Objective: Determine Survival on the Titanic
Data Source: Kaggle | https://www.kaggle.com/c/titanic
Data Description: https://www.kaggle.com/c/titanic/data
Approach: Using binomial logistics regression to predict Survival of PAX based on Pclass, Sex, Age, SibSp, Parch, Fare, Embarked
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.4, built: 2015-12-05)
## ## Copyright (C) 2005-2015 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
summary(Data_orig)
## PassengerId Survived Pclass
## Min. : 1.0 Min. :0.0000 Min. :1.000
## 1st Qu.:223.5 1st Qu.:0.0000 1st Qu.:2.000
## Median :446.0 Median :0.0000 Median :3.000
## Mean :446.0 Mean :0.3838 Mean :2.309
## 3rd Qu.:668.5 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :891.0 Max. :1.0000 Max. :3.000
##
## Name Sex Age
## Abbing, Mr. Anthony : 1 female:314 Min. : 0.42
## Abbott, Mr. Rossmore Edward : 1 male :577 1st Qu.:20.12
## Abbott, Mrs. Stanton (Rosa Hunt) : 1 Median :28.00
## Abelson, Mr. Samuel : 1 Mean :29.70
## Abelson, Mrs. Samuel (Hannah Wizosky): 1 3rd Qu.:38.00
## Adahl, Mr. Mauritz Nils Martin : 1 Max. :80.00
## (Other) :885 NA's :177
## SibSp Parch Ticket Fare
## Min. :0.000 Min. :0.0000 1601 : 7 Min. : 0.00
## 1st Qu.:0.000 1st Qu.:0.0000 347082 : 7 1st Qu.: 7.91
## Median :0.000 Median :0.0000 CA. 2343: 7 Median : 14.45
## Mean :0.523 Mean :0.3816 3101295 : 6 Mean : 32.20
## 3rd Qu.:1.000 3rd Qu.:0.0000 347088 : 6 3rd Qu.: 31.00
## Max. :8.000 Max. :6.0000 CA 2144 : 6 Max. :512.33
## (Other) :852
## Cabin Embarked
## B96 B98 : 4 C :168
## C23 C25 C27: 4 Q : 77
## G6 : 4 S :644
## C22 C26 : 3 NA's: 2
## D : 3
## (Other) :186
## NA's :687
# Check for missing values per variable
# summary(is.na(Data_orig)) # alternative
sapply(Data_orig, function(x) sum(is.na(x)))
## PassengerId Survived Pclass Name Sex Age
## 0 0 0 0 0 177
## SibSp Parch Ticket Fare Cabin Embarked
## 0 0 0 0 687 2
# Check for unique values per variable
sapply(Data_orig, function(x) length(unique(x)))
## PassengerId Survived Pclass Name Sex Age
## 891 2 3 891 2 89
## SibSp Parch Ticket Fare Cabin Embarked
## 7 7 681 248 148 4
# A much nicer and conlidated approach
missmap(Data_orig, main = "Missing Values vs. Observed Values")
Data_master <- Data_orig %>%
select(Survived, Pclass, Sex, Age, SibSp, Parch, Fare, Embarked)
# Check for missing values per variable
sapply(Data_master, function(x) sum(is.na(x)))
## Survived Pclass Sex Age SibSp Parch Fare Embarked
## 0 0 0 177 0 0 0 2
# Omit records whose [Embarked]'s value == NA (since there are only 2 observations)
Data_master <- Data_master %>%
filter(!is.na(Embarked))
# Replace [Age] == NA with MEAN(Data_orig$Age)
Data_master <- Data_master %>%
mutate(Age = replace(Age, is.na(Age), mean(Data_master$Age, na.rm = TRUE)))
# Confirm categorical variables are Factor types and check its dummy-variables.
contrasts(Data_master$Sex)
## male
## female 0
## male 1
contrasts(Data_master$Embarked)
## Q S
## C 0 0
## Q 1 0
## S 0 1
training.data <- Data_master[1:800, ]
test.data <- Data_master[801:889, ]
model1 <- glm(Survived ~ ., family = binomial(link = "logit"), data = training.data)
summary(model1)
##
## Call:
## glm(formula = Survived ~ ., family = binomial(link = "logit"),
## data = training.data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6063 -0.5953 -0.4253 0.6221 2.4165
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.136491 0.594907 8.634 < 2e-16 ***
## Pclass -1.087130 0.151170 -7.191 6.41e-13 ***
## Sexmale -2.756859 0.212023 -13.003 < 2e-16 ***
## Age -0.037252 0.008195 -4.545 5.48e-06 ***
## SibSp -0.292862 0.114627 -2.555 0.0106 *
## Parch -0.116467 0.128121 -0.909 0.3633
## Fare 0.001529 0.002353 0.650 0.5158
## EmbarkedQ -0.003548 0.400870 -0.009 0.9929
## EmbarkedS -0.318538 0.252954 -1.259 0.2079
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1065.39 on 799 degrees of freedom
## Residual deviance: 709.41 on 791 degrees of freedom
## AIC: 727.41
##
## Number of Fisher Scoring iterations: 5
RESULT: First of all, we can see that SibSp, Fare and Embarked are not statistically significant. As for the statistically significant variables, sex has the lowest p-value suggesting a strong association of the sex of the passenger with the probability of having survived. The negative coefficient for this predictor suggests that all other variables being equal, the male passenger is less likely to have survived. Remember that in the logit model the response variable is log odds: ln(odds) = ln(p/(1-p)) = ax1 + bx2 + … + z*xn. Since male is a dummy variable, being male reduces the log odds by 2.75 while a unit increase in age reduces the log odds by 0.037.
# Analyze the Table of Deviance for model's fit
anova(model1, test = "Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: Survived
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 799 1065.39
## Pclass 1 83.607 798 981.79 < 2.2e-16 ***
## Sex 1 240.014 797 741.77 < 2.2e-16 ***
## Age 1 17.490 796 724.28 2.888e-05 ***
## SibSp 1 10.838 795 713.44 0.0009943 ***
## Parch 1 0.860 794 712.58 0.3536034
## Fare 1 0.994 793 711.59 0.3187354
## Embarked 2 2.180 791 709.41 0.3362274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RESULT: The difference between the null deviance and the residual deviance shows how our model is doing against the null model (a model with only the intercept). The wider this gap, the better. Analyzing the table we can see the drop in deviance when adding each variable one at a time. Again, adding Pclass, Sex and Age significantly reduces the residual deviance. The other variables seem to improve the model less even though SibSp has a low p-value. A large p-value here indicates that the model without the variable explains more or less the same amount of variation. Ultimately what you would like to see is a significant drop in deviance and the AIC.
# Analyze McFadden R^2 index for model's fit
library(pscl)
## Loading required package: MASS
##
## Attaching package: 'MASS'
##
## The following object is masked from 'package:dplyr':
##
## select
##
## Loading required package: lattice
## Classes and Methods for R developed in the
##
## Political Science Computational Laboratory
##
## Department of Political Science
##
## Stanford University
##
## Simon Jackman
##
## hurdle and zeroinfl functions by Achim Zeileis
pR2(model1)
## llh llhNull G2 McFadden r2ML
## -354.7044627 -532.6961008 355.9832762 0.3341335 0.3591623
## r2CU
## 0.4880038
RESULT: McFadden R^2 = 0.3341335
NOTE: Decision boundary is 0.5. If P(y=1|X) > 0.5 then y = 1 otherwise y=0.
# Model's Predictive Accuracy
# test.data.IV <- test.data %>%
# select(-Survived)
test.data.IV <- subset(test.data, select = c(2:8))
fitted.results <- predict(model1, newdata = test.data.IV, type = "response")
fitted.results <- ifelse(fitted.results > 0.5, 1, 0)
fitted.results.errors <- mean(fitted.results != test.data$Survived)
fitted.results.accuracy <- 1 - fitted.results.errors
print(paste('Model Accuracy =', round(fitted.results.accuracy*100, 2), "%"))
## [1] "Model Accuracy = 84.27 %"
RESULT: The 0.84 accuracy on the test set is quite a good result. However, keep in mind that this result is somewhat dependent on the manual split of the data that I made earlier, therefore if you wish for a more precise score, you would be better off running some kind of cross validation such as k-fold cross validation.
ROC curve and calculate the AUC as performance measurement of a binary classifier model.
NOTE: The ROC is a curve generated by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings while the AUC is the area under the ROC curve. As a rule of thumb, a model with good predictive ability should have an AUC closer to 1 (1 is ideal) than to 0.5.
library(ROCR)
## Loading required package: gplots
##
## Attaching package: 'gplots'
##
## The following object is masked from 'package:stats':
##
## lowess
p <- predict(model1, newdata = test.data.IV, type = "response")
prd <- prediction(p, test.data$Survived)
prf <- performance(prd, measure = "tpr", x.measure = "fpr")
plot(prf)
auc <- performance(prd, measure = "auc")
auc <- auc@y.values[[1]]
print(paste("Model AUC =", auc))
## [1] "Model AUC = 0.864718614718615"