 | 2034:2611.646263, 2035:1197.743576, 2033:6.664397 | 2035:2.069345, 2034:1.574802, 2033:1.118124 |
H | 0.8250321 | 0.8250321 | 5.804373 | 5.804373 | 1.3820162 | 1.3820162 | 5.805686 | 5.805686 | 1.6751060 | 1.6751060 | 1.0002263 | 1.0002263 | 2025:1.783482, 2026:0.825032, 2027:0.825032 | 2025:1.783482, 2027:1.382016, 2028:1.382016 |
P | 0.6096842 | 0.6217217 | 5,932.117005 | 7,873.599978 | 0.5892414 | 0.6094097 | 4,142.962221 | 5,892.793979 | 0.9664699 | 0.9801969 | 0.6983952 | 0.7484244 | 2035:0.624772, 2034:0.621722, 2033:0.6182 | 2035:0.611878, 2034:0.60941, 2033:0.606581 |
Area_total_ha | 0.4687230 | 0.5264855 | 8,736.710103 | 9,569.094402 | 0.3176069 | 0.4789476 | 7,047.326264 | 9,209.026781 | 0.6776004 | 0.9097071 | 0.8066339 | 0.9623718 | 2032:0.542193, 2033:0.526485, 2031:0.521801 | 2035:0.510279, 2034:0.478948, 2033:0.434114 |
A | 0.4596674 | 0.4842471 | 922.092047 | 1,123.223058 | 0.4316855 | 0.4623315 | 758.746394 | 941.636054 | 0.9391258 | 0.9547431 | 0.8228532 | 0.8383340 | 2035:0.48658, 2034:0.484247, 2033:0.47827 | 2035:0.468311, 2034:0.462332, 2033:0.456556 |
OT | 0.4112343 | 0.9322042 | 842.914581 | 1,003.747943 | 0.3295577 | 0.3838411 | 1,013.698516 | 1,027.943773 | 0.8013866 | 0.4117565 | 1.2026112 | 1.0241055 | 2025:2.399938, 2026:0.932204, 2027:0.557672 | 2025:2.399938, 2026:0.383841, 2027:0.341501 |
Si el chequeo de identidades presenta diferencias máximas cercanas a cero, se confirma consistencia interna en las series de coberturas o plantaciones. Diferencias sistemáticas sugieren revisar definiciones de variables o procesos de consolidación.
La tabla resumen permite identificar variables con intervalos más anchos y años con mayor incertidumbre. La razón de anchos (shock versus baseline) cuantifica sensibilidad del sistema ante perturbaciones en explicativas.
En variables con autocorrelación residual elevada (Ljung Box con p bajo), considerar extensiones con errores HAC o modelos dinámicos, manteniendo el esquema de reconciliación.
Evaluar escenarios adicionales (estancamiento, reversión a la
media, rutas personalizadas) reutilizando
build_x_scenarios.
y | x | k | tipo | n | r_pearson | p_pearson | r_spearman | p_spearman |
|---|---|---|---|---|---|---|---|---|
A | ExportacionRestokusd | 0 | niveles_step | 10 | 0.8642482 | 0.001257183817 | 0.8060606 | 0.0048620611 |
A | Cambiousd | 1 | niveles_step | 9 | 0.8349543 | 0.005097141317 | 0.7333333 | 0.0245541501 |
A | ExportacionCarnekusd | 0 | niveles_step | 10 | 0.8243060 | 0.003352566927 | 0.8060606 | 0.0048620611 |
A | ExportacionCarnetn | 0 | niveles_step | 10 | 0.7540989 | 0.011742746167 | 0.8181818 | 0.0038149201 |
A | PIBGFPMMGs | 0 | niveles_step | 10 | 0.7289873 | 0.016759002054 | 0.7575758 | 0.0111434468 |
A | CarneAustraliaUSDton | 0 | niveles_step | 10 | 0.7155562 | 0.019975357019 | 0.7575758 | 0.0111434468 |
A | Cambiousd | 0 | niveles_step | 10 | 0.7078747 | 0.021994599228 | 0.6606061 | 0.0375883776 |
A | ExportacionRestokusd | 1 | niveles_step | 9 | 0.6824523 | 0.042815692815 | 0.6666667 | 0.0498672306 |
A | TrigoChicagoUSDton | 0 | niveles_step | 10 | 0.6814176 | 0.030021343209 | 0.7939394 | 0.0060999233 |
A | PIBGFPMMGs | 1 | niveles_step | 9 | 0.6578082 | 0.054129735198 | 0.6500000 | 0.0580730580 |
H | ExportacionMaderatn | 0 | niveles_step | 10 | 0.9651126 | 0.000006213742 | 0.7006490 | 0.0240185092 |
H | ExportacionMaderatn | 1 | niveles_step | 9 | 0.9508217 | 0.000082754982 | 0.5477226 | 0.1268703669 |
H | PIBAgriculturaMGs | 0 | niveles_step | 10 | -0.7821395 | 0.007505795719 | -0.7006490 | 0.0240185092 |
H | PIBGFPMMGs | 0 | niveles_step | 10 | -0.7793330 | 0.007871236242 | -0.7006490 | 0.0240185092 |
H | ExportacionCarnekusd | 0 | niveles_step | 10 | -0.7484921 | 0.012756244174 | -0.7006490 | 0.0240185092 |
H | PIBGFPMMGs | 1 | niveles_step | 9 | -0.7395614 | 0.022756421896 | -0.5477226 | 0.1268703669 |
H | ExportacionCarnetn | 0 | niveles_step | 10 | -0.7326678 | 0.015944820973 | -0.7006490 | 0.0240185092 |
H | ExportacionCarnekusd | 1 | niveles_step | 9 | -0.6979720 | 0.036542312338 | -0.5477226 | 0.1268703669 |
H | ExportacionGranossojakusd | 0 | niveles_step | 10 | -0.6891198 | 0.027507022818 | -0.6227992 | 0.0544386961 |
H | PIBAgriculturaMGs | 1 | niveles_step | 9 | -0.6850707 | 0.041712094084 | -0.5477226 | 0.1268703669 |
OT | ExportacionMaderakusd | 0 | niveles_step | 10 | -0.9003577 | 0.000381816534 | -0.8816806 | 0.0007415948 |
OT | SojaArgentinaUpRiverUSDton | 0 | niveles_step | 9 | -0.7768174 | 0.013792853764 | -0.7137184 | 0.0308197930 |
OT | Cambiousd | 1 | niveles_step | 9 | -0.7349482 | 0.024079357520 | -0.6614951 | 0.0523286275 |
OT | ExportacionRestokusd | 1 | niveles_step | 9 | -0.5877881 | 0.096009155318 | -0.6963106 | 0.0371833811 |
OT | SojaArgentinaUpRiverUSDton | 1 | niveles_step | 8 | -0.5328957 | 0.173868349507 | -0.4946626 | 0.2127005174 |
OT | CarneAustraliaUSDton | 1 | niveles_step | 9 | -0.5317704 | 0.140609899623 | -0.5483446 | 0.1263514738 |
OT | TrigoChicagoUSDton | 1 | niveles_step | 9 | -0.5216604 | 0.149750720808 | -0.5048252 | 0.1657206769 |
OT | TrigoChicagoUSDton | 0 | niveles_step | 10 | -0.5058538 | 0.135774271330 | -0.5440157 | 0.1040270591 |
OT | MaizChicago*USDton | 0 | niveles_step | 10 | -0.4993322 | 0.141730357559 | -0.6127993 | 0.0596101959 |
OT | ExportacionRestokusd | 0 | niveles_step | 10 | -0.4991020 | 0.141943488890 | -0.5940401 | 0.0701631500 |
P | ExportacionRestotn | 0 | niveles_step | 10 | 0.8566499 | 0.001548235695 | 0.6917638 | 0.0266782402 |
P | ExportacionRestokusd | 1 | niveles_step | 9 | 0.8549549 | 0.003310636166 | 0.8946135 | 0.0011270073 |
P | ExportacionRestotn | 1 | niveles_step | 9 | 0.8411334 | 0.004488434013 | 0.6755245 | 0.0458256305 |
P | CarneChicagoUSDton | 0 | niveles_step | 10 | 0.8310758 | 0.002889886871 | 0.5753923 | 0.0817917657 |
P | ExportacionRestokusd | 0 | niveles_step | 10 | 0.7735357 | 0.008665718162 | 0.7305542 | 0.0164089210 |
P | Cambiousd | 1 | niveles_step | 9 | 0.7379999 | 0.023198706134 | 0.9128709 | 0.0005898392 |
P | CarneChicagoUSDton | 1 | niveles_step | 9 | 0.7220792 | 0.028034863592 | 0.4564355 | 0.2168375456 |
P | Cambiousd | 0 | niveles_step | 10 | 0.7021018 | 0.023601730894 | 0.8210654 | 0.0035918800 |
P | PIBGFPMMGs | 0 | niveles_step | 10 | 0.6641346 | 0.036223620946 | 0.7305542 | 0.0164089210 |
P | ExportacionCarnetn | 1 | niveles_step | 9 | 0.6637130 | 0.051263756865 | 0.8946135 | 0.0011270073 |
TC | ExportacionCarnekusd | 1 | niveles_step | 9 | -0.8849461 | 0.001517348986 | -0.8333333 | 0.0052656910 |
TC | ExportacionCarnetn | 1 | niveles_step | 9 | -0.8810772 | 0.001696888007 | -0.9000000 | 0.0009430623 |
TC | ExportacionCarnetn | 0 | niveles_step | 10 | -0.8806239 | 0.000767426932 | -0.7939394 | 0.0060999233 |
TC | ExportacionRestokusd | 1 | niveles_step | 9 | -0.8782735 | 0.001835847592 | -0.8833333 | 0.0015905004 |
TC | PIBGFPMMGs | 1 | niveles_step | 9 | -0.8707309 | 0.002248466280 | -0.7500000 | 0.0199421261 |
TC | PIBGFPMMGs | 0 | niveles_step | 10 | -0.8691330 | 0.001092479601 | -0.8787879 | 0.0008138621 |
TC | ExportacionCarnekusd | 0 | niveles_step | 10 | -0.8100310 | 0.004498957577 | -0.6848485 | 0.0288827975 |
TC | ExportacionRestotn | 1 | niveles_step | 9 | -0.7861339 | 0.011997884123 | -0.7833333 | 0.0125198730 |
TC | ExportacionRestokusd | 0 | niveles_step | 10 | -0.7631412 | 0.010229383125 | -0.6606061 | 0.0375883776 |
TC | ExportacionGranossojakusd | 0 | niveles_step | 10 | -0.7572416 | 0.011200094114 | -0.7333333 | 0.0158005963 |
y | x | k | tipo | n | r_pearson | p_pearson | r_spearman | p_spearman |
|---|---|---|---|---|---|---|---|---|
A | CarneAustraliaUSDton | 0 | diferencias_step | 9 | 0.808094657 | 0.0084024579 | 0.71666667 | 0.02981804 |
A | ExportacionMaderakusd | 0 | diferencias_step | 9 | 0.701213099 | 0.0353124424 | 0.70000000 | 0.03576957 |
A | PIBAgriculturaMGs | 0 | diferencias_step | 9 | -0.667546749 | 0.0494558682 | -0.70000000 | 0.03576957 |
A | ExportacionMaderakusd | 1 | diferencias_step | 8 | -0.585000909 | 0.1276835432 | -0.50000000 | 0.20703125 |
A | ExportacionCarnekusd | 0 | diferencias_step | 9 | 0.567285049 | 0.1111552128 | 0.41666667 | 0.26458605 |
A | ExportacionGranossojatn | 1 | diferencias_step | 8 | 0.562777877 | 0.1464247150 | 0.30952381 | 0.45564489 |
A | SojaArgentinaUpRiverUSDton | 0 | diferencias_step | 8 | 0.559757549 | 0.1490818233 | 0.28571429 | 0.49272625 |
A | TrigoChicagoUSDton | 0 | diferencias_step | 9 | 0.545237054 | 0.1289562836 | 0.68333333 | 0.04244227 |
A | MaizChicago*USDton | 0 | diferencias_step | 9 | 0.485849682 | 0.1848444443 | 0.53333333 | 0.13922687 |
A | ExportacionRestokusd | 0 | diferencias_step | 9 | 0.452346141 | 0.2215104642 | 0.60000000 | 0.08762283 |
A | ExportacionGranossojatn | 0 | diferencias_step | 9 | -0.419855881 | 0.2605688424 | -0.51666667 | 0.15439012 |
A | SojaChicagoUSDton | 0 | diferencias_step | 9 | 0.417359208 | 0.2637109463 | 0.38333333 | 0.30849527 |
A | Cambiousd | 1 | diferencias_step | 8 | 0.416077501 | 0.3052178099 | 0.26190476 | 0.53092286 |
A | ExportacionGranossojakusd | 1 | diferencias_step | 8 | 0.407363689 | 0.3164864188 | 0.35714286 | 0.38512064 |
A | ExportacionCarnekusd | 1 | diferencias_step | 8 | -0.322667163 | 0.4356802083 | -0.23809524 | 0.57015632 |
A | TrigoChicagoUSDton | 1 | diferencias_step | 8 | -0.315836839 | 0.4460094384 | -0.52380952 | 0.18272075 |
A | ExportacionRestokusd | 1 | diferencias_step | 8 | -0.266089095 | 0.5241327386 | -0.35714286 | 0.38512064 |
A | ExportacionCarnetn | 0 | diferencias_step | 9 | 0.261982017 | 0.4958851112 | 0.50000000 | 0.17047066 |
A | MaizChicago*USDton | 1 | diferencias_step | 8 | -0.257141532 | 0.5386913519 | -0.33333333 | 0.41975309 |
A | CarneChicagoUSDton | 1 | diferencias_step | 8 | -0.240838147 | 0.5655862974 | -0.23809524 | 0.57015632 |
A | PIBGFPMMGs | 0 | diferencias_step | 9 | 0.235961959 | 0.5410507434 | 0.25000000 | 0.51648955 |
A | SojaChicagoUSDton | 1 | diferencias_step | 8 | -0.225254861 | 0.5917163833 | -0.14285714 | 0.73576486 |
A | ExportacionGranossojakusd | 0 | diferencias_step | 9 | -0.223848505 | 0.5625947250 | -0.20000000 | 0.60590127 |
A | SojaArgentinaUpRiverUSDton | 1 | diferencias_step | 7 | -0.215965672 | 0.6418552700 | 0.10714286 | 0.81915086 |
A | Cambiousd | 0 | diferencias_step | 9 | -0.211970735 | 0.5840203566 | -0.35000000 | 0.35581957 |
A | ExportacionRestotn | 1 | diferencias_step | 8 | -0.203668511 | 0.6285505571 | -0.07142857 | 0.86652627 |
A | ExportacionMaderatn | 0 | diferencias_step | 9 | 0.202427015 | 0.6014423582 | 0.50000000 | 0.17047066 |
A | PIBAgriculturaMGs | 1 | diferencias_step | 8 | 0.180608705 | 0.6686508219 | 0.11904762 | 0.77888573 |
A | ExportacionRestotn | 0 | diferencias_step | 9 | -0.175504955 | 0.6515148463 | -0.20000000 | 0.60590127 |
A | ExportacionCarnetn | 1 | diferencias_step | 8 | -0.138484798 | 0.7436417370 | -0.26190476 | 0.53092286 |
A | CarneAustraliaUSDton | 1 | diferencias_step | 8 | -0.041855095 | 0.9216133031 | 0.07142857 | 0.86652627 |
A | PIBGFPMMGs | 1 | diferencias_step | 8 | 0.029395590 | 0.9449150122 | 0.09523810 | 0.82250543 |
A | CarneChicagoUSDton | 0 | diferencias_step | 9 | -0.017831407 | 0.9636837799 | -0.06666667 | 0.86468978 |
A | ExportacionMaderatn | 1 | diferencias_step | 8 | 0.001829906 | 0.9965689337 | 0.02380952 | 0.95537401 |
A | IndnomGasoil | 0 | diferencias_step | 4 | ||||
A | IndnomGasoil | 1 | diferencias_step | 4 | ||||
H | ExportacionMaderatn | 0 | diferencias_step | 9 | 0.930973768 | 0.0002658126 | 0.73029674 | 0.02546356 |
H | ExportacionMaderatn | 1 | diferencias_step | 8 | 0.915557746 | 0.0014115651 | 0.57735027 | 0.13397460 |
H | SojaChicagoUSDton | 1 | diferencias_step | 8 | -0.812662381 | 0.0142138306 | -0.57735027 | 0.13397460 |
H | Cambiousd | 0 | diferencias_step | 9 | 0.795894370 | 0.0102932475 | 0.63900965 | 0.06392412 |
H | Cambiousd | 1 | diferencias_step | 8 | 0.775733090 | 0.0236687695 | 0.57735027 | 0.13397460 |
H | SojaChicagoUSDton | 0 | diferencias_step | 9 | -0.746358080 | 0.0208961574 | -0.27386128 | 0.47579724 |
H | MaizChicago*USDton | 1 | diferencias_step | 8 | -0.724664574 | 0.0420002581 | -0.57735027 | 0.13397460 |
H | ExportacionRestokusd | 1 | diferencias_step | 8 | -0.646672068 | 0.0831169902 | -0.57735027 | 0.13397460 |
H | ExportacionRestokusd | 0 | diferencias_step | 9 | -0.631229061 | 0.0682822790 | -0.45643546 | 0.21683755 |
H | MaizChicago*USDton | 0 | diferencias_step | 9 | -0.621299294 | 0.0741083052 | -0.09128709 | 0.81531807 |
H | TrigoChicagoUSDton | 1 | diferencias_step | 8 | -0.619390527 | 0.1014886155 | -0.57735027 | 0.13397460 |
H | TrigoChicagoUSDton | 0 | diferencias_step | 9 | -0.558468210 | 0.1180841856 | -0.18257419 | 0.63824015 |
H | PIBGFPMMGs | 0 | diferencias_step | 9 | -0.531091869 | 0.1412128756 | -0.70747497 | 0.03301308 |
H | CarneChicagoUSDton | 0 | diferencias_step | 9 | -0.494895008 | 0.1755799176 | -0.63900965 | 0.06392412 |
H | CarneChicagoUSDton | 1 | diferencias_step | 8 | -0.436461732 | 0.2796264035 | -0.57735027 | 0.13397460 |
H | PIBGFPMMGs | 1 | diferencias_step | 8 | -0.421284787 | 0.2985771722 | -0.41239305 | 0.30995874 |
H | ExportacionCarnekusd | 0 | diferencias_step | 9 | -0.409486777 | 0.2737485345 | -0.59336610 | 0.09212027 |
H | ExportacionRestotn | 0 | diferencias_step | 9 | -0.373703726 | 0.3218223768 | -0.59336610 | 0.09212027 |
H | ExportacionGranossojakusd | 0 | diferencias_step | 9 | -0.316303150 | 0.4069658209 | -0.43361369 | 0.24361299 |
H | ExportacionCarnekusd | 1 | diferencias_step | 8 | -0.304780140 | 0.4629401778 | -0.24743583 | 0.55464642 |
H | ExportacionRestotn | 1 | diferencias_step | 8 | -0.271990582 | 0.5146113914 | -0.24743583 | 0.55464642 |
H | ExportacionGranossojakusd | 1 | diferencias_step | 8 | -0.269900678 | 0.5179757418 | -0.41239305 | 0.30995874 |
H | SojaArgentinaUpRiverUSDton | 0 | diferencias_step | 8 | 0.234964244 | 0.5753884225 | 0.24743583 | 0.55464642 |
H | PIBAgriculturaMGs | 0 | diferencias_step | 9 | -0.232094645 | 0.5478943164 | -0.59336610 | 0.09212027 |
H | ExportacionMaderakusd | 0 | diferencias_step | 9 | 0.192177462 | 0.6203490678 | 0.18257419 | 0.63824015 |
H | ExportacionCarnetn | 0 | diferencias_step | 9 | -0.164588250 | 0.6721807198 | -0.47925724 | 0.19176699 |
H | ExportacionMaderakusd | 1 | diferencias_step | 8 | 0.117698406 | 0.7813451016 | -0.08247861 | 0.84605252 |
H | ExportacionGranossojatn | 0 | diferencias_step | 9 | -0.097023134 | 0.8038900453 | -0.38797014 | 0.30217959 |
H | ExportacionGranossojatn | 1 | diferencias_step | 8 | -0.079933082 | 0.8507626427 | -0.24743583 | 0.55464642 |
H | PIBAgriculturaMGs | 1 | diferencias_step | 8 | -0.071074197 | 0.8671839940 | -0.24743583 | 0.55464642 |
H | CarneAustraliaUSDton | 1 | diferencias_step | 8 | -0.069568636 | 0.8699790681 | -0.08247861 | 0.84605252 |
H | CarneAustraliaUSDton | 0 | diferencias_step | 9 | -0.058670649 | 0.8808194595 | 0.06846532 | 0.86106728 |
H | ExportacionCarnetn | 1 | diferencias_step | 8 | 0.012330030 | 0.9768835370 | -0.24743583 | 0.55464642 |
H | SojaArgentinaUpRiverUSDton | 1 | diferencias_step | 7 | ||||
H | IndnomGasoil | 0 | diferencias_step | 4 | ||||
H | IndnomGasoil | 1 | diferencias_step | 4 | ||||
OT | SojaArgentinaUpRiverUSDton | 0 | diferencias_step | 8 | -0.779543408 | 0.0225524850 | -0.51234754 | 0.19422342 |
OT | ExportacionMaderakusd | 0 | diferencias_step | 9 | -0.678144809 | 0.0446717150 | -0.54245080 | 0.13131863 |
OT | PIBAgriculturaMGs | 0 | diferencias_step | 9 | 0.520503052 | 0.1508186301 | 0.40683810 | 0.27716988 |
OT | Cambiousd | 1 | diferencias_step | 8 | -0.506056737 | 0.2006949400 | -0.51234754 | 0.19422342 |
OT | ExportacionMaderatn | 0 | diferencias_step | 9 | -0.465521794 | 0.2066506611 | -0.71196668 | 0.03142526 |
OT | ExportacionCarnekusd | 0 | diferencias_step | 9 | -0.432680345 | 0.2447440261 | -0.20341905 | 0.59962306 |
OT | CarneChicagoUSDton | 1 | diferencias_step | 8 | 0.426966239 | 0.2914122539 | 0.36596253 | 0.37262473 |
OT | ExportacionCarnekusd | 1 | diferencias_step | 8 | 0.409481574 | 0.3137297002 | 0.43915503 | 0.27632684 |
OT | ExportacionRestotn | 1 | diferencias_step | 8 | 0.384876503 | 0.3464542862 | 0.29277002 | 0.48161781 |
OT | ExportacionCarnetn | 1 | diferencias_step | 8 | 0.384255428 | 0.3472998295 | 0.26837252 | 0.52044098 |
OT | PIBGFPMMGs | 1 | diferencias_step | 8 | 0.363718299 | 0.3757869860 | 0.43915503 | 0.27632684 |
OT | PIBAgriculturaMGs | 1 | diferencias_step | 8 | 0.340168122 | 0.4096796426 | 0.56114254 | 0.14786012 |
OT | ExportacionRestokusd | 0 | diferencias_step | 9 | -0.308535371 | 0.4192067290 | -0.15256429 | 0.69516409 |
OT | CarneAustraliaUSDton | 0 | diferencias_step | 9 | -0.304592069 | 0.4254834376 | 0.06780635 | 0.86239419 |
OT | SojaChicagoUSDton | 0 | diferencias_step | 9 | -0.289918274 | 0.4492034573 | -0.15256429 | 0.69516409 |
OT | CarneChicagoUSDton | 0 | diferencias_step | 9 | -0.264790554 | 0.4911048732 | -0.15256429 | 0.69516409 |
OT | MaizChicago*USDton | 0 | diferencias_step | 9 | -0.260806452 | 0.4978915937 | -0.10170953 | 0.79457697 |
OT | TrigoChicagoUSDton | 0 | diferencias_step | 9 | -0.248216335 | 0.5195854501 | -0.10170953 | 0.79457697 |
OT | CarneAustraliaUSDton | 1 | diferencias_step | 8 | -0.240915396 | 0.5654577762 | -0.36596253 | 0.37262473 |
OT | ExportacionCarnetn | 0 | diferencias_step | 9 | -0.209853063 | 0.5878705575 | -0.13561270 | 0.72793110 |
OT | ExportacionRestotn | 0 | diferencias_step | 9 | -0.202913729 | 0.6005495341 | -0.16951588 | 0.66282804 |
OT | ExportacionGranossojakusd | 1 | diferencias_step | 8 | 0.200021755 | 0.6348424069 | 0.21957752 | 0.60133421 |
OT | ExportacionGranossojakusd | 0 | diferencias_step | 9 | -0.182275882 | 0.6387985472 | -0.10170953 | 0.79457697 |
OT | ExportacionMaderakusd | 1 | diferencias_step | 8 | 0.181583502 | 0.6669409962 | 0.12198751 | 0.77353240 |
OT | Cambiousd | 0 | diferencias_step | 9 | 0.165081444 | 0.6712428551 | 0.15256429 | 0.69516409 |
OT | ExportacionMaderatn | 1 | diferencias_step | 8 | -0.162451989 | 0.7007191084 | -0.58554004 | 0.12724659 |
OT | ExportacionGranossojatn | 0 | diferencias_step | 9 | 0.158047044 | 0.6846561514 | 0.13561270 | 0.72793110 |
OT | SojaArgentinaUpRiverUSDton | 1 | diferencias_step | 7 | -0.131139932 | 0.7792793494 | -0.40768712 | 0.36394248 |
OT | TrigoChicagoUSDton | 1 | diferencias_step | 8 | -0.122850174 | 0.7719630237 | 0.02439750 | 0.95427283 |
OT | MaizChicago*USDton | 1 | diferencias_step | 8 | -0.091863894 | 0.8287217912 | -0.09759001 | 0.81817720 |
OT | ExportacionGranossojatn | 1 | diferencias_step | 8 | 0.080291526 | 0.8500991599 | 0.43915503 | 0.27632684 |
OT | ExportacionRestokusd | 1 | diferencias_step | 8 | -0.039773669 | 0.9255029832 | -0.02439750 | 0.95427283 |
OT | PIBGFPMMGs | 0 | diferencias_step | 9 | -0.031265941 | 0.9363574128 | 0.28817699 | 0.45205561 |
OT | SojaChicagoUSDton | 1 | diferencias_step | 8 | 0.017547834 | 0.9671045657 | -0.19518001 | 0.64322554 |
OT | IndnomGasoil | 0 | diferencias_step | 4 | ||||
OT | IndnomGasoil | 1 | diferencias_step | 4 | ||||
P | CarneAustraliaUSDton | 1 | diferencias_step | 8 | -0.488899328 | 0.2189118333 | -0.07610194 | 0.85785883 |
P | PIBGFPMMGs | 1 | diferencias_step | 8 | -0.476949975 | 0.2320848800 | -0.44392800 | 0.27052688 |
P | CarneAustraliaUSDton | 0 | diferencias_step | 9 | -0.466269648 | 0.2058242999 | -0.24370872 | 0.52744179 |
P | ExportacionRestotn | 1 | diferencias_step | 8 | 0.439109241 | 0.2763827786 | 0.26635680 | 0.52369942 |
P | TrigoChicagoUSDton | 0 | diferencias_step | 9 | -0.395187319 | 0.2924817473 | -0.31333978 | 0.41161623 |
P | ExportacionMaderatn | 1 | diferencias_step | 8 | 0.368008237 | 0.3697526223 | 0.44392800 | 0.27052688 |
P | CarneChicagoUSDton | 1 | diferencias_step | 8 | 0.343858999 | 0.4042835715 | 0.20293852 | 0.62980849 |
P | SojaChicagoUSDton | 0 | diferencias_step | 9 | -0.338311547 | 0.3731937600 | -0.38297084 | 0.30899180 |
P | ExportacionGranossojatn | 0 | diferencias_step | 9 | 0.322495156 | 0.3973268507 | 0.08703883 | 0.82380155 |
P | MaizChicago*USDton | 0 | diferencias_step | 9 | -0.311005761 | 0.4152959163 | -0.36556308 | 0.33330865 |
P | CarneChicagoUSDton | 0 | diferencias_step | 9 | 0.307954531 | 0.4201286414 | 0.02611165 | 0.94683600 |
P | ExportacionMaderatn | 0 | diferencias_step | 9 | 0.306481069 | 0.4224714164 | 0.58316015 | 0.09931059 |
P | ExportacionCarnekusd | 1 | diferencias_step | 8 | -0.298525952 | 0.4726297082 | -0.16488754 | 0.69639383 |
P | ExportacionCarnetn | 1 | diferencias_step | 8 | -0.272743014 | 0.5134021356 | -0.10146926 | 0.81104702 |
P | ExportacionMaderakusd | 1 | diferencias_step | 8 | 0.264088019 | 0.5273759587 | 0.02536731 | 0.95245669 |
P | SojaArgentinaUpRiverUSDton | 1 | diferencias_step | 7 | 0.258744480 | 0.5752967524 | 0.44474959 | 0.31737194 |
P | PIBAgriculturaMGs | 1 | diferencias_step | 8 | -0.258032399 | 0.5372352839 | -0.27904046 | 0.50332359 |
P | SojaArgentinaUpRiverUSDton | 0 | diferencias_step | 8 | -0.246878546 | 0.5555675693 | -0.10146926 | 0.81104702 |
P | ExportacionRestotn | 0 | diferencias_step | 9 | 0.231775822 | 0.5484599624 | 0.11315048 | 0.77193693 |
P | ExportacionRestokusd | 0 | diferencias_step | 9 | -0.222457298 | 0.5650891036 | -0.23500484 | 0.54274141 |
P | ExportacionCarnekusd | 0 | diferencias_step | 9 | -0.211850566 | 0.5842385983 | -0.09574271 | 0.80643834 |
P | ExportacionCarnetn | 0 | diferencias_step | 9 | -0.205111239 | 0.5965241842 | 0.04351941 | 0.91148278 |
P | ExportacionGranossojakusd | 0 | diferencias_step | 9 | 0.172440082 | 0.6572967767 | -0.16537377 | 0.67068714 |
P | ExportacionMaderakusd | 0 | diferencias_step | 9 | 0.140119020 | 0.7191809616 | 0.31333978 | 0.41161623 |
P | TrigoChicagoUSDton | 1 | diferencias_step | 8 | -0.132899374 | 0.7537322539 | -0.10146926 | 0.81104702 |
P | Cambiousd | 1 | diferencias_step | 8 | 0.127705495 | 0.7631428476 | 0.20293852 | 0.62980849 |
P | PIBGFPMMGs | 0 | diferencias_step | 9 | -0.122574134 | 0.7533993307 | -0.29593202 | 0.43941376 |
P | ExportacionGranossojatn | 1 | diferencias_step | 8 | -0.121549677 | 0.7743291731 | -0.16488754 | 0.69639383 |
P | PIBAgriculturaMGs | 0 | diferencias_step | 9 | -0.100319346 | 0.7973373222 | -0.30463590 | 0.42541344 |
P | SojaChicagoUSDton | 1 | diferencias_step | 8 | -0.079610284 | 0.8513602103 | 0.21562217 | 0.60806477 |
P | MaizChicago*USDton | 1 | diferencias_step | 8 | -0.076703808 | 0.8567434711 | 0.01268366 | 0.97622069 |
P | Cambiousd | 0 | diferencias_step | 9 | 0.051908443 | 0.8944901462 | 0.29593202 | 0.43941376 |
P | ExportacionRestokusd | 1 | diferencias_step | 8 | 0.051038806 | 0.9044683006 | 0.10146926 | 0.81104702 |
P | ExportacionGranossojakusd | 1 | diferencias_step | 8 | -0.033454947 | 0.9373187637 | 0.12683657 | 0.76471972 |
P | IndnomGasoil | 0 | diferencias_step | 4 | ||||
P | IndnomGasoil | 1 | diferencias_step | 4 | ||||
TC | ExportacionRestokusd | 1 | diferencias_step | 8 | -0.539417376 | 0.1676600086 | -0.57142857 | 0.13895996 |
TC | ExportacionGranossojakusd | 0 | diferencias_step | 9 | -0.533187141 | 0.1393558945 | -0.56666667 | 0.11163299 |
TC | TrigoChicagoUSDton | 0 | diferencias_step | 9 | 0.518240184 | 0.1529193737 | 0.31666667 | 0.40639701 |
TC | ExportacionGranossojakusd | 1 | diferencias_step | 8 | 0.428776350 | 0.2891472344 | 0.42857143 | 0.28940322 |
TC | ExportacionRestokusd | 0 | diferencias_step | 9 | 0.417368842 | 0.2636987840 | 0.26666667 | 0.48792227 |
TC | ExportacionGranossojatn | 0 | diferencias_step | 9 | -0.409247257 | 0.2740570146 | -0.15000000 | 0.70009423 |
TC | ExportacionGranossojatn | 1 | diferencias_step | 8 | 0.400560413 | 0.3254189689 | 0.30952381 | 0.45564489 |
TC | TrigoChicagoUSDton | 1 | diferencias_step | 8 | -0.397441892 | 0.3295526108 | -0.33333333 | 0.41975309 |
TC | ExportacionCarnetn | 1 | diferencias_step | 8 | -0.369106348 | 0.3682150301 | -0.45238095 | 0.26040477 |
TC | ExportacionCarnekusd | 1 | diferencias_step | 8 | -0.333583894 | 0.4193819545 | -0.14285714 | 0.73576486 |
TC | ExportacionMaderatn | 1 | diferencias_step | 8 | 0.325869732 | 0.4308718193 | 0.02380952 | 0.95537401 |
TC | PIBGFPMMGs | 1 | diferencias_step | 8 | -0.324028242 | 0.4336339355 | -0.21428571 | 0.61034442 |
TC | ExportacionCarnetn | 0 | diferencias_step | 9 | -0.314309615 | 0.4100916240 | -0.10000000 | 0.79797170 |
TC | CarneAustraliaUSDton | 1 | diferencias_step | 8 | -0.299720426 | 0.4707729210 | -0.45238095 | 0.26040477 |
TC | ExportacionRestotn | 1 | diferencias_step | 8 | -0.288640691 | 0.4881069581 | -0.11904762 | 0.77888573 |
TC | SojaChicagoUSDton | 1 | diferencias_step | 8 | -0.283750434 | 0.4958356134 | -0.30952381 | 0.45564489 |
TC | MaizChicago*USDton | 0 | diferencias_step | 9 | 0.271798189 | 0.4792611282 | 0.03333333 | 0.93215674 |
TC | PIBGFPMMGs | 0 | diferencias_step | 9 | -0.235925130 | 0.5411157606 | -0.06666667 | 0.86468978 |
TC | CarneChicagoUSDton | 1 | diferencias_step | 8 | -0.208646498 | 0.6199933882 | 0.00000000 | 1.00000000 |
TC | PIBAgriculturaMGs | 0 | diferencias_step | 9 | -0.198912330 | 0.6079032142 | -0.10000000 | 0.79797170 |
TC | ExportacionRestotn | 0 | diferencias_step | 9 | -0.169333806 | 0.6631729034 | -0.33333333 | 0.38071318 |
TC | SojaChicagoUSDton | 0 | diferencias_step | 9 | 0.163748486 | 0.6737785245 | -0.03333333 | 0.93215674 |
TC | MaizChicago*USDton | 1 | diferencias_step | 8 | -0.162746941 | 0.7001949299 | -0.16666667 | 0.69323881 |
TC | CarneAustraliaUSDton | 0 | diferencias_step | 9 | 0.155468485 | 0.6895923604 | 0.15000000 | 0.70009423 |
TC | ExportacionMaderakusd | 1 | diferencias_step | 8 | 0.133359973 | 0.7528989718 | 0.23809524 | 0.57015632 |
TC | PIBAgriculturaMGs | 1 | diferencias_step | 8 | -0.119907225 | 0.7773196524 | 0.14285714 | 0.73576486 |
TC | Cambiousd | 1 | diferencias_step | 8 | 0.118064653 | 0.7806773407 | -0.09523810 | 0.82250543 |
TC | CarneChicagoUSDton | 0 | diferencias_step | 9 | -0.110018600 | 0.7781203747 | -0.30000000 | 0.43284533 |
TC | ExportacionMaderatn | 0 | diferencias_step | 9 | -0.097967613 | 0.8020113644 | 0.18333333 | 0.63681981 |
TC | Cambiousd | 0 | diferencias_step | 9 | -0.081055649 | 0.8357761793 | 0.28333333 | 0.46003033 |
TC | ExportacionCarnekusd | 0 | diferencias_step | 9 | -0.062378020 | 0.8733358650 | -0.16666667 | 0.66823104 |
TC | ExportacionMaderakusd | 0 | diferencias_step | 9 | 0.061954249 | 0.8741908466 | -0.10000000 | 0.79797170 |
TC | SojaArgentinaUpRiverUSDton | 0 | diferencias_step | 8 | -0.033027855 | 0.9381177921 | -0.23809524 | 0.57015632 |
TC | SojaArgentinaUpRiverUSDton | 1 | diferencias_step | 7 | -0.006426995 | 0.9890894201 | 0.07142857 | 0.87904819 |
TC | IndnomGasoil | 0 | diferencias_step | 4 | ||||
TC | IndnomGasoil | 1 | diferencias_step | 4 |
y | x | k | shapiro_p | bp_p | dw_stat | lb_p |
|---|---|---|---|---|---|---|
A | ExportacionRestokusd | 0 | 0.6305157 | 0.3997526 | 2.030993 | 0.40514188 |
H | ExportacionMaderatn | 1 | 0.2527211 | 0.8300780 | 1.817346 | 0.38387979 |
OT | ExportacionMaderakusd | 0 | 0.6477056 | 0.9556497 | 2.547731 | 0.71740568 |
P | ExportacionRestotn | 0 | 0.1211247 | 0.3489905 | 1.255300 | 0.85344843 |
TC | ExportacionCarnekusd | 1 | 0.6808483 | 0.7267992 | 3.597260 | 0.01387085 |