date pce pop psavert
Min. :1967-07-01 Min. : 506.7 Min. :198712 Min. : 2.200
1st Qu.:1979-06-08 1st Qu.: 1578.3 1st Qu.:224896 1st Qu.: 6.400
Median :1991-05-16 Median : 3936.8 Median :253060 Median : 8.400
Mean :1991-05-17 Mean : 4820.1 Mean :257160 Mean : 8.567
3rd Qu.:2003-04-23 3rd Qu.: 7626.3 3rd Qu.:290291 3rd Qu.:11.100
Max. :2015-04-01 Max. :12193.8 Max. :320402 Max. :17.300
uempmed unemploy
Min. : 4.000 Min. : 2685
1st Qu.: 6.000 1st Qu.: 6284
Median : 7.500 Median : 7494
Mean : 8.609 Mean : 7771
3rd Qu.: 9.100 3rd Qu.: 8686
Max. :25.200 Max. :15352
ggplot(economics, aes(x = date, y = unemploy)) +geom_line(color ="steelblue") +labs(title ="US Unemployment Trend (1967–2015)",x ="Year", y ="Number of Unemployed (thousands)") +theme_minimal()
Personal saving rate trend
ggplot(economics, aes(x = date, y = psavert)) +geom_line(color ="darkgreen") +labs(title ="US Personal Savings Rate Trend",x ="Year", y ="Savings Rate (%)") +theme_minimal()
Time Series Forecasting
library(forecast)
Warning: package 'forecast' was built under R version 4.5.2
Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo
# Convert unemployment series to time series objectunemp_ts <-ts(economics$unemploy, start =c(1967, 7), frequency =12)# Plot the time seriesplot(unemp_ts, main ="Monthly Unemployment (Thousands)", ylab ="Unemployed", xlab ="Year")
# Fit ARIMA modelfit <-auto.arima(unemp_ts)# Forecast next 5 years (60 months)forecast_unemp <-forecast(fit, h =60)# Plot forecastplot(forecast_unemp, main ="Forecast of US Unemployment")