import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris(as_frame=True)
df = iris.frame
df.columns = ["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species"]
mean_values = df.drop(columns=["Species"]).mean()
mean_values.to_csv("mean_values.csv")
petal_width_mean = df["Petal.Width"].mean()
filtered_df = df[df["Petal.Width"] < petal_width_mean]
filtered_df.to_csv("filtered_petal_width.csv", index=False)
data(iris)
library(ggplot2)
result <- aggregate(
Petal.Length ~ Species,
data = iris,
FUN = function(x) c(
mean = mean(x),
sd = sd(x),
max = max(x)
)
)
result_df <- do.call(data.frame, result)
print(result_df)
## Species Petal.Length.mean Petal.Length.sd Petal.Length.max
## 1 setosa 1.462 0.1736640 1.9
## 2 versicolor 4.260 0.4699110 5.1
## 3 virginica 5.552 0.5518947 6.9
ggplot(iris, aes(x = Species, y = Sepal.Width, fill = Species)) +
geom_violin(trim = FALSE) +
labs(
title = "Violin plot của Sepal.Width theo Species",
x = "Species",
y = "Sepal.Width"
) +
theme_minimal()
