library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
df_customer <- read.csv("df_customer.csv")
head(df_customer)
##   X ID_Pelanggan Jenis_Kelamin Tempat_Tinggal Penghasilan Total_Belanja
## 1 1      ID00031     Laki-laki           Desa     2227350       2563031
## 2 2      ID00079     Perempuan           Kota     9047608       8369550
## 3 3      ID00051     Perempuan           Kota     9735540       8053033
## 4 4      ID00014     Laki-laki           Kota    13510126       9799876
## 5 5      ID00067     Perempuan           Desa     7773498       6982081
## 6 6      ID00042     Laki-laki           Desa     6666740       4782002
nrow(df_customer)
## [1] 300
length(unique(df_customer$ID_Pelanggan))
## [1] 94
sort(table(df_customer$ID_Pelanggan), decreasing = TRUE)[1:3]
## 
## ID00007 ID00025 ID00089 
##       9       7       7
aggregate(Penghasilan ~ Jenis_Kelamin, data = df_customer, mean)
##   Jenis_Kelamin Penghasilan
## 1     Laki-laki     8880902
## 2     Perempuan     8505199
aggregate(Penghasilan ~ Tempat_Tinggal, data = df_customer, mean)
##   Tempat_Tinggal Penghasilan
## 1           Desa     6249122
## 2           Kota     9878685
aggregate(Total_Belanja ~ Tempat_Tinggal, data = df_customer, mean)
##   Tempat_Tinggal Total_Belanja
## 1           Desa       5022231
## 2           Kota       7520118
df_customer[order(-df_customer$Total_Belanja), c("ID_Pelanggan", "Total_Belanja")] |> head(5)
##     ID_Pelanggan Total_Belanja
## 76       ID00034      11626302
## 175      ID00011      11527638
## 228      ID00057      11031197
## 287      ID00093      10984825
## 33       ID00007      10846012
table(df_customer$Jenis_Kelamin)
## 
## Laki-laki Perempuan 
##       121       179
df_customer$Kategori_Penghasilan <- cut(df_customer$Penghasilan,
                                        breaks = c(-Inf, 5000000, 10000000, Inf),
                                        labels = c("Rendah", "Menengah", "Tinggi"))
table(df_customer$Kategori_Penghasilan)
## 
##   Rendah Menengah   Tinggi 
##       27      175       98
df_filter1 <- subset(df_customer, Total_Belanja > 5000000)
table(df_filter1$ID_Pelanggan)
## 
## ID00001 ID00002 ID00004 ID00005 ID00006 ID00007 ID00008 ID00009 ID00010 ID00011 
##       1       3       2       1       4       7       2       4       2       1 
## ID00012 ID00013 ID00014 ID00015 ID00016 ID00017 ID00018 ID00021 ID00022 ID00023 
##       1       3       3       1       4       2       1       2       2       4 
## ID00024 ID00025 ID00026 ID00027 ID00029 ID00030 ID00031 ID00032 ID00033 ID00034 
##       4       7       6       1       1       3       4       4       2       2 
## ID00035 ID00036 ID00037 ID00038 ID00039 ID00040 ID00041 ID00042 ID00043 ID00044 
##       3       4       3       2       3       3       2       3       1       1 
## ID00045 ID00046 ID00047 ID00048 ID00049 ID00050 ID00051 ID00052 ID00053 ID00054 
##       3       3       1       2       2       2       2       3       5       2 
## ID00055 ID00056 ID00057 ID00058 ID00059 ID00060 ID00061 ID00063 ID00064 ID00066 
##       3       1       4       2       1       3       1       4       1       2 
## ID00067 ID00069 ID00070 ID00071 ID00072 ID00073 ID00074 ID00075 ID00076 ID00077 
##       4       3       1       3       3       1       4       2       2       1 
## ID00078 ID00079 ID00082 ID00083 ID00084 ID00085 ID00086 ID00087 ID00088 ID00089 
##       1       5       3       2       5       3       2       4       1       6 
## ID00090 ID00091 ID00092 ID00093 ID00094 ID00095 ID00096 ID00097 ID00098 ID00099 
##       5       4       2       5       3       1       2       2       1       1
sort(table(df_filter1$ID_Pelanggan), decreasing=TRUE)[1]
## ID00007 
##       7
df_filter2 <- subset(df_customer, Jenis_Kelamin=="Perempuan" & Tempat_Tinggal=="Kota")
freq2 <- table(df_filter2$ID_Pelanggan)
sum(freq2>5)
## [1] 0
df_filter3 <- subset(df_customer, Penghasilan > 5000000)
table(df_filter3$ID_Pelanggan)
## 
## ID00001 ID00002 ID00004 ID00005 ID00006 ID00007 ID00008 ID00009 ID00010 ID00011 
##       2       3       2       2       4       9       3       5       2       1 
## ID00012 ID00013 ID00014 ID00015 ID00016 ID00017 ID00018 ID00020 ID00021 ID00022 
##       1       2       5       1       4       3       1       2       2       2 
## ID00023 ID00024 ID00025 ID00026 ID00027 ID00029 ID00030 ID00031 ID00032 ID00033 
##       5       5       7       6       2       2       3       4       4       1 
## ID00034 ID00035 ID00036 ID00037 ID00038 ID00039 ID00040 ID00041 ID00042 ID00043 
##       2       3       4       2       2       3       3       2       4       2 
## ID00044 ID00045 ID00046 ID00047 ID00048 ID00049 ID00050 ID00051 ID00052 ID00053 
##       1       3       4       1       2       2       3       2       3       5 
## ID00054 ID00055 ID00056 ID00057 ID00058 ID00059 ID00060 ID00061 ID00062 ID00063 
##       4       3       1       4       2       1       3       2       1       5 
## ID00064 ID00066 ID00067 ID00068 ID00069 ID00070 ID00071 ID00072 ID00073 ID00074 
##       2       1       4       1       3       2       4       2       1       5 
## ID00075 ID00076 ID00077 ID00078 ID00079 ID00081 ID00082 ID00083 ID00084 ID00085 
##       2       3       3       1       5       2       4       3       5       4 
## ID00086 ID00087 ID00088 ID00089 ID00090 ID00091 ID00092 ID00093 ID00094 ID00095 
##       3       4       1       6       5       4       2       7       3       1 
## ID00096 ID00097 ID00099 
##       2       3       1
sort(table(df_filter3$ID_Pelanggan), decreasing=TRUE)[1]
## ID00007 
##       9
df_filter4 <- subset(df_customer, Tempat_Tinggal=="Desa" & Total_Belanja > 5000000)
unique(df_filter4$Jenis_Kelamin)
## [1] "Perempuan" "Laki-laki"
df_filter5 <- subset(df_customer, Tempat_Tinggal=="Desa" & Total_Belanja > 5000000)
df_filter5[, c("ID_Pelanggan","Penghasilan","Total_Belanja")]
##     ID_Pelanggan Penghasilan Total_Belanja
## 5        ID00067     7773498       6982081
## 9        ID00014     6776730       6315967
## 43       ID00027     8108645       6901502
## 46       ID00089     9032981       5776859
## 47       ID00034     5616450       7064321
## 53       ID00013     4481204       5438461
## 56       ID00091     6128487       5990469
## 58       ID00038     5947963       5094570
## 61       ID00041     9231091       8371463
## 62       ID00047     5940612       6172545
## 65       ID00095     8032910       6259431
## 73       ID00031     7822419       5581673
## 82       ID00022     9331982       5602663
## 97       ID00096     7082568       5369782
## 106      ID00074     9657061       7154243
## 119      ID00094     7651846       5983600
## 134      ID00016     5575699       5436492
## 138      ID00055     8635642       6262374
## 139      ID00075     5809025       5002921
## 145      ID00090     6005712       5987338
## 148      ID00098     4849165       5535035
## 149      ID00048     4626369       5333229
## 161      ID00088     5455465       5826813
## 166      ID00067     6467267       6344949
## 171      ID00049     3157783       5695306
## 176      ID00055     6093467       6646206
## 177      ID00008     6193172       6100858
## 197      ID00072     9024791       6500860
## 202      ID00058     9310352       6514985
## 209      ID00026     8141032       6663821
## 219      ID00052     6499451       6548809
## 220      ID00026    10832415       7895296
## 224      ID00090    11664452       9796996
## 229      ID00073     6455085       5490472
## 231      ID00014     6571179       6229499
## 232      ID00006     9498495       6134541
## 233      ID00091     5671820       6935452
## 248      ID00094     3726214       5043885
## 249      ID00031     6533837       6686485
## 250      ID00093     6856664       7140298
## 254      ID00057     7212261       5530567
## 257      ID00089     6928182       5259961
## 259      ID00066     3373098       5157567
## 265      ID00008     6940985       5052071
## 280      ID00063     6915574       6201985
## 289      ID00097     7028460       5214133
## 293      ID00013     9810087       5581775