Lihat sebaran penghasilan pelanggan, apakah condong ke rendah atau
tinggi
library(ggplot2)
df <- read.csv("df_customer.csv")
ggplot(df, aes(x = Penghasilan)) +
geom_histogram(bins = 30, fill = "steelblue", color = "white") +
labs(
title = "Distribusi Penghasilan Pelanggan",
x = "Penghasilan",
y = "Jumlah Pelanggan"
) +
theme_minimal()

Bandingin perilaku belanja antara laki-laki dan perempuan
ggplot(df, aes(x = Jenis_Kelamin, y = Total_Belanja, fill = Jenis_Kelamin)) +
stat_summary(fun = mean, geom = "bar") +
labs(
title = "Rata-rata Total Belanja Berdasarkan Jenis Kelamin",
x = "Jenis Kelamin",
y = "Rata-rata Total Belanja"
) +
theme_minimal() +
guides(fill = "none")

Apakah penghasilan tinggi selalu belanja lebih besar?
ggplot(df, aes(x = Penghasilan, y = Total_Belanja)) +
geom_point(alpha = 0.6) +
geom_smooth(method = "lm", se = FALSE) +
labs(
title = "Hubungan Penghasilan dan Total Belanja",
x = "Penghasilan",
y = "Total Belanja"
) +
theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'

Bandingin pola belanja pelanggan Desa vs Kota
ggplot(df, aes(x = Tempat_Tinggal, y = Total_Belanja, fill = Tempat_Tinggal)) +
geom_boxplot() +
labs(
title = "Distribusi Total Belanja Berdasarkan Tempat Tinggal",
x = "Tempat Tinggal",
y = "Total Belanja"
) +
theme_minimal() +
guides(fill = "none")

Lihat proporsi pelanggan berdasarkan gender
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df %>%
count(Jenis_Kelamin) %>%
ggplot(aes(x = "", y = n, fill = Jenis_Kelamin)) +
geom_col(width = 1) +
coord_polar("y") +
labs(title = "Proporsi Jenis Kelamin Pelanggan") +
theme_void()
