data <-read.csv("df_mahasiswa.csv")
head(data)
## X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1 MHS001 L 4 1
## 2 2 MHS002 P 4 2
## 3 3 MHS003 P 2 6
## 4 4 MHS004 P 5 3
## 5 5 MHS005 L 3 2
## 6 6 MHS006 L 3 7
## motivasi_belajar ipk
## 1 82 3.12
## 2 73 3.45
## 3 71 3.07
## 4 98 3.43
## 5 81 2.83
## 6 61 3.10
str(data)
## 'data.frame': 55 obs. of 7 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ id_mahasiswa : chr "MHS001" "MHS002" "MHS003" "MHS004" ...
## $ jenis_kelamin : chr "L" "P" "P" "P" ...
## $ jam_belajar_per_hari: int 4 4 2 5 3 3 1 3 2 1 ...
## $ frekuensi_login_lms : int 1 2 6 3 2 7 7 4 6 5 ...
## $ motivasi_belajar : int 82 73 71 98 81 61 44 69 44 46 ...
## $ ipk : num 3.12 3.45 3.07 3.43 2.83 3.1 2.98 3.08 2.82 2.93 ...
colSums(is.na(data))
## X id_mahasiswa jenis_kelamin
## 0 0 0
## jam_belajar_per_hari frekuensi_login_lms motivasi_belajar
## 0 0 0
## ipk
## 0
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
table(data$jenis_kelamin)
##
## L P
## 32 23
aggregate(ipk ~ jenis_kelamin, data = data, FUN = mean)
## jenis_kelamin ipk
## 1 L 3.158125
## 2 P 3.176957
data[order(-data$motivasi_belajar), c("id_mahasiswa", "motivasi_belajar")] |> head(1)
## id_mahasiswa motivasi_belajar
## 54 MHS054 100
library(dplyr)
table(data$ipk > 3.5)
##
## FALSE TRUE
## 46 9
mahasiswa_login_tertinggi <- data %>%
arrange(desc(frekuensi_login_lms)) %>%
slice(1)
mahasiswa_login_tertinggi %>%
select(id_mahasiswa, frekuensi_login_lms, ipk)
## id_mahasiswa frekuensi_login_lms ipk
## 1 MHS006 7 3.1
data %>%
mutate(Kategori_Jam_Belajar = ifelse(jam_belajar_per_hari >= 4, "≥ 4 Jam", "< 4 Jam")) %>%
group_by(Kategori_Jam_Belajar) %>%
summarise(
Rata_rata_IPK = mean(ipk, na.rm = TRUE),
Jumlah_Mahasiswa = n()
) %>%
arrange(desc(Rata_rata_IPK))
## # A tibble: 2 × 3
## Kategori_Jam_Belajar Rata_rata_IPK Jumlah_Mahasiswa
## <chr> <dbl> <int>
## 1 ≥ 4 Jam 3.41 27
## 2 < 4 Jam 2.94 28
data %>%
arrange(desc(ipk)) %>%
slice(1) %>%
select(id_mahasiswa, ipk, motivasi_belajar)
## id_mahasiswa ipk motivasi_belajar
## 1 MHS018 3.89 92
data %>%
filter(ipk > 3.5, motivasi_belajar > 85) %>%
group_by(jenis_kelamin) %>%
summarise(Jumlah = n())
## # A tibble: 2 × 2
## jenis_kelamin Jumlah
## <chr> <int>
## 1 L 4
## 2 P 1