1 Introduction

I gathered all country-year observations in Kavasoglu (2022) paper. Originally, the paper spans from 1970 to 2019. However, I limit this data to 1990 to 2019 for two reasons: - There are not many cases of co-optation between 1970-1990 – only Malaysia. - There are a lot of post-USSR countries excluded from the analysis with V-Dem variables. So, starting from 1990 makes sense.

According to Kavasoglu (2022), there could be three kinds of co-optation:

  1. cabinet appointment,
  2. electoral support,
  3. parliamentary support.

Relying on party-level information in his data, I generated country-level information. This led to several variables of interest:

  • n_coopt: count of any co-optation in that country-year observation
  • n_cabinet: count of cabinet appointment happened in that country-year observation
  • n_parl: count of parliamentary support happened in that country-year observation
  • n_elec: count of electoral support happened in that country-year observation
  • any_coopt: binary, any co-optation occured in that country-year observation
  • any_cabinet: binary, any cabinet appointment occured in that country-year observation

To test our estimation model:

\[ Co-optation_i = \beta_0 + \beta_1 Corruption_i + \beta_2 Judicial Indep_i + \beta_3 Corruption \times Judicial Indep + \epsilon_i \] I relied on some V-Dem variables: - v2jupack: court packing - v2juhcind: judicial independence - v2x_execorr: executive corruption index (reverse coded) - v2xnp_regcorr: regime corruption index

We can use these variables interchangibly. I decided to use judicial independence and executive corruption index.

# Load data
my_data <- read.csv("analysis_data.csv")
my_data$any_coopt <- as.factor(my_data$any_coopt) # any form of cooptation 
my_data$any_cabinet   <- as.numeric(my_data$n_cabinet > 0) # any form of cabinet appointment
names(my_data)
##  [1] "X"                      "country_name"           "COWcode"               
##  [4] "year"                   "n_coopt"                "n_cabinet"             
##  [7] "n_parl"                 "n_elec"                 "any_coopt"             
## [10] "polyarchy"              "v2x_polyarchy_codelow"  "v2x_polyarchy_codehigh"
## [13] "v2x_polyarchy_sd"       "e_v2x_polyarchy_3C"     "e_v2x_polyarchy_4C"    
## [16] "e_v2x_polyarchy_5C"     "court_pack"             "v2jupack_codelow"      
## [19] "v2jupack_codehigh"      "v2jupack_sd"            "v2jupack_osp"          
## [22] "v2jupack_osp_codelow"   "v2jupack_osp_codehigh"  "v2jupack_osp_sd"       
## [25] "v2jupack_ord"           "v2jupack_ord_codelow"   "v2jupack_ord_codehigh" 
## [28] "v2jupack_mean"          "v2jupack_nr"            "jud_ind"               
## [31] "v2juhcind_codelow"      "v2juhcind_codehigh"     "v2juhcind_sd"          
## [34] "v2juhcind_osp"          "v2juhcind_osp_codelow"  "v2juhcind_osp_codehigh"
## [37] "v2juhcind_osp_sd"       "v2juhcind_ord"          "v2juhcind_ord_codelow" 
## [40] "v2juhcind_ord_codehigh" "v2juhcind_mean"         "v2juhcind_nr"          
## [43] "regime_corrupt"         "v2xnp_regcorr_codelow"  "v2xnp_regcorr_codehigh"
## [46] "v2xnp_regcorr_sd"       "pol_corrupt_index"      "v2x_corr_codelow"      
## [49] "v2x_corr_codehigh"      "v2x_corr_sd"            "e_v2x_corr_3C"         
## [52] "e_v2x_corr_4C"          "e_v2x_corr_5C"          "exec_corrupt_index"    
## [55] "v2x_execorr_codelow"    "v2x_execorr_codehigh"   "v2x_execorr_sd"        
## [58] "e_v2x_execorr_3C"       "e_v2x_execorr_4C"       "e_v2x_execorr_5C"      
## [61] "any_cabinet"

1.1 Check data

subset_data <- my_data |> 
  select(country_name, COWcode, year, n_coopt:any_coopt, any_cabinet, polyarchy,
         court_pack, jud_ind, regime_corrupt, pol_corrupt_index, exec_corrupt_index)
skim(subset_data)
Table 1.1: Data summary
Name subset_data
Number of rows 1890
Number of columns 15
_______________________
Column type frequency:
character 1
factor 1
numeric 13
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
country_name 0 1 4 32 0 63 0

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
any_coopt 0 1 FALSE 2 0: 1782, 1: 108

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
COWcode 0 1.00 482.65 197.53 41.00 373.00 481.00 615.00 840.00 ▂▁▇▃▃
year 0 1.00 2004.50 8.66 1990.00 1997.00 2004.50 2012.00 2019.00 ▇▇▇▇▇
n_coopt 0 1.00 0.10 0.46 0.00 0.00 0.00 0.00 5.00 ▇▁▁▁▁
n_cabinet 0 1.00 0.05 0.31 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
n_parl 0 1.00 0.06 0.34 0.00 0.00 0.00 0.00 5.00 ▇▁▁▁▁
n_elec 0 1.00 0.02 0.22 0.00 0.00 0.00 0.00 3.00 ▇▁▁▁▁
any_cabinet 0 1.00 0.03 0.17 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
polyarchy 32 0.98 0.40 0.18 0.07 0.26 0.37 0.53 0.86 ▃▇▆▃▂
court_pack 31 0.98 0.16 1.19 -4.23 -0.80 0.41 1.16 1.85 ▁▁▅▆▇
jud_ind 31 0.98 -0.31 1.20 -3.00 -1.13 -0.27 0.64 2.35 ▃▆▇▇▂
regime_corrupt 31 0.98 0.66 0.23 0.01 0.52 0.70 0.86 0.97 ▁▂▅▆▇
pol_corrupt_index 31 0.98 0.67 0.22 0.01 0.54 0.72 0.85 0.97 ▁▂▅▅▇
exec_corrupt_index 31 0.98 0.65 0.24 0.01 0.49 0.70 0.86 0.97 ▁▃▃▇▇

We have some missing values in certain countries, especially in 1990s. Almost all of these are due to post-USSR countries not being established yet. For instance, Croatia in 1990 is missing.

1.2 Quick descriptives

Let’s look at correlations and distributions. All of our variables of interest are left-skewed. Most V-Dem variables are close to normal distribution. I do not see any possible multicollinearity issue. Of course, measures like regime corruption index and executive corruption index are highly correlated. So, substituing one for the another makes sense.

subset_data |> 
  select(-any_coopt, -country_name) |> 
  chart.Correlation()

2 Logistic models: co-optation and cabinet appointment

Let’s start with the naive logistic regression models. Here, we can test two things:

  1. Do corruption and judicial independence explain any form of cooperation in these countries?
  2. Do corruption and judicial independence explain any cabinet appointment in these countries?

I am using fixest package to run binomial logistic regression with country-fixed effects, and clustered standard errors. I also add polyarchy (democracy) score as a control.

Small note 1: Executive corruption index is inverse coded. That is, lower scores indicate a normatively better situation (e.g. more democratic) and higher scores a normatively worse situation (e.g. less democratic).

Small note 2: Fixest requires dependent variable to be numeric, although in glm() world it has to be a factor variable.

# Recode variables
subset_data$num_any_coopt <- as.numeric(subset_data$any_coopt)
subset_data$num_any_coopt <- ifelse(subset_data$num_any_coopt == 2, 1, 0)

# Helper function to run the three models
run_models <- function(outcome) {
  f0 <- as.formula(paste0(outcome, " ~ jud_ind + exec_corrupt_index | country_name"))
  f1 <- as.formula(paste0(outcome, " ~ jud_ind * exec_corrupt_index | country_name"))
  f2 <- as.formula(paste0(outcome, " ~ jud_ind * exec_corrupt_index + polyarchy | country_name"))
  
  m0 <- feglm(f0, data = subset_data, family = binomial("logit"), vcov = "cluster")
  m1 <- feglm(f1, data = subset_data, family = binomial("logit"), vcov = "cluster")
  m2 <- feglm(f2, data = subset_data, family = binomial("logit"), vcov = "cluster")
  
  etable(m0, m1, m2)
}

2.1 Any form of cooperation?

run_models("num_any_coopt")
##                                            m0               m1              m2
## Dependent Var.:                 num_any_coopt    num_any_coopt   num_any_coopt
##                                                                               
## jud_ind                      -0.0265 (0.1286) -0.1968 (0.8682) 0.2192 (0.9300)
## exec_corrupt_index           3.753*** (1.140)  3.844** (1.444)  2.958* (1.490)
## jud_ind x exec_corrupt_index                    0.2325 (1.191)  0.1147 (1.171)
## polyarchy                                                      -4.023* (1.708)
## Fixed-Effects:               ---------------- ---------------- ---------------
## country_name                              Yes              Yes             Yes
## ____________________________ ________________ ________________ _______________
## S.E.: Clustered              by: country_name by: country_name by: country_n..
## Observations                            1,230            1,230           1,229
## Squared Cor.                          0.03982          0.04020         0.04133
## Pseudo R2                             0.06560          0.06566         0.07393
## BIC                                    989.61           996.68          997.54
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Judicial independence is not statistically significant across our models. Corruption index is significant across different models suggesting that in less democratic contexts, we are likely to see more cases of co-optation of the opposition actors. Finally, the interaction is significant. Let’s look at the average marginal effects.

m1_glm <- glm(num_any_coopt ~ jud_ind * exec_corrupt_index, data = subset_data,
  family = binomial(link = "logit"))

meff <- margins(m1_glm)
summary(meff)
##              factor     AME     SE       z      p   lower   upper
##  exec_corrupt_index  0.0701 0.0348  2.0156 0.0438  0.0019  0.1383
##             jud_ind -0.0137 0.0055 -2.5078 0.0121 -0.0244 -0.0030
tidy_marginal_predictions(m1_glm)
##                      variable           term     estimate    std.error
## 1  jud_ind:exec_corrupt_index -3.004 * 0.012 6.347504e-01 0.2891425443
## 2  jud_ind:exec_corrupt_index -3.004 * 0.489 2.665047e-01 0.1048112571
## 3  jud_ind:exec_corrupt_index -3.004 * 0.703 1.525703e-01 0.0352911980
## 4  jud_ind:exec_corrupt_index -3.004 * 0.855 9.856176e-02 0.0212319048
## 5  jud_ind:exec_corrupt_index -3.004 * 0.971 6.953109e-02 0.0222842468
## 6  jud_ind:exec_corrupt_index -1.128 * 0.012 5.147362e-02 0.0256373312
## 7  jud_ind:exec_corrupt_index -1.128 * 0.489 7.049302e-02 0.0148148539
## 8  jud_ind:exec_corrupt_index -1.128 * 0.703 8.098921e-02 0.0090597862
## 9  jud_ind:exec_corrupt_index -1.128 * 0.855 8.929064e-02 0.0093714089
## 10 jud_ind:exec_corrupt_index -1.128 * 0.971 9.613446e-02 0.0139195987
## 11 jud_ind:exec_corrupt_index -0.271 * 0.012 1.101509e-02 0.0053549837
## 12 jud_ind:exec_corrupt_index -0.271 * 0.489 3.574827e-02 0.0067519794
## 13 jud_ind:exec_corrupt_index -0.271 * 0.703 5.978600e-02 0.0064974104
## 14 jud_ind:exec_corrupt_index -0.271 * 0.855 8.532280e-02 0.0111736641
## 15 jud_ind:exec_corrupt_index -0.271 * 0.971 1.110873e-01 0.0197148890
## 16 jud_ind:exec_corrupt_index  0.639 * 0.012 2.068378e-03 0.0015765242
## 17 jud_ind:exec_corrupt_index  0.639 * 0.489 1.704306e-02 0.0050313373
## 18 jud_ind:exec_corrupt_index  0.639 * 0.703 4.303006e-02 0.0070768524
## 19 jud_ind:exec_corrupt_index  0.639 * 0.855 8.128519e-02 0.0161658850
## 20 jud_ind:exec_corrupt_index  0.639 * 0.971 1.291540e-01 0.0344552022
## 21 jud_ind:exec_corrupt_index  2.348 * 0.012 8.811086e-05 0.0001329483
## 22 jud_ind:exec_corrupt_index  2.348 * 0.489 4.143483e-03 0.0025082713
## 23 jud_ind:exec_corrupt_index  2.348 * 0.703 2.291734e-02 0.0074008153
## 24 jud_ind:exec_corrupt_index  2.348 * 0.855 7.417033e-02 0.0264552561
## 25 jud_ind:exec_corrupt_index  2.348 * 0.971 1.698205e-01 0.0776719327
##    statistic      p.value    s.value      conf.low    conf.high  df
## 1  2.1952854 2.814313e-02  5.1510734  0.0680414353 1.2014593816 Inf
## 2  2.5427110 1.099962e-02  6.5064028  0.0610784438 0.4719310220 Inf
## 3  4.3231826 1.537943e-05 15.9886380  0.0834008159 0.2217397701 Inf
## 4  4.6421534 3.447968e-06 18.1458223  0.0569479897 0.1401755273 Inf
## 5  3.1201903 1.807342e-03  9.1119144  0.0258547692 0.1132074115 Inf
## 6  2.0077606 4.466874e-02  4.4845906  0.0012253769 0.1017218687 Inf
## 7  4.7582663 1.952628e-06 18.9661515  0.0414564401 0.0995296004 Inf
## 8  8.9394173 3.912278e-19 61.1486250  0.0632323547 0.0987460639 Inf
## 9  9.5279844 1.603666e-21 69.0791166  0.0709230137 0.1076582616 Inf
## 10 6.9064104 4.970705e-12 37.5496867  0.0688525499 0.1234163743 Inf
## 11 2.0569790 3.968825e-02  4.6551442  0.0005195136 0.0215106641 Inf
## 12 5.2944875 1.193507e-07 22.9982902  0.0225146342 0.0489819072 Inf
## 13 9.2015114 3.529499e-20 64.6190987  0.0470513054 0.0725206861 Inf
## 14 7.6360624 2.239658e-14 45.3437147  0.0634228169 0.1072227754 Inf
## 15 5.6346915 1.753720e-08 25.7650062  0.0724468445 0.1497277892 Inf
## 16 1.3119864 1.895247e-01  2.3995420 -0.0010215524 0.0051583091 Inf
## 17 3.3873809 7.056335e-04 10.4687933  0.0071818159 0.0269042959 Inf
## 18 6.0803948 1.198870e-09 29.6356775  0.0291596807 0.0569004325 Inf
## 19 5.0281931 4.951232e-07 20.9457091  0.0496006387 0.1129697437 Inf
## 20 3.7484607 1.779232e-04 12.4564578  0.0616230169 0.1966849276 Inf
## 21 0.6627451 5.074938e-01  0.9785378 -0.0001724631 0.0003486848 Inf
## 22 1.6519276 9.854932e-02  3.3430103 -0.0007726389 0.0090596040 Inf
## 23 3.0965970 1.957558e-03  8.9967290  0.0084120107 0.0374226736 Inf
## 24 2.8036141 5.053335e-03  7.6285484  0.0223189791 0.1260216774 Inf
## 25 2.1863814 2.878771e-02  5.1184031  0.0175862796 0.3220546612 Inf
plot_marginal_predictions(m1_glm, pred = "exec_corrupt_index", at = list(jud_ind = c(0, 0.5, 1)))
## [[1]]

This is a bit hard to read – continuous to continous interactions are often tricky. So, we have to find a better ways to present these results.

2.2 Any form of cabinet appointment?

run_models("any_cabinet")
##                                           m0               m1               m2
## Dependent Var.:                  any_cabinet      any_cabinet      any_cabinet
##                                                                               
## jud_ind                      0.0638 (0.2239) -1.702* (0.7986) -1.557. (0.8309)
## exec_corrupt_index           3.801** (1.328)  4.721** (1.446)  4.122** (1.434)
## jud_ind x exec_corrupt_index                   2.411* (1.104)   2.529* (1.139)
## polyarchy                                                       -2.854 (2.110)
## Fixed-Effects:               --------------- ---------------- ----------------
## country_name                             Yes              Yes              Yes
## ____________________________ _______________ ________________ ________________
## S.E.: Clustered              by: country_n.. by: country_name by: country_name
## Observations                             870              870              870
## Squared Cor.                         0.03337          0.03582          0.03677
## Pseudo R2                            0.06848          0.07305          0.07715
## BIC                                   611.72           616.51           621.51
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Across models, we have consistent findings like any form of cabinet appointment, like we observe in any form of cooperation. Let’s look at the marginal effects.

m2_glm <- glm(factor(any_cabinet) ~ jud_ind * exec_corrupt_index, data = subset_data,
  family = binomial(link = "logit"))

meff2 <- margins(m2_glm)
summary(meff2)
##              factor     AME     SE       z      p   lower  upper
##  exec_corrupt_index  0.0468 0.0280  1.6747 0.0940 -0.0080 0.1017
##             jud_ind -0.0020 0.0045 -0.4368 0.6623 -0.0109 0.0069
tidy_marginal_predictions(m2_glm)
##                      variable           term     estimate    std.error
## 1  jud_ind:exec_corrupt_index -3.004 * 0.012 9.456387e-01 8.925283e-02
## 2  jud_ind:exec_corrupt_index -3.004 * 0.489 2.760906e-01 1.395626e-01
## 3  jud_ind:exec_corrupt_index -3.004 * 0.703 6.429631e-02 2.167587e-02
## 4  jud_ind:exec_corrupt_index -3.004 * 0.855 1.993548e-02 7.997765e-03
## 5  jud_ind:exec_corrupt_index -3.004 * 0.971 7.969551e-03 4.740229e-03
## 6  jud_ind:exec_corrupt_index -1.128 * 0.012 6.989712e-02 4.345187e-02
## 7  jud_ind:exec_corrupt_index -1.128 * 0.489 5.114252e-02 1.335010e-02
## 8  jud_ind:exec_corrupt_index -1.128 * 0.703 4.437214e-02 6.683649e-03
## 9  jud_ind:exec_corrupt_index -1.128 * 0.855 4.009165e-02 6.909262e-03
## 10 jud_ind:exec_corrupt_index -1.128 * 0.971 3.709409e-02 8.906546e-03
## 11 jud_ind:exec_corrupt_index -0.271 * 0.012 6.209575e-03 3.928983e-03
## 12 jud_ind:exec_corrupt_index -0.271 * 0.489 2.157286e-02 5.365669e-03
## 13 jud_ind:exec_corrupt_index -0.271 * 0.703 3.736956e-02 5.086194e-03
## 14 jud_ind:exec_corrupt_index -0.271 * 0.855 5.483611e-02 8.827994e-03
## 15 jud_ind:exec_corrupt_index -0.271 * 0.971 7.307613e-02 1.640458e-02
## 16 jud_ind:exec_corrupt_index  0.639 * 0.012 4.452575e-04 4.748529e-04
## 17 jud_ind:exec_corrupt_index  0.639 * 0.489 8.462111e-03 3.504644e-03
## 18 jud_ind:exec_corrupt_index  0.639 * 0.703 3.110032e-02 6.351164e-03
## 19 jud_ind:exec_corrupt_index  0.639 * 0.855 7.599686e-02 1.801615e-02
## 20 jud_ind:exec_corrupt_index  0.639 * 0.971 1.443089e-01 4.713951e-02
## 21 jud_ind:exec_corrupt_index  2.348 * 0.012 3.124516e-06 6.757558e-06
## 22 jud_ind:exec_corrupt_index  2.348 * 0.489 1.433532e-03 1.213987e-03
## 23 jud_ind:exec_corrupt_index  2.348 * 0.703 2.196681e-02 8.927394e-03
## 24 jud_ind:exec_corrupt_index  2.348 * 0.855 1.367417e-01 5.865978e-02
## 25 jud_ind:exec_corrupt_index  2.348 * 0.971 4.129279e-01 1.817436e-01
##     statistic      p.value    s.value      conf.low    conf.high  df
## 1  10.5950557 3.141539e-26 84.7186592  7.707064e-01 1.120571e+00 Inf
## 2   1.9782563 4.789980e-02  4.3838364  2.552919e-03 5.496283e-01 Inf
## 3   2.9662620 3.014436e-03  8.3738963  2.181238e-02 1.067802e-01 Inf
## 4   2.4926309 1.268006e-02  6.3012948  4.260145e-03 3.561081e-02 Inf
## 5   1.6812588 9.271265e-02  3.4310900 -1.321126e-03 1.726023e-02 Inf
## 6   1.6086103 1.077016e-01  3.2148888 -1.526697e-02 1.550612e-01 Inf
## 7   3.8308712 1.276903e-04 12.9350631  2.497680e-02 7.730824e-02 Inf
## 8   6.6389096 3.160122e-11 34.8812289  3.127243e-02 5.747185e-02 Inf
## 9   5.8025950 6.529636e-09 27.1903503  2.654975e-02 5.363356e-02 Inf
## 10  4.1648122 3.116090e-05 14.9699036  1.963758e-02 5.455060e-02 Inf
## 11  1.5804534 1.140031e-01  3.1328554 -1.491091e-03 1.391024e-02 Inf
## 12  4.0205347 5.806621e-05 14.0719417  1.105634e-02 3.208937e-02 Inf
## 13  7.3472544 2.023196e-13 42.1684295  2.740080e-02 4.733832e-02 Inf
## 14  6.2116163 5.244237e-10 30.8285481  3.753356e-02 7.213866e-02 Inf
## 15  4.4546171 8.404304e-06 16.8604402  4.092374e-02 1.052285e-01 Inf
## 16  0.9376746 3.484117e-01  1.5211352 -4.854371e-04 1.375952e-03 Inf
## 17  2.4145418 1.575501e-02  5.9880452  1.593134e-03 1.533109e-02 Inf
## 18  4.8967910 9.741435e-07 19.9693623  1.865227e-02 4.354837e-02 Inf
## 19  4.2182634 2.461912e-05 15.3098615  4.068586e-02 1.113079e-01 Inf
## 20  3.0613154 2.203669e-03  8.8258770  5.191716e-02 2.367006e-01 Inf
## 21  0.4623736 6.438135e-01  0.6352854 -1.012005e-05 1.636909e-05 Inf
## 22  1.1808462 2.376638e-01  2.0730059 -9.458387e-04 3.812902e-03 Inf
## 23  2.4606069 1.387023e-02  6.1718650  4.469437e-03 3.946418e-02 Inf
## 24  2.3310978 1.974821e-02  5.6621347  2.177063e-02 2.517128e-01 Inf
## 25  2.2720348 2.308441e-02  5.4369374  5.671688e-02 7.691389e-01 Inf
plot_marginal_predictions(m2_glm, pred = "exec_corrupt_index", at = list(jud_ind = c(0, 0.5, 1)))
## [[1]]

Again, hard to read, but we can figure this issue later.

3 Count models: cabinet appointments, electoral support, parliamentary support

To confirm, let’s look at distributions. All left-skewed. More importantly, zero-inflated (in my opinion – we have to do diagnostics before deciding on this).

hist(subset_data$n_coopt)

hist(subset_data$n_cabinet)

hist(subset_data$n_elec)

hist(subset_data$n_parl)

3.1 Establish models: Poisson and Negative Binomial

outcomes <- c("n_cabinet", "n_coopt", "n_elec", "n_parl")

pois_models <- list()
nb_models   <- list()

for (y in outcomes) {
  f0 <- as.formula(paste0(y, " ~ jud_ind + exec_corrupt_index | country_name"))
  f1 <- as.formula(paste0(y, " ~ jud_ind * exec_corrupt_index | country_name"))
  f2 <- as.formula(paste0(y, " ~ jud_ind * exec_corrupt_index + polyarchy | country_name"))

  pois_models[[paste0(y, "_p0")]] <- feglm(f0, data = subset_data, family = poisson(), vcov = "cluster")
  pois_models[[paste0(y, "_p1")]] <- feglm(f1, data = subset_data, family = poisson(), vcov = "cluster")
  pois_models[[paste0(y, "_p2")]] <- feglm(f2, data = subset_data, family = poisson(), vcov = "cluster")

  nb_models[[paste0(y, "_nb0")]] <- fenegbin(f0, data = subset_data, vcov = "cluster")
  nb_models[[paste0(y, "_nb1")]] <- fenegbin(f1, data = subset_data, vcov = "cluster")
  nb_models[[paste0(y, "_nb2")]] <- fenegbin(f2, data = subset_data, vcov = "cluster")
}

3.1.1 Count of total co-opations

Poisson and negative binomial models for total number of co-optations are not substantively differnet. Still, corruption is significant across our models. Effect size differs. So, probably negative binomial’s fit is better than Poisson (see BIC scores).

etable(pois_models$n_coopt_p0, pois_models$n_coopt_p1, pois_models$n_coopt_p2,
       nb_models$n_coopt_nb0, nb_models$n_coopt_nb1, nb_models$n_coopt_nb2)
##                              pois_models$..0 pois_models$n..1 pois_models$n..2
## Dependent Var.:                      n_coopt          n_coopt          n_coopt
##                                                                               
## jud_ind                      0.0409 (0.1136) -0.4599 (0.7784) -0.1295 (0.8510)
## exec_corrupt_index           3.269** (1.014)  3.546** (1.352)   2.825* (1.399)
## jud_ind x exec_corrupt_index                   0.6898 (1.093)   0.5880 (1.085)
## polyarchy                                                      -3.202* (1.527)
## Fixed-Effects:               --------------- ---------------- ----------------
## country_name                             Yes              Yes              Yes
## ____________________________ _______________ ________________ ________________
## Family                               Poisson          Poisson          Poisson
## S.E.: Clustered              by: country_n.. by: country_name by: country_name
## Observations                           1,230            1,230            1,229
## Squared Cor.                         0.06310          0.06433          0.06412
## Pseudo R2                            0.10819          0.10877          0.11446
## BIC                                  1,399.5          1,405.9          1,405.7
## Over-dispersion                           --               --               --
## 
##                              nb_models$n_..0 nb_models$n_..1 nb_models$n_..2
## Dependent Var.:                      n_coopt         n_coopt         n_coopt
##                                                                             
## jud_ind                      0.0058 (0.1400) -0.1852 (1.021)  0.2478 (1.068)
## exec_corrupt_index           4.056** (1.258) 4.130** (1.545)  3.054. (1.619)
## jud_ind x exec_corrupt_index                  0.2625 (1.417)  0.1925 (1.357)
## polyarchy                                                    -5.102* (2.015)
## Fixed-Effects:               --------------- --------------- ---------------
## country_name                             Yes             Yes             Yes
## ____________________________ _______________ _______________ _______________
## Family                             Neg. Bin.       Neg. Bin.       Neg. Bin.
## S.E.: Clustered              by: country_n.. by: country_n.. by: country_n..
## Observations                           1,230           1,230           1,229
## Squared Cor.                         0.05824         0.05863         0.05192
## Pseudo R2                            0.05926         0.05930         0.06634
## BIC                                  1,248.7         1,255.8         1,255.6
## Over-dispersion                      0.15909         0.15930         0.16132
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.1.2 Count of cabinet appointments

Substantively similar results!

etable(pois_models$n_cabinet_p0, pois_models$n_cabinet_p1, pois_models$n_cabinet_p2,
       nb_models$n_cabinet_nb0, nb_models$n_cabinet_nb1, nb_models$n_cabinet_nb2)
##                              pois_models$..0 pois_models$n_..1
## Dependent Var.:                    n_cabinet         n_cabinet
##                                                               
## jud_ind                      0.0655 (0.2383) -2.565** (0.8400)
## exec_corrupt_index            2.920. (1.654)    4.253* (1.676)
## jud_ind x exec_corrupt_index                   3.641** (1.253)
## polyarchy                                                     
## Fixed-Effects:               --------------- -----------------
## country_name                             Yes               Yes
## ____________________________ _______________ _________________
## Family                               Poisson           Poisson
## S.E.: Clustered              by: country_n..  by: country_name
## Observations                             870               870
## Squared Cor.                         0.06475           0.07248
## Pseudo R2                            0.12151           0.13339
## BIC                                   794.16            793.03
## Over-dispersion                           --                --
## 
##                              pois_models$n_..2 nb_models$n_..0 nb_models$n_c..1
## Dependent Var.:                      n_cabinet       n_cabinet        n_cabinet
##                                                                                
## jud_ind                      -2.438** (0.8112) 0.1195 (0.2796)  -2.773* (1.083)
## exec_corrupt_index              3.670* (1.507)  4.367* (1.727) 5.521*** (1.673)
## jud_ind x exec_corrupt_index   3.726** (1.212)                  3.952** (1.524)
## polyarchy                       -2.627 (1.833)                                 
## Fixed-Effects:               ----------------- --------------- ----------------
## country_name                               Yes             Yes              Yes
## ____________________________ _________________ _______________ ________________
## Family                                 Poisson       Neg. Bin.        Neg. Bin.
## S.E.: Clustered               by: country_name by: country_n.. by: country_name
## Observations                               870             870              870
## Squared Cor.                           0.07431         0.05529          0.06510
## Pseudo R2                              0.13708         0.07328          0.08043
## BIC                                     797.35          726.88           729.66
## Over-dispersion                             --         0.16150          0.17398
## 
##                              nb_models$n_..2
## Dependent Var.:                    n_cabinet
##                                             
## jud_ind                      -2.534* (1.092)
## exec_corrupt_index           4.818** (1.616)
## jud_ind x exec_corrupt_index 4.026** (1.532)
## polyarchy                    -3.733. (2.203)
## Fixed-Effects:               ---------------
## country_name                             Yes
## ____________________________ _______________
## Family                             Neg. Bin.
## S.E.: Clustered              by: country_n..
## Observations                             870
## Squared Cor.                         0.06085
## Pseudo R2                            0.08466
## BIC                                   734.07
## Over-dispersion                      0.17353
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.1.3 Count of electoral support

Interestingly, we do not find any support for number of electoral support as a dependent variable. I guess this is a super rare case? Or, something else is going on (look at the N).

etable(pois_models$n_elec_p0, pois_models$n_elec_p1, pois_models$n_elec_p2,
       nb_models$n_elec_nb0, nb_models$n_elec_nb1, nb_models$n_elec_nb2)
##                              pois_models$n..0 pois_models$..1 pois_models..2
## Dependent Var.:                        n_elec          n_elec         n_elec
##                                                                             
## jud_ind                      -0.0401 (0.2580)  0.6536 (1.188) 0.9667 (1.284)
## exec_corrupt_index              1.677 (1.579)   1.726 (1.368)  1.176 (1.534)
## jud_ind x exec_corrupt_index                  -0.9427 (1.636) -1.010 (1.559)
## polyarchy                                                     -2.977 (3.181)
## Fixed-Effects:               ---------------- --------------- --------------
## country_name                              Yes             Yes            Yes
## ____________________________ ________________ _______________ ______________
## Family                                Poisson         Poisson        Poisson
## S.E.: Clustered              by: country_name by: country_n.. by: country_..
## Observations                              450             450            450
## Squared Cor.                          0.09339         0.09159        0.09448
## Pseudo R2                             0.14275         0.14391        0.14830
## BIC                                    388.85          394.57         399.22
## Over-dispersion                            --              --             --
## 
##                              nb_models$n_e..0 nb_models$n..1 nb_models$n..2
## Dependent Var.:                        n_elec         n_elec         n_elec
##                                                                            
## jud_ind                      -0.0404 (0.2348)  1.250 (1.626)  1.632 (1.746)
## exec_corrupt_index              2.118 (1.908)  1.994 (1.869)  1.348 (2.036)
## jud_ind x exec_corrupt_index                  -1.793 (2.294) -1.894 (2.202)
## polyarchy                                                    -3.647 (3.745)
## Fixed-Effects:               ---------------- -------------- --------------
## country_name                              Yes            Yes            Yes
## ____________________________ ________________ ______________ ______________
## Family                              Neg. Bin.      Neg. Bin.      Neg. Bin.
## S.E.: Clustered              by: country_name by: country_.. by: country_..
## Observations                              450            450            450
## Squared Cor.                          0.09183        0.08840        0.08855
## Pseudo R2                             0.07332        0.07578        0.08022
## BIC                                    356.42         361.86         366.75
## Over-dispersion                       0.15677        0.15660        0.15667
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.1.4 Count of parliamentary support

Again, number of parliamentary support as a dependent variable is not significant across models. I am guessing that this might be a rare case as well.

etable(pois_models$n_parl_p0, pois_models$n_parl_p1, pois_models$n_parl_p2,
       nb_models$n_parl_nb0, nb_models$n_parl_nb1, nb_models$n_parl_nb2)
##                              pois_models$n..0 pois_models$..1 pois_models$..2
## Dependent Var.:                        n_parl          n_parl          n_parl
##                                                                              
## jud_ind                      -0.0219 (0.1102)  0.6671 (1.125)   1.294 (1.246)
## exec_corrupt_index             3.827* (1.753)  3.530. (1.924)   2.766 (2.037)
## jud_ind x exec_corrupt_index                  -0.9501 (1.542)  -1.283 (1.534)
## polyarchy                                                     -4.762. (2.512)
## Fixed-Effects:               ---------------- --------------- ---------------
## country_name                              Yes             Yes             Yes
## ____________________________ ________________ _______________ _______________
## Family                                Poisson         Poisson         Poisson
## S.E.: Clustered              by: country_name by: country_n.. by: country_n..
## Observations                              750             750             749
## Squared Cor.                          0.06833         0.06788         0.07407
## Pseudo R2                             0.11276         0.11385         0.12251
## BIC                                    804.67          810.52          810.74
## Over-dispersion                            --              --              --
## 
##                              nb_models$n_p..0 nb_models$n..1 nb_models$n_..2
## Dependent Var.:                        n_parl         n_parl          n_parl
##                                                                             
## jud_ind                      -0.0045 (0.1146) 0.9212 (1.176)   1.410 (1.233)
## exec_corrupt_index             4.095* (1.791) 3.800* (1.923)   2.837 (2.079)
## jud_ind x exec_corrupt_index                  -1.279 (1.623)  -1.408 (1.492)
## polyarchy                                                    -5.291. (3.085)
## Fixed-Effects:               ---------------- -------------- ---------------
## country_name                              Yes            Yes             Yes
## ____________________________ ________________ ______________ _______________
## Family                              Neg. Bin.      Neg. Bin.       Neg. Bin.
## S.E.: Clustered              by: country_name by: country_.. by: country_n..
## Observations                              750            750             749
## Squared Cor.                          0.06489        0.06488         0.07073
## Pseudo R2                             0.07011        0.07150         0.07826
## BIC                                    744.94         750.71          753.00
## Over-dispersion                       0.23544        0.23639         0.24470
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4 Diagnostics tests

Let’s perform overdispersion test to see which model is the best. With overdispersion, we compare the residual deviance to the degrees of freedom for the Poisson model. If the ratio is much larger than 1, you have overdispersion, favoring the NB model.

check_overdispersion(pois_models$n_cabinet_p2, nb_models$n_cabinet_nb2)
## Warning in insight::get_response(x, verbose = FALSE) - yhat: longer object
## length is not a multiple of shorter object length
## Warning in (insight::get_response(x, verbose = FALSE) - yhat)/sqrt(yhat):
## longer object length is not a multiple of shorter object length
## # Overdispersion test
## 
##        dispersion ratio =    4.219
##   Pearson's Chi-Squared = 3653.434
##                 p-value =  < 0.001
## Overdispersion detected.
check_overdispersion(pois_models$n_coopt_p2, nb_models$n_coopt_nb2)
## Warning in insight::get_response(x, verbose = FALSE) - yhat: longer object
## length is not a multiple of shorter object length
## Warning in insight::get_response(x, verbose = FALSE) - yhat: longer object
## length is not a multiple of shorter object length
## # Overdispersion test
## 
##        dispersion ratio =    4.287
##   Pearson's Chi-Squared = 5252.124
##                 p-value =  < 0.001
## Overdispersion detected.
check_overdispersion(pois_models$n_elec_p2, nb_models$n_elec_nb2)
## Warning in insight::get_response(x, verbose = FALSE) - yhat: longer object
## length is not a multiple of shorter object length
## Warning in insight::get_response(x, verbose = FALSE) - yhat: longer object
## length is not a multiple of shorter object length
## # Overdispersion test
## 
##        dispersion ratio =    3.242
##   Pearson's Chi-Squared = 1446.047
##                 p-value =  < 0.001
## Overdispersion detected.
check_overdispersion(pois_models$n_parl_p2, nb_models$n_parl_nb2)
## Warning in insight::get_response(x, verbose = FALSE) - yhat: longer object
## length is not a multiple of shorter object length
## Warning in insight::get_response(x, verbose = FALSE) - yhat: longer object
## length is not a multiple of shorter object length
## # Overdispersion test
## 
##        dispersion ratio =    3.783
##   Pearson's Chi-Squared = 2818.230
##                 p-value =  < 0.001
## Overdispersion detected.
AIC(pois_models$n_cabinet_p2, nb_models$n_cabinet_nb2)
## [1] 639.9855 576.7087
AIC(pois_models$n_coopt_p2, nb_models$n_coopt_nb2)
## [1] 1175.585 1025.487
AIC(pois_models$n_elec_p2, nb_models$n_elec_nb2)
## [1] 321.1437 288.6792
AIC(pois_models$n_parl_p2, nb_models$n_parl_nb2)
## [1] 676.7920 619.0517

These tests confirm that negative binomial performs better – almost always!

5 Zero-inflated models

I suspect that zero-inflated models might be a better suit here. So, I am going to run them as well. I will be running zero-inflated models, and zero-inflated negative binomial models.

5.1 Establish models

# Manually create country fixed effects
subset_data <- subset_data |> mutate(country_fe = factor(country_name))

# outcome vars
outcomes <- c("n_cabinet", "n_coopt", "n_elec", "n_parl")
zip_models <- list()

for (y in outcomes) {
  
  f0 <- as.formula(paste0(
    y, " ~ jud_ind + exec_corrupt_index + country_fe | 
          jud_ind + exec_corrupt_index"
  ))
  
  f1 <- as.formula(paste0(
    y, " ~ jud_ind * exec_corrupt_index + country_fe | 
          jud_ind * exec_corrupt_index"
  ))
  
  f2 <- as.formula(paste0(
    y, " ~ jud_ind * exec_corrupt_index + polyarchy + country_fe | 
          jud_ind * exec_corrupt_index + polyarchy"
  ))
  
  zip_models[[paste0(y, "_zip0")]] <- zeroinfl(f0, data = subset_data, dist = "poisson")
  zip_models[[paste0(y, "_zip1")]] <- zeroinfl(f1, data = subset_data, dist = "poisson")
  zip_models[[paste0(y, "_zip2")]] <- zeroinfl(f2, data = subset_data, dist = "poisson")
}

Let’s check the results.

For all models, none of our variables are statistically significant!

# Total cooptation
summary(zip_models$n_coopt_zip0)
## 
## Call:
## zeroinfl(formula = f0, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.355e-01 -2.806e-01 -1.700e-01 -4.107e-05  6.611e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -2.934e+00  1.314e+00  -2.232
## jud_ind                                     1.698e-01  2.144e-01   0.792
## exec_corrupt_index                          3.688e+00  1.492e+00   2.472
## country_feAlgeria                           9.994e-01  1.041e+00   0.960
## country_feAngola                           -1.839e+01  3.756e+03  -0.005
## country_feArmenia                           7.385e-01  9.365e-01   0.789
## country_feAzerbaijan                       -1.337e+00  1.232e+00  -1.085
## country_feBangladesh                       -6.967e-01  1.158e+00  -0.602
## country_feBelarus                           6.195e-03  1.048e+00   0.006
## country_feBurkina Faso                      8.766e-01  9.490e-01   0.924
## country_feCambodia                         -7.865e-01  1.113e+00  -0.706
## country_feCameroon                         -1.379e+00  1.242e+00  -1.110
## country_feCentral African Republic         -6.966e-01  1.230e+00  -0.566
## country_feCroatia                          -1.696e+01  4.084e+03  -0.004
## country_feDemocratic Republic of the Congo  4.386e-01  1.043e+00   0.421
## country_feDjibouti                          4.145e-02  1.124e+00   0.037
## country_feEgypt                             1.407e+00  1.037e+00   1.357
## country_feEquatorial Guinea                -1.336e+00  1.291e+00  -1.035
## country_feEthiopia                         -1.701e+01  4.542e+03  -0.004
## country_feGabon                            -2.347e-01  9.656e-01  -0.243
## country_feGeorgia                           2.475e-01  9.383e-01   0.264
## country_feGhana                            -1.297e+00  1.357e+00  -0.956
## country_feGuinea                           -2.087e+00  1.428e+00  -1.461
## country_feGuinea-Bissau                    -2.319e-01  1.005e+00  -0.231
## country_feGuyana                           -1.756e+01  4.170e+03  -0.004
## country_feHaiti                             6.526e-01  9.841e-01   0.663
## country_feIvory Coast                      -1.228e+00  1.359e+00  -0.904
## country_feKazakhstan                        3.990e-01  1.091e+00   0.366
## country_feKenya                            -1.802e+01  4.100e+03  -0.004
## country_feKyrgyzstan                        1.042e+00  9.467e-01   1.101
## country_feLesotho                          -1.717e+01  4.523e+03  -0.004
## country_feMadagascar                       -1.092e+00  1.415e+00  -0.772
## country_feMalaysia                          1.478e+00  8.605e-01   1.717
## country_feMauritania                        8.905e-01  1.070e+00   0.832
## country_feMexico                           -1.729e+01  4.266e+03  -0.004
## country_feMozambique                       -1.748e+01  4.366e+03  -0.004
## country_feNamibia                          -1.664e+01  5.073e+03  -0.003
## country_feNicaragua                        -1.780e+01  3.672e+03  -0.005
## country_feNiger                             7.797e-01  1.030e+00   0.757
## country_feNigeria                          -1.949e+00  1.362e+00  -1.431
## country_fePanama                           -1.713e+01  4.589e+03  -0.004
## country_feParaguay                         -1.832e+01  3.919e+03  -0.005
## country_fePeru                             -1.720e+01  3.968e+03  -0.004
## country_fePhilippines                      -1.777e+01  4.222e+03  -0.004
## country_feRussia                            1.370e+00  9.742e-01   1.406
## country_feRwanda                            2.252e+00  1.158e+00   1.946
## country_feSenegal                           5.826e-01  1.480e+00   0.394
## country_feSerbia                           -8.616e-01  1.164e+00  -0.740
## country_feSierra Leone                     -3.443e-01  1.226e+00  -0.281
## country_feSingapore                        -1.559e+01  5.378e+03  -0.003
## country_feSouth Korea                      -1.652e+01  4.642e+03  -0.004
## country_feSri Lanka                         7.133e-01  9.885e-01   0.722
## country_feTaiwan                           -1.640e+01  4.996e+03  -0.003
## country_feTajikistan                       -8.630e-01  1.125e+00  -0.767
## country_feTanzania                         -1.677e+01  4.811e+03  -0.003
## country_feThe Gambia                       -1.783e+01  4.078e+03  -0.004
## country_feTogo                             -9.755e-01  1.186e+00  -0.822
## country_feTürkiye                          -1.764e+01  4.146e+03  -0.004
## country_feTurkmenistan                     -2.045e+00  1.522e+00  -1.343
## country_feUganda                           -3.455e-01  1.021e+00  -0.339
## country_feUzbekistan                        4.333e-02  1.185e+00   0.037
## country_feVenezuela                        -5.826e-01  1.239e+00  -0.470
## country_feZambia                           -1.682e+01  4.410e+03  -0.004
## country_feZimbabwe                         -6.982e-01  1.187e+00  -0.588
##                                            Pr(>|z|)  
## (Intercept)                                  0.0256 *
## jud_ind                                      0.4285  
## exec_corrupt_index                           0.0134 *
## country_feAlgeria                            0.3370  
## country_feAngola                             0.9961  
## country_feArmenia                            0.4303  
## country_feAzerbaijan                         0.2777  
## country_feBangladesh                         0.5474  
## country_feBelarus                            0.9953  
## country_feBurkina Faso                       0.3556  
## country_feCambodia                           0.4799  
## country_feCameroon                           0.2671  
## country_feCentral African Republic           0.5712  
## country_feCroatia                            0.9967  
## country_feDemocratic Republic of the Congo   0.6740  
## country_feDjibouti                           0.9706  
## country_feEgypt                              0.1748  
## country_feEquatorial Guinea                  0.3008  
## country_feEthiopia                           0.9970  
## country_feGabon                              0.8079  
## country_feGeorgia                            0.7919  
## country_feGhana                              0.3389  
## country_feGuinea                             0.1440  
## country_feGuinea-Bissau                      0.8175  
## country_feGuyana                             0.9966  
## country_feHaiti                              0.5073  
## country_feIvory Coast                        0.3662  
## country_feKazakhstan                         0.7146  
## country_feKenya                              0.9965  
## country_feKyrgyzstan                         0.2709  
## country_feLesotho                            0.9970  
## country_feMadagascar                         0.4403  
## country_feMalaysia                           0.0859 .
## country_feMauritania                         0.4052  
## country_feMexico                             0.9968  
## country_feMozambique                         0.9968  
## country_feNamibia                            0.9974  
## country_feNicaragua                          0.9961  
## country_feNiger                              0.4493  
## country_feNigeria                            0.1524  
## country_fePanama                             0.9970  
## country_feParaguay                           0.9963  
## country_fePeru                               0.9965  
## country_fePhilippines                        0.9966  
## country_feRussia                             0.1596  
## country_feRwanda                             0.0517 .
## country_feSenegal                            0.6939  
## country_feSerbia                             0.4592  
## country_feSierra Leone                       0.7789  
## country_feSingapore                          0.9977  
## country_feSouth Korea                        0.9972  
## country_feSri Lanka                          0.4705  
## country_feTaiwan                             0.9974  
## country_feTajikistan                         0.4429  
## country_feTanzania                           0.9972  
## country_feThe Gambia                         0.9965  
## country_feTogo                               0.4109  
## country_feTürkiye                            0.9966  
## country_feTurkmenistan                       0.1791  
## country_feUganda                             0.7350  
## country_feUzbekistan                         0.9708  
## country_feVenezuela                          0.6382  
## country_feZambia                             0.9970  
## country_feZimbabwe                           0.5562  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                    Estimate Std. Error z value Pr(>|z|)   
## (Intercept)          1.9737     0.7293   2.706   0.0068 **
## jud_ind              0.1999     0.1364   1.466   0.1427   
## exec_corrupt_index  -0.4031     0.9563  -0.422   0.6734   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 43 
## Log-likelihood:  -450 on 67 Df
summary(zip_models$n_coopt_zip1)
## 
## Call:
## zeroinfl(formula = f1, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.286e-01 -2.783e-01 -1.741e-01 -4.591e-05  6.574e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                  -3.89417    1.48531  -2.622
## jud_ind                                      -1.76084    1.21930  -1.444
## exec_corrupt_index                            5.44904    1.91947   2.839
## country_feAlgeria                             0.46476    1.21797   0.382
## country_feAngola                            -18.30232 3249.68574  -0.006
## country_feArmenia                             0.36975    1.12567   0.328
## country_feAzerbaijan                         -1.27653    1.36243  -0.937
## country_feBangladesh                         -0.91522    1.29967  -0.704
## country_feBelarus                            -0.46744    1.23114  -0.380
## country_feBurkina Faso                        0.71440    1.08597   0.658
## country_feCambodia                           -0.81492    1.26525  -0.644
## country_feCameroon                           -1.29710    1.37426  -0.944
## country_feCentral African Republic           -0.88825    1.35923  -0.653
## country_feCroatia                           -16.84510 3628.11571  -0.005
## country_feDemocratic Republic of the Congo   -0.11469    1.24423  -0.092
## country_feDjibouti                           -0.32049    1.26811  -0.253
## country_feEgypt                               2.06102    1.14457   1.801
## country_feEquatorial Guinea                  -1.04165    1.43190  -0.727
## country_feEthiopia                          -17.04094 3777.37643  -0.005
## country_feGabon                              -0.69854    1.16724  -0.598
## country_feGeorgia                            -0.28058    1.17380  -0.239
## country_feGhana                              -1.65207    1.48779  -1.110
## country_feGuinea                             -2.01006    1.54656  -1.300
## country_feGuinea-Bissau                      -0.73927    1.20931  -0.611
## country_feGuyana                            -17.49128 3703.19909  -0.005
## country_feHaiti                               0.33336    1.14245   0.292
## country_feIvory Coast                        -1.53867    1.50498  -1.022
## country_feKazakhstan                          0.63663    1.22958   0.518
## country_feKenya                             -17.98749 3475.09168  -0.005
## country_feKyrgyzstan                          0.85422    1.11626   0.765
## country_feLesotho                           -16.93659 4706.77930  -0.004
## country_feMadagascar                         -1.29786    1.51633  -0.856
## country_feMalaysia                            1.19423    1.03806   1.150
## country_feMauritania                          0.41020    1.24055   0.331
## country_feMexico                            -17.14485 3950.13900  -0.004
## country_feMozambique                        -17.38346 3986.93058  -0.004
## country_feNamibia                           -15.98383 8137.06164  -0.002
## country_feNicaragua                         -17.66662 3255.14403  -0.005
## country_feNiger                               0.62445    1.16321   0.537
## country_feNigeria                            -2.62851    1.55694  -1.688
## country_fePanama                            -16.98543 4488.99139  -0.004
## country_feParaguay                          -18.33420 3086.61257  -0.006
## country_fePeru                              -17.05179 3477.77361  -0.005
## country_fePhilippines                       -17.71883 3642.70089  -0.005
## country_feRussia                              0.92221    1.16649   0.791
## country_feRwanda                              1.49094    1.30245   1.145
## country_feSenegal                             0.55853    1.53732   0.363
## country_feSerbia                             -1.00379    1.30704  -0.768
## country_feSierra Leone                       -0.67561    1.35255  -0.500
## country_feSingapore                         -15.64198 4670.11417  -0.003
## country_feSouth Korea                       -16.14091 5143.82882  -0.003
## country_feSri Lanka                           0.58360    1.13463   0.514
## country_feTaiwan                            -15.93853 5217.10252  -0.003
## country_feTajikistan                         -0.71828    1.26239  -0.569
## country_feTanzania                          -16.41138 5868.90883  -0.003
## country_feThe Gambia                        -17.78995 3472.78674  -0.005
## country_feTogo                               -1.22424    1.32010  -0.927
## country_feTürkiye                           -17.53361 3561.84162  -0.005
## country_feTurkmenistan                       -1.44172    1.67255  -0.862
## country_feUganda                             -0.69797    1.18550  -0.589
## country_feUzbekistan                          0.58176    1.37132   0.424
## country_feVenezuela                          -0.02365    1.45060  -0.016
## country_feZambia                            -16.62237 4514.57122  -0.004
## country_feZimbabwe                           -1.16313    1.37587  -0.845
## jud_ind:exec_corrupt_index                    2.65092    1.65771   1.599
##                                            Pr(>|z|)   
## (Intercept)                                 0.00875 **
## jud_ind                                     0.14870   
## exec_corrupt_index                          0.00453 **
## country_feAlgeria                           0.70277   
## country_feAngola                            0.99551   
## country_feArmenia                           0.74256   
## country_feAzerbaijan                        0.34878   
## country_feBangladesh                        0.48131   
## country_feBelarus                           0.70418   
## country_feBurkina Faso                      0.51063   
## country_feCambodia                          0.51953   
## country_feCameroon                          0.34524   
## country_feCentral African Republic          0.51344   
## country_feCroatia                           0.99630   
## country_feDemocratic Republic of the Congo  0.92656   
## country_feDjibouti                          0.80048   
## country_feEgypt                             0.07175 . 
## country_feEquatorial Guinea                 0.46695   
## country_feEthiopia                          0.99640   
## country_feGabon                             0.54954   
## country_feGeorgia                           0.81108   
## country_feGhana                             0.26682   
## country_feGuinea                            0.19371   
## country_feGuinea-Bissau                     0.54099   
## country_feGuyana                            0.99623   
## country_feHaiti                             0.77044   
## country_feIvory Coast                       0.30660   
## country_feKazakhstan                        0.60463   
## country_feKenya                             0.99587   
## country_feKyrgyzstan                        0.44412   
## country_feLesotho                           0.99713   
## country_feMadagascar                        0.39204   
## country_feMalaysia                          0.24996   
## country_feMauritania                        0.74090   
## country_feMexico                            0.99654   
## country_feMozambique                        0.99652   
## country_feNamibia                           0.99843   
## country_feNicaragua                         0.99567   
## country_feNiger                             0.59138   
## country_feNigeria                           0.09136 . 
## country_fePanama                            0.99698   
## country_feParaguay                          0.99526   
## country_fePeru                              0.99609   
## country_fePhilippines                       0.99612   
## country_feRussia                            0.42918   
## country_feRwanda                            0.25232   
## country_feSenegal                           0.71637   
## country_feSerbia                            0.44250   
## country_feSierra Leone                      0.61742   
## country_feSingapore                         0.99733   
## country_feSouth Korea                       0.99750   
## country_feSri Lanka                         0.60701   
## country_feTaiwan                            0.99756   
## country_feTajikistan                        0.56937   
## country_feTanzania                          0.99777   
## country_feThe Gambia                        0.99591   
## country_feTogo                              0.35372   
## country_feTürkiye                           0.99607   
## country_feTurkmenistan                      0.38869   
## country_feUganda                            0.55602   
## country_feUzbekistan                        0.67140   
## country_feVenezuela                         0.98699   
## country_feZambia                            0.99706   
## country_feZimbabwe                          0.39790   
## jud_ind:exec_corrupt_index                  0.10979   
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  1.3870     1.0911   1.271    0.204
## jud_ind                     -0.3326     0.8789  -0.378    0.705
## exec_corrupt_index           0.3816     1.4475   0.264    0.792
## jud_ind:exec_corrupt_index   0.7202     1.1625   0.620    0.536
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 44 
## Log-likelihood: -448.6 on 69 Df
summary(zip_models$n_coopt_zip2)
## 
## Call:
## zeroinfl(formula = f2, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.302e-01 -2.760e-01 -1.706e-01 -3.328e-05  5.998e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                  -1.71848    1.94713  -0.883
## jud_ind                                      -0.90841    1.34476  -0.676
## exec_corrupt_index                            4.17616    1.98822   2.100
## polyarchy                                    -4.83014    2.68863  -1.797
## country_feAlgeria                             1.22375    1.02788   1.191
## country_feAngola                            -18.68220 4001.26627  -0.005
## country_feArmenia                             1.05974    0.88104   1.203
## country_feAzerbaijan                         -0.93669    1.18527  -0.790
## country_feBangladesh                         -0.60434    1.06379  -0.568
## country_feBelarus                             0.26481    1.03760   0.255
## country_feBurkina Faso                        1.58557    0.92508   1.714
## country_feCambodia                           -0.14446    1.07838  -0.134
## country_feCameroon                           -0.66290    1.20524  -0.550
## country_feCentral African Republic           -0.25219    1.18634  -0.213
## country_feCroatia                           -16.53232 4329.00029  -0.004
## country_feDemocratic Republic of the Congo    0.40584    0.96844   0.419
## country_feDjibouti                           -0.17616    1.06715  -0.165
## country_feEgypt                               0.92315    1.29852   0.711
## country_feEquatorial Guinea                  -0.80817    1.28713  -0.628
## country_feEthiopia                          -17.62331 4696.01539  -0.004
## country_feGabon                              -0.36872    0.89545  -0.412
## country_feGeorgia                             0.31432    0.89052   0.353
## country_feGhana                              -1.49599    1.28264  -1.166
## country_feGuinea                             -1.54161    1.40252  -1.099
## country_feGuinea-Bissau                      -0.07786    0.97383  -0.080
## country_feGuyana                            -17.41243 4837.64558  -0.004
## country_feHaiti                               1.11871    0.94574   1.183
## country_feIvory Coast                        -1.13965    1.35229  -0.843
## country_feKazakhstan                          1.22904    1.05816   1.161
## country_feKenya                             -18.01212 4525.35882  -0.004
## country_feKyrgyzstan                          1.49290    0.88115   1.694
## country_feLesotho                           -17.26255 4874.19132  -0.004
## country_feMadagascar                         -0.59938    1.35631  -0.442
## country_feMalaysia                            1.37205    0.77804   1.763
## country_feMauritania                          1.14445    1.04022   1.100
## country_feMexico                            -16.87190 5258.50553  -0.003
## country_feMozambique                        -17.60943 5038.86763  -0.003
## country_feNamibia                           -16.05354 8621.77542  -0.002
## country_feNicaragua                         -16.98721 4183.61214  -0.004
## country_feNiger                               0.90214    0.91625   0.985
## country_feNigeria                            -2.06450    1.35188  -1.527
## country_fePanama                            -16.26807 5945.87396  -0.003
## country_feParaguay                          -17.87780 4459.12889  -0.004
## country_fePeru                              -16.93496 4166.44228  -0.004
## country_fePhilippines                       -17.56476 4935.43365  -0.004
## country_feRussia                              1.68727    0.96990   1.740
## country_feRwanda                              1.29063    1.17239   1.101
## country_feSenegal                             1.62579    1.47746   1.100
## country_feSerbia                             -0.57272    1.11062  -0.516
## country_feSierra Leone                       -0.06225    1.17626  -0.053
## country_feSingapore                         -16.06231 5739.94013  -0.003
## country_feSouth Korea                       -15.64802 6695.73365  -0.002
## country_feSri Lanka                           1.05804    0.92529   1.143
## country_feTaiwan                            -15.95335 5580.27961  -0.003
## country_feTajikistan                         -0.51761    1.06534  -0.486
## country_feTanzania                          -16.87334 6515.66808  -0.003
## country_feThe Gambia                        -18.12821 4363.59856  -0.004
## country_feTogo                               -0.49681    1.15121  -0.432
## country_feTürkiye                           -17.69827 4544.00717  -0.004
## country_feTurkmenistan                       -1.26167    1.59124  -0.793
## country_feUganda                             -0.52745    0.95880  -0.550
## country_feUzbekistan                          0.78361    1.24838   0.628
## country_feVenezuela                           1.19271    1.44593   0.825
## country_feZambia                            -16.91098 5587.58161  -0.003
## country_feZimbabwe                           -1.10078    1.15473  -0.953
## jud_ind:exec_corrupt_index                    1.82818    1.76911   1.033
##                                            Pr(>|z|)  
## (Intercept)                                  0.3775  
## jud_ind                                      0.4993  
## exec_corrupt_index                           0.0357 *
## polyarchy                                    0.0724 .
## country_feAlgeria                            0.2338  
## country_feAngola                             0.9963  
## country_feArmenia                            0.2290  
## country_feAzerbaijan                         0.4294  
## country_feBangladesh                         0.5700  
## country_feBelarus                            0.7986  
## country_feBurkina Faso                       0.0865 .
## country_feCambodia                           0.8934  
## country_feCameroon                           0.5823  
## country_feCentral African Republic           0.8317  
## country_feCroatia                            0.9970  
## country_feDemocratic Republic of the Congo   0.6752  
## country_feDjibouti                           0.8689  
## country_feEgypt                              0.4771  
## country_feEquatorial Guinea                  0.5301  
## country_feEthiopia                           0.9970  
## country_feGabon                              0.6805  
## country_feGeorgia                            0.7241  
## country_feGhana                              0.2435  
## country_feGuinea                             0.2717  
## country_feGuinea-Bissau                      0.9363  
## country_feGuyana                             0.9971  
## country_feHaiti                              0.2369  
## country_feIvory Coast                        0.3994  
## country_feKazakhstan                         0.2454  
## country_feKenya                              0.9968  
## country_feKyrgyzstan                         0.0902 .
## country_feLesotho                            0.9972  
## country_feMadagascar                         0.6585  
## country_feMalaysia                           0.0778 .
## country_feMauritania                         0.2712  
## country_feMexico                             0.9974  
## country_feMozambique                         0.9972  
## country_feNamibia                            0.9985  
## country_feNicaragua                          0.9968  
## country_feNiger                              0.3248  
## country_feNigeria                            0.1267  
## country_fePanama                             0.9978  
## country_feParaguay                           0.9968  
## country_fePeru                               0.9968  
## country_fePhilippines                        0.9972  
## country_feRussia                             0.0819 .
## country_feRwanda                             0.2710  
## country_feSenegal                            0.2712  
## country_feSerbia                             0.6061  
## country_feSierra Leone                       0.9578  
## country_feSingapore                          0.9978  
## country_feSouth Korea                        0.9981  
## country_feSri Lanka                          0.2528  
## country_feTaiwan                             0.9977  
## country_feTajikistan                         0.6271  
## country_feTanzania                           0.9979  
## country_feThe Gambia                         0.9967  
## country_feTogo                               0.6661  
## country_feTürkiye                            0.9969  
## country_feTurkmenistan                       0.4278  
## country_feUganda                             0.5822  
## country_feUzbekistan                         0.5302  
## country_feVenezuela                          0.4094  
## country_feZambia                             0.9976  
## country_feZimbabwe                           0.3404  
## jud_ind:exec_corrupt_index                   0.3014  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  1.7022     1.2341   1.379    0.168
## jud_ind                     -0.2127     0.9064  -0.235    0.814
## exec_corrupt_index           0.3570     1.5025   0.238    0.812
## polyarchy                   -1.1846     1.9097  -0.620    0.535
## jud_ind:exec_corrupt_index   0.5066     1.1860   0.427    0.669
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 48 
## Log-likelihood: -446.7 on 71 Df
# Cabinet
summary(zip_models$n_cabinet_zip0)
## 
## Call:
## zeroinfl(formula = f0, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.726e-01 -2.038e-01 -4.445e-05 -1.506e-05  6.855e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                 1.592e+00  2.428e+00   0.656
## jud_ind                                     1.494e+00  4.311e-01   3.465
## exec_corrupt_index                         -5.585e+00  3.141e+00  -1.778
## country_feAlgeria                           3.054e+00  1.642e+00   1.860
## country_feAngola                           -1.821e+01  2.292e+04  -0.001
## country_feArmenia                           3.978e+00  1.344e+00   2.959
## country_feAzerbaijan                       -1.820e+01  2.771e+04  -0.001
## country_feBangladesh                        2.026e+00  1.446e+00   1.401
## country_feBelarus                          -1.760e+01  1.474e+04  -0.001
## country_feBurkina Faso                      2.194e+00  1.372e+00   1.600
## country_feCambodia                          3.652e+00  1.685e+00   2.167
## country_feCameroon                         -1.829e+01  3.939e+04   0.000
## country_feCentral African Republic         -1.789e+01  2.041e+04  -0.001
## country_feCroatia                          -1.699e+01  5.256e+03  -0.003
## country_feDemocratic Republic of the Congo  2.499e+00  1.582e+00   1.580
## country_feDjibouti                         -1.770e+01  1.458e+04  -0.001
## country_feEgypt                            -1.789e+01  9.759e+03  -0.002
## country_feEquatorial Guinea                -1.832e+01  5.190e+04   0.000
## country_feEthiopia                         -1.698e+01  7.277e+03  -0.002
## country_feGabon                             2.650e+00  1.306e+00   2.029
## country_feGeorgia                           2.061e+00  1.728e+00   1.193
## country_feGhana                            -1.792e+01  8.606e+03  -0.002
## country_feGuinea                            2.691e+00  1.883e+00   1.429
## country_feGuinea-Bissau                     2.730e+00  1.399e+00   1.952
## country_feGuyana                           -1.753e+01  7.532e+03  -0.002
## country_feHaiti                             3.369e+00  1.299e+00   2.592
## country_feIvory Coast                       3.885e-01  1.528e+00   0.254
## country_feKazakhstan                       -1.818e+01  4.825e+04   0.000
## country_feKenya                            -1.791e+01  1.163e+04  -0.002
## country_feKyrgyzstan                        4.130e+00  1.394e+00   2.964
## country_feLesotho                          -1.717e+01  5.570e+03  -0.003
## country_feMadagascar                       -1.741e+01  1.132e+04  -0.002
## country_feMalaysia                          3.617e+00  1.202e+00   3.009
## country_feMauritania                        3.254e+00  1.611e+00   2.020
## country_feMexico                           -1.727e+01  6.399e+03  -0.003
## country_feMozambique                       -1.743e+01  7.905e+03  -0.002
## country_feNamibia                          -1.671e+01  3.386e+03  -0.005
## country_feNicaragua                        -1.769e+01  1.548e+04  -0.001
## country_feNiger                             8.744e-01  1.714e+00   0.510
## country_feNigeria                           8.884e-01  1.635e+00   0.543
## country_fePanama                           -1.711e+01  6.318e+03  -0.003
## country_feParaguay                         -1.818e+01  1.419e+04  -0.001
## country_fePeru                             -1.723e+01  5.207e+03  -0.003
## country_fePhilippines                      -1.770e+01  8.998e+03  -0.002
## country_feRussia                            1.697e+00  1.706e+00   0.995
## country_feRwanda                            2.391e+00  1.750e+00   1.367
## country_feSenegal                          -6.482e-02  2.062e+00  -0.031
## country_feSerbia                            3.072e+00  2.134e+00   1.439
## country_feSierra Leone                      2.253e+00  1.521e+00   1.481
## country_feSingapore                        -1.572e+01  2.699e+03  -0.006
## country_feSouth Korea                      -1.661e+01  3.484e+03  -0.005
## country_feSri Lanka                         3.147e+00  1.279e+00   2.461
## country_feTaiwan                           -1.648e+01  3.131e+03  -0.005
## country_feTajikistan                       -1.828e+01  3.413e+04  -0.001
## country_feTanzania                         -1.681e+01  4.326e+03  -0.004
## country_feThe Gambia                       -1.773e+01  1.138e+04  -0.002
## country_feTogo                              2.426e+00  1.530e+00   1.586
## country_feTürkiye                          -1.762e+01  6.887e+03  -0.003
## country_feTurkmenistan                     -1.821e+01  8.160e+04   0.000
## country_feUganda                            1.745e+00  1.306e+00   1.336
## country_feUzbekistan                        4.046e+00  2.162e+00   1.871
## country_feVenezuela                         3.780e+00  2.127e+00   1.777
## country_feZambia                           -1.687e+01  4.781e+03  -0.004
## country_feZimbabwe                          3.442e+00  1.905e+00   1.807
##                                            Pr(>|z|)    
## (Intercept)                                 0.51191    
## jud_ind                                     0.00053 ***
## exec_corrupt_index                          0.07540 .  
## country_feAlgeria                           0.06293 .  
## country_feAngola                            0.99937    
## country_feArmenia                           0.00308 ** 
## country_feAzerbaijan                        0.99948    
## country_feBangladesh                        0.16121    
## country_feBelarus                           0.99905    
## country_feBurkina Faso                      0.10967    
## country_feCambodia                          0.03026 *  
## country_feCameroon                          0.99963    
## country_feCentral African Republic          0.99930    
## country_feCroatia                           0.99742    
## country_feDemocratic Republic of the Congo  0.11417    
## country_feDjibouti                          0.99903    
## country_feEgypt                             0.99854    
## country_feEquatorial Guinea                 0.99972    
## country_feEthiopia                          0.99814    
## country_feGabon                             0.04241 *  
## country_feGeorgia                           0.23302    
## country_feGhana                             0.99834    
## country_feGuinea                            0.15297    
## country_feGuinea-Bissau                     0.05097 .  
## country_feGuyana                            0.99814    
## country_feHaiti                             0.00953 ** 
## country_feIvory Coast                       0.79932    
## country_feKazakhstan                        0.99970    
## country_feKenya                             0.99877    
## country_feKyrgyzstan                        0.00304 ** 
## country_feLesotho                           0.99754    
## country_feMadagascar                        0.99877    
## country_feMalaysia                          0.00262 ** 
## country_feMauritania                        0.04340 *  
## country_feMexico                            0.99785    
## country_feMozambique                        0.99824    
## country_feNamibia                           0.99606    
## country_feNicaragua                         0.99909    
## country_feNiger                             0.60996    
## country_feNigeria                           0.58697    
## country_fePanama                            0.99784    
## country_feParaguay                          0.99898    
## country_fePeru                              0.99736    
## country_fePhilippines                       0.99843    
## country_feRussia                            0.31984    
## country_feRwanda                            0.17167    
## country_feSenegal                           0.97492    
## country_feSerbia                            0.15007    
## country_feSierra Leone                      0.13856    
## country_feSingapore                         0.99535    
## country_feSouth Korea                       0.99620    
## country_feSri Lanka                         0.01384 *  
## country_feTaiwan                            0.99580    
## country_feTajikistan                        0.99957    
## country_feTanzania                          0.99690    
## country_feThe Gambia                        0.99876    
## country_feTogo                              0.11285    
## country_feTürkiye                           0.99796    
## country_feTurkmenistan                      0.99982    
## country_feUganda                            0.18152    
## country_feUzbekistan                        0.06130 .  
## country_feVenezuela                         0.07559 .  
## country_feZambia                            0.99718    
## country_feZimbabwe                          0.07073 .  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          4.8340     0.9377   5.155 2.53e-07 ***
## jud_ind              1.0959     0.3602   3.042  0.00235 ** 
## exec_corrupt_index  -4.2341     1.3758  -3.077  0.00209 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 38 
## Log-likelihood: -246.1 on 67 Df
summary(zip_models$n_cabinet_zip1)
## 
## Call:
## zeroinfl(formula = f1, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.444e-01 -2.010e-01 -3.001e-05 -1.851e-05  6.762e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                   -6.6262     3.8607  -1.716
## jud_ind                                       -4.4098     3.4990  -1.260
## exec_corrupt_index                             6.5851     4.8291   1.364
## country_feAlgeria                              1.2774     1.7059   0.749
## country_feAngola                             -17.7874  7634.0825  -0.002
## country_feArmenia                              2.2118     1.3631   1.623
## country_feAzerbaijan                         -17.2758  8834.3841  -0.002
## country_feBangladesh                           1.1674     1.5225   0.767
## country_feBelarus                            -17.5742  8139.7598  -0.002
## country_feBurkina Faso                         2.0926     1.4389   1.454
## country_feCambodia                             1.5641     1.6212   0.965
## country_feCameroon                           -17.2769  9243.0564  -0.002
## country_feCentral African Republic           -17.4967  8464.6359  -0.002
## country_feCroatia                            -16.3217  7428.6010  -0.002
## country_feDemocratic Republic of the Congo     0.3149     1.5264   0.206
## country_feDjibouti                           -17.5999  8045.9571  -0.002
## country_feEgypt                              -17.9379  6265.1042  -0.003
## country_feEquatorial Guinea                  -16.9163 10084.3460  -0.002
## country_feEthiopia                           -17.1287  8524.6844  -0.002
## country_feGabon                                1.0401     1.3459   0.773
## country_feGeorgia                             -0.1088     1.6709  -0.065
## country_feGhana                              -17.8054  6640.6166  -0.003
## country_feGuinea                               0.8407     1.8563   0.453
## country_feGuinea-Bissau                        0.6931     1.4019   0.494
## country_feGuyana                             -17.0694  7334.8176  -0.002
## country_feHaiti                                2.2991     1.3628   1.687
## country_feIvory Coast                          0.1586     1.6982   0.093
## country_feKazakhstan                         -16.9145 10148.7529  -0.002
## country_feKenya                              -17.6794  7523.4381  -0.002
## country_feKyrgyzstan                           2.8148     1.4027   2.007
## country_feLesotho                            -15.9644  8925.9594  -0.002
## country_feMadagascar                         -17.4306  7777.5546  -0.002
## country_feMalaysia                             3.1678     1.2951   2.446
## country_feMauritania                           1.3480     1.6925   0.796
## country_feMexico                             -16.5160  7958.8837  -0.002
## country_feMozambique                         -16.9274  8377.2211  -0.002
## country_feNamibia                            -13.4150 14664.9906  -0.001
## country_feNicaragua                          -17.3160  8382.0025  -0.002
## country_feNiger                                0.9288     1.6477   0.564
## country_feNigeria                             -1.3051     1.7063  -0.765
## country_fePanama                             -16.3668  9483.2419  -0.002
## country_feParaguay                           -18.2521  6507.2393  -0.003
## country_fePeru                               -16.4072  6586.9855  -0.002
## country_fePhilippines                        -17.3899  7368.3895  -0.002
## country_feRussia                               0.2474     1.7817   0.139
## country_feRwanda                               2.5161     1.7404   1.446
## country_feSenegal                              2.3698     1.9131   1.239
## country_feSerbia                               0.8358     1.7127   0.488
## country_feSierra Leone                         1.2221     1.5691   0.779
## country_feSingapore                          -16.0136 10207.8011  -0.002
## country_feSouth Korea                        -14.8055  8355.6370  -0.002
## country_feSri Lanka                            2.0469     1.3788   1.485
## country_feTaiwan                             -14.9413  8512.6382  -0.002
## country_feTajikistan                         -17.2555  8985.2490  -0.002
## country_feTanzania                           -14.9425 11861.5476  -0.001
## country_feThe Gambia                         -17.4449  7842.5951  -0.002
## country_feTogo                                 0.9416     1.5460   0.609
## country_feTürkiye                            -17.0701  6409.8675  -0.003
## country_feTurkmenistan                       -16.3472 12994.6079  -0.001
## country_feUganda                               1.0535     1.3688   0.770
## country_feUzbekistan                           2.1937     2.2049   0.995
## country_feVenezuela                            2.1885     2.6514   0.825
## country_feZambia                             -15.7682  8954.8135  -0.002
## country_feZimbabwe                             0.5735     1.5747   0.364
## jud_ind:exec_corrupt_index                     6.6930     4.3722   1.531
##                                            Pr(>|z|)  
## (Intercept)                                  0.0861 .
## jud_ind                                      0.2076  
## exec_corrupt_index                           0.1727  
## country_feAlgeria                            0.4540  
## country_feAngola                             0.9981  
## country_feArmenia                            0.1047  
## country_feAzerbaijan                         0.9984  
## country_feBangladesh                         0.4432  
## country_feBelarus                            0.9983  
## country_feBurkina Faso                       0.1459  
## country_feCambodia                           0.3346  
## country_feCameroon                           0.9985  
## country_feCentral African Republic           0.9984  
## country_feCroatia                            0.9982  
## country_feDemocratic Republic of the Congo   0.8366  
## country_feDjibouti                           0.9983  
## country_feEgypt                              0.9977  
## country_feEquatorial Guinea                  0.9987  
## country_feEthiopia                           0.9984  
## country_feGabon                              0.4397  
## country_feGeorgia                            0.9481  
## country_feGhana                              0.9979  
## country_feGuinea                             0.6506  
## country_feGuinea-Bissau                      0.6210  
## country_feGuyana                             0.9981  
## country_feHaiti                              0.0916 .
## country_feIvory Coast                        0.9256  
## country_feKazakhstan                         0.9987  
## country_feKenya                              0.9981  
## country_feKyrgyzstan                         0.0448 *
## country_feLesotho                            0.9986  
## country_feMadagascar                         0.9982  
## country_feMalaysia                           0.0144 *
## country_feMauritania                         0.4257  
## country_feMexico                             0.9983  
## country_feMozambique                         0.9984  
## country_feNamibia                            0.9993  
## country_feNicaragua                          0.9984  
## country_feNiger                              0.5730  
## country_feNigeria                            0.4443  
## country_fePanama                             0.9986  
## country_feParaguay                           0.9978  
## country_fePeru                               0.9980  
## country_fePhilippines                        0.9981  
## country_feRussia                             0.8896  
## country_feRwanda                             0.1483  
## country_feSenegal                            0.2155  
## country_feSerbia                             0.6255  
## country_feSierra Leone                       0.4360  
## country_feSingapore                          0.9987  
## country_feSouth Korea                        0.9986  
## country_feSri Lanka                          0.1377  
## country_feTaiwan                             0.9986  
## country_feTajikistan                         0.9985  
## country_feTanzania                           0.9990  
## country_feThe Gambia                         0.9982  
## country_feTogo                               0.5425  
## country_feTürkiye                            0.9979  
## country_feTurkmenistan                       0.9990  
## country_feUganda                             0.4415  
## country_feUzbekistan                         0.3198  
## country_feVenezuela                          0.4091  
## country_feZambia                             0.9986  
## country_feZimbabwe                           0.7157  
## jud_ind:exec_corrupt_index                   0.1258  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  0.7948     3.7396   0.213    0.832
## jud_ind                     -1.1359     3.1877  -0.356    0.722
## exec_corrupt_index           1.0052     4.7478   0.212    0.832
## jud_ind:exec_corrupt_index   1.9792     3.9078   0.506    0.613
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 44 
## Log-likelihood: -245.9 on 69 Df
summary(zip_models$n_cabinet_zip2)
## 
## Call:
## zeroinfl(formula = f2, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -5.315e-01 -1.980e-01 -4.953e-05 -2.205e-05  7.608e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -2.738e+00  2.794e+00  -0.980
## jud_ind                                    -5.764e+00  2.304e+00  -2.502
## exec_corrupt_index                          7.203e+00  2.537e+00   2.839
## polyarchy                                  -1.142e+01  3.793e+00  -3.011
## country_feAlgeria                          -2.179e-02  1.865e+00  -0.012
## country_feAngola                           -1.814e+01  4.594e+03  -0.004
## country_feArmenia                           1.708e+00  1.276e+00   1.339
## country_feAzerbaijan                       -1.740e+01  4.687e+03  -0.004
## country_feBangladesh                        6.469e-02  1.481e+00   0.044
## country_feBelarus                          -1.757e+01  4.126e+03  -0.004
## country_feBurkina Faso                      2.282e+00  1.308e+00   1.745
## country_feCambodia                          9.756e-01  1.579e+00   0.618
## country_feCameroon                         -1.714e+01  5.389e+03  -0.003
## country_feCentral African Republic         -1.746e+01  4.868e+03  -0.004
## country_feCroatia                          -1.619e+01  4.565e+03  -0.004
## country_feDemocratic Republic of the Congo -4.799e-01  1.459e+00  -0.329
## country_feDjibouti                         -1.790e+01  4.143e+03  -0.004
## country_feEgypt                            -1.863e+01  4.720e+03  -0.004
## country_feEquatorial Guinea                -1.701e+01  4.676e+03  -0.004
## country_feEthiopia                         -1.765e+01  3.352e+03  -0.005
## country_feGabon                             8.869e-02  1.283e+00   0.069
## country_feGeorgia                          -3.272e-01  1.585e+00  -0.206
## country_feGhana                            -1.771e+01  6.309e+03  -0.003
## country_feGuinea                           -3.336e-02  1.926e+00  -0.017
## country_feGuinea-Bissau                     5.839e-01  1.242e+00   0.470
## country_feGuyana                           -1.700e+01  7.534e+03  -0.002
## country_feHaiti                             1.961e+00  1.281e+00   1.531
## country_feIvory Coast                      -3.592e-01  1.574e+00  -0.228
## country_feKazakhstan                       -1.680e+01  4.868e+03  -0.003
## country_feKenya                            -1.770e+01  6.049e+03  -0.003
## country_feKyrgyzstan                        2.448e+00  1.376e+00   1.778
## country_feLesotho                          -1.632e+01  4.967e+03  -0.003
## country_feMadagascar                       -1.728e+01  4.244e+03  -0.004
## country_feMalaysia                          1.999e+00  1.281e+00   1.560
## country_feMauritania                       -6.021e-02  1.934e+00  -0.031
## country_feMexico                           -1.627e+01  7.682e+03  -0.002
## country_feMozambique                       -1.709e+01  5.945e+03  -0.003
## country_feNamibia                          -1.328e+01  7.017e+04   0.000
## country_feNicaragua                        -1.677e+01  6.655e+03  -0.003
## country_feNiger                             4.228e-01  1.559e+00   0.271
## country_feNigeria                          -1.202e+00  1.644e+00  -0.731
## country_fePanama                           -1.576e+01  2.528e+04  -0.001
## country_feParaguay                         -1.788e+01  8.276e+03  -0.002
## country_fePeru                             -1.640e+01  4.391e+03  -0.004
## country_fePhilippines                      -1.725e+01  8.397e+03  -0.002
## country_feRussia                           -3.690e-01  1.944e+00  -0.190
## country_feRwanda                           -3.301e-01  2.144e+00  -0.154
## country_feSenegal                           3.821e+00  1.953e+00   1.956
## country_feSerbia                            4.204e-02  1.707e+00   0.025
## country_feSierra Leone                      8.413e-01  1.502e+00   0.560
## country_feSingapore                        -1.643e+01  5.361e+03  -0.003
## country_feSouth Korea                      -1.433e+01  1.982e+04  -0.001
## country_feSri Lanka                         1.861e+00  1.269e+00   1.467
## country_feTaiwan                           -1.514e+01  3.915e+03  -0.004
## country_feTajikistan                       -1.738e+01  4.671e+03  -0.004
## country_feTanzania                         -1.524e+01  1.572e+04  -0.001
## country_feThe Gambia                       -1.775e+01  4.328e+03  -0.004
## country_feTogo                              4.696e-01  1.515e+00   0.310
## country_feTürkiye                          -1.722e+01  5.915e+03  -0.003
## country_feTurkmenistan                     -1.640e+01  4.252e+03  -0.004
## country_feUganda                            2.524e-02  1.351e+00   0.019
## country_feUzbekistan                        2.976e-01  2.403e+00   0.124
## country_feVenezuela                         1.692e+00  2.019e+00   0.838
## country_feZambia                           -1.594e+01  8.799e+03  -0.002
## country_feZimbabwe                         -7.121e-01  1.469e+00  -0.485
## jud_ind:exec_corrupt_index                  7.869e+00  2.952e+00   2.666
##                                            Pr(>|z|)   
## (Intercept)                                 0.32711   
## jud_ind                                     0.01235 * 
## exec_corrupt_index                          0.00452 **
## polyarchy                                   0.00260 **
## country_feAlgeria                           0.99068   
## country_feAngola                            0.99685   
## country_feArmenia                           0.18060   
## country_feAzerbaijan                        0.99704   
## country_feBangladesh                        0.96517   
## country_feBelarus                           0.99660   
## country_feBurkina Faso                      0.08106 . 
## country_feCambodia                          0.53666   
## country_feCameroon                          0.99746   
## country_feCentral African Republic          0.99714   
## country_feCroatia                           0.99717   
## country_feDemocratic Republic of the Congo  0.74216   
## country_feDjibouti                          0.99655   
## country_feEgypt                             0.99685   
## country_feEquatorial Guinea                 0.99710   
## country_feEthiopia                          0.99580   
## country_feGabon                             0.94491   
## country_feGeorgia                           0.83648   
## country_feGhana                             0.99776   
## country_feGuinea                            0.98618   
## country_feGuinea-Bissau                     0.63826   
## country_feGuyana                            0.99820   
## country_feHaiti                             0.12581   
## country_feIvory Coast                       0.81953   
## country_feKazakhstan                        0.99725   
## country_feKenya                             0.99767   
## country_feKyrgyzstan                        0.07534 . 
## country_feLesotho                           0.99738   
## country_feMadagascar                        0.99675   
## country_feMalaysia                          0.11876   
## country_feMauritania                        0.97516   
## country_feMexico                            0.99831   
## country_feMozambique                        0.99771   
## country_feNamibia                           0.99985   
## country_feNicaragua                         0.99799   
## country_feNiger                             0.78623   
## country_feNigeria                           0.46475   
## country_fePanama                            0.99950   
## country_feParaguay                          0.99828   
## country_fePeru                              0.99702   
## country_fePhilippines                       0.99836   
## country_feRussia                            0.84943   
## country_feRwanda                            0.87766   
## country_feSenegal                           0.05044 . 
## country_feSerbia                            0.98036   
## country_feSierra Leone                      0.57550   
## country_feSingapore                         0.99755   
## country_feSouth Korea                       0.99942   
## country_feSri Lanka                         0.14237   
## country_feTaiwan                            0.99692   
## country_feTajikistan                        0.99703   
## country_feTanzania                          0.99923   
## country_feThe Gambia                        0.99673   
## country_feTogo                              0.75654   
## country_feTürkiye                           0.99768   
## country_feTurkmenistan                      0.99692   
## country_feUganda                            0.98510   
## country_feUzbekistan                        0.90142   
## country_feVenezuela                         0.40195   
## country_feZambia                            0.99855   
## country_feZimbabwe                          0.62782   
## jud_ind:exec_corrupt_index                  0.00769 **
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  -1.143      2.571  -0.444   0.6567  
## jud_ind                      -3.668      2.340  -1.568   0.1169  
## exec_corrupt_index            6.291      3.691   1.704   0.0883 .
## polyarchy                    -7.524      4.620  -1.629   0.1034  
## jud_ind:exec_corrupt_index    4.701      2.935   1.602   0.1092  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 57 
## Log-likelihood: -243.6 on 71 Df
# Electoral support
summary(zip_models$n_elec_zip0)
## 
## Call:
## zeroinfl(formula = f0, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.267e-01 -2.007e-05 -1.625e-05 -1.288e-05  5.673e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -2.491e+01  1.254e+04  -0.002
## jud_ind                                     2.238e-01  3.324e-01   0.673
## exec_corrupt_index                          6.459e+00  2.952e+00   2.188
## country_feAlgeria                           1.951e+01  1.254e+04   0.002
## country_feAngola                           -3.206e-01  1.646e+04   0.000
## country_feArmenia                           6.576e-03  1.696e+04   0.000
## country_feAzerbaijan                       -3.648e-01  1.615e+04   0.000
## country_feBangladesh                       -5.314e-02  1.712e+04   0.000
## country_feBelarus                           1.956e+01  1.254e+04   0.002
## country_feBurkina Faso                      1.988e+01  1.254e+04   0.002
## country_feCambodia                         -4.315e-01  1.622e+04   0.000
## country_feCameroon                          1.796e+01  1.254e+04   0.001
## country_feCentral African Republic          1.920e+01  1.254e+04   0.002
## country_feCroatia                           4.719e-01  1.859e+04   0.000
## country_feDemocratic Republic of the Congo -3.943e-01  1.652e+04   0.000
## country_feDjibouti                          1.870e+01  1.254e+04   0.001
## country_feEgypt                             2.199e+01  1.254e+04   0.002
## country_feEquatorial Guinea                 1.875e+01  1.254e+04   0.001
## country_feEthiopia                          4.047e-01  1.910e+04   0.000
## country_feGabon                            -1.312e-01  1.716e+04   0.000
## country_feGeorgia                           1.891e+01  1.254e+04   0.002
## country_feGhana                             1.890e+01  1.254e+04   0.002
## country_feGuinea                           -4.170e-01  1.614e+04   0.000
## country_feGuinea-Bissau                     1.837e+01  1.254e+04   0.001
## country_feGuyana                            2.001e-01  1.810e+04   0.000
## country_feHaiti                            -1.362e-01  1.713e+04   0.000
## country_feIvory Coast                       2.896e-03  1.762e+04   0.000
## country_feKazakhstan                       -4.062e-01  1.594e+04   0.000
## country_feKenya                            -6.499e-02  1.724e+04   0.000
## country_feKyrgyzstan                       -2.180e-01  1.660e+04   0.000
## country_feLesotho                           4.235e-01  1.896e+04   0.000
## country_feMadagascar                        1.136e-01  1.720e+04   0.000
## country_feMalaysia                          2.152e+01  1.254e+04   0.002
## country_feMauritania                       -4.918e-02  1.697e+04   0.000
## country_feMexico                            3.322e-01  1.831e+04   0.000
## country_feMozambique                        2.267e-01  1.810e+04   0.000
## country_feNamibia                           7.456e-01  2.082e+04   0.000
## country_feNicaragua                        -6.997e-02  1.660e+04   0.000
## country_feNiger                             1.979e-01  1.798e+04   0.000
## country_feNigeria                          -2.808e-01  1.716e+04   0.000
## country_fePanama                            4.031e-01  1.888e+04   0.000
## country_feParaguay                         -2.091e-01  1.708e+04   0.000
## country_fePeru                              3.802e-01  1.803e+04   0.000
## country_fePhilippines                       9.292e-02  1.782e+04   0.000
## country_feRussia                            2.016e+01  1.254e+04   0.002
## country_feRwanda                            5.114e-01  2.020e+04   0.000
## country_feSenegal                           7.506e-01  2.227e+04   0.000
## country_feSerbia                            4.498e-02  1.711e+04   0.000
## country_feSierra Leone                     -5.306e-02  1.698e+04   0.000
## country_feSingapore                         1.139e+00  3.182e+04   0.000
## country_feSouth Korea                       7.589e-01  2.064e+04   0.000
## country_feSri Lanka                         1.946e+01  1.254e+04   0.002
## country_feTaiwan                            8.205e-01  2.158e+04   0.000
## country_feTajikistan                       -4.133e-01  1.607e+04   0.000
## country_feTanzania                          6.261e-01  2.008e+04   0.000
## country_feThe Gambia                       -2.917e-03  1.714e+04   0.000
## country_feTogo                             -2.360e-01  1.657e+04   0.000
## country_feTürkiye                           1.999e-01  1.821e+04   0.000
## country_feTurkmenistan                     -4.714e-01  1.571e+04   0.000
## country_feUganda                            8.764e-02  1.763e+04   0.000
## country_feUzbekistan                       -4.441e-01  1.578e+04   0.000
## country_feVenezuela                         1.935e+01  1.254e+04   0.002
## country_feZambia                            5.675e-01  1.950e+04   0.000
## country_feZimbabwe                         -5.873e-02  1.740e+04   0.000
##                                            Pr(>|z|)  
## (Intercept)                                  0.9984  
## jud_ind                                      0.5008  
## exec_corrupt_index                           0.0287 *
## country_feAlgeria                            0.9988  
## country_feAngola                             1.0000  
## country_feArmenia                            1.0000  
## country_feAzerbaijan                         1.0000  
## country_feBangladesh                         1.0000  
## country_feBelarus                            0.9988  
## country_feBurkina Faso                       0.9987  
## country_feCambodia                           1.0000  
## country_feCameroon                           0.9989  
## country_feCentral African Republic           0.9988  
## country_feCroatia                            1.0000  
## country_feDemocratic Republic of the Congo   1.0000  
## country_feDjibouti                           0.9988  
## country_feEgypt                              0.9986  
## country_feEquatorial Guinea                  0.9988  
## country_feEthiopia                           1.0000  
## country_feGabon                              1.0000  
## country_feGeorgia                            0.9988  
## country_feGhana                              0.9988  
## country_feGuinea                             1.0000  
## country_feGuinea-Bissau                      0.9988  
## country_feGuyana                             1.0000  
## country_feHaiti                              1.0000  
## country_feIvory Coast                        1.0000  
## country_feKazakhstan                         1.0000  
## country_feKenya                              1.0000  
## country_feKyrgyzstan                         1.0000  
## country_feLesotho                            1.0000  
## country_feMadagascar                         1.0000  
## country_feMalaysia                           0.9986  
## country_feMauritania                         1.0000  
## country_feMexico                             1.0000  
## country_feMozambique                         1.0000  
## country_feNamibia                            1.0000  
## country_feNicaragua                          1.0000  
## country_feNiger                              1.0000  
## country_feNigeria                            1.0000  
## country_fePanama                             1.0000  
## country_feParaguay                           1.0000  
## country_fePeru                               1.0000  
## country_fePhilippines                        1.0000  
## country_feRussia                             0.9987  
## country_feRwanda                             1.0000  
## country_feSenegal                            1.0000  
## country_feSerbia                             1.0000  
## country_feSierra Leone                       1.0000  
## country_feSingapore                          1.0000  
## country_feSouth Korea                        1.0000  
## country_feSri Lanka                          0.9988  
## country_feTaiwan                             1.0000  
## country_feTajikistan                         1.0000  
## country_feTanzania                           1.0000  
## country_feThe Gambia                         1.0000  
## country_feTogo                               1.0000  
## country_feTürkiye                            1.0000  
## country_feTurkmenistan                       1.0000  
## country_feUganda                             1.0000  
## country_feUzbekistan                         1.0000  
## country_feVenezuela                          0.9988  
## country_feZambia                             1.0000  
## country_feZimbabwe                           1.0000  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)         -1.5959     2.3598  -0.676    0.499
## jud_ind              0.4389     0.3246   1.352    0.176
## exec_corrupt_index   4.6185     3.2122   1.438    0.150
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 27 
## Log-likelihood: -119.5 on 67 Df
summary(zip_models$n_elec_zip1)
## 
## Call:
## zeroinfl(formula = f1, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.502e-01 -3.699e-05 -1.448e-05 -1.171e-05  6.823e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -1.961e+01  1.572e+04  -0.001
## jud_ind                                     4.658e+00  2.211e+00   2.107
## exec_corrupt_index                         -2.163e+00  4.296e+00  -0.503
## country_feAlgeria                           2.052e+01  1.572e+04   0.001
## country_feAngola                           -4.740e-01  2.153e+04   0.000
## country_feArmenia                          -3.585e-02  2.150e+04   0.000
## country_feAzerbaijan                       -6.481e-01  2.013e+04   0.000
## country_feBangladesh                       -1.190e-01  2.149e+04   0.000
## country_feBelarus                           2.067e+01  1.572e+04   0.001
## country_feBurkina Faso                      2.005e+01  1.572e+04   0.001
## country_feCambodia                         -6.767e-01  2.097e+04   0.000
## country_feCameroon                          1.816e+01  1.572e+04   0.001
## country_feCentral African Republic          1.975e+01  1.572e+04   0.001
## country_feCroatia                           2.544e-01  1.776e+04   0.000
## country_feDemocratic Republic of the Congo -5.225e-01  2.244e+04   0.000
## country_feDjibouti                          1.935e+01  1.572e+04   0.001
## country_feEgypt                             2.015e+01  1.572e+04   0.001
## country_feEquatorial Guinea                 1.939e+01  1.572e+04   0.001
## country_feEthiopia                          5.795e-01  2.222e+04   0.000
## country_feGabon                            -1.421e-01  2.293e+04   0.000
## country_feGeorgia                           2.031e+01  1.572e+04   0.001
## country_feGhana                             1.924e+01  1.572e+04   0.001
## country_feGuinea                           -6.990e-01  2.041e+04   0.000
## country_feGuinea-Bissau                     1.928e+01  1.572e+04   0.001
## country_feGuyana                            8.604e-02  1.950e+04   0.000
## country_feHaiti                            -1.688e-01  2.251e+04   0.000
## country_feIvory Coast                       5.818e-03  2.230e+04   0.000
## country_feKazakhstan                       -7.657e-01  1.958e+04   0.000
## country_feKenya                            -1.154e-01  2.185e+04   0.000
## country_feKyrgyzstan                       -3.323e-01  2.161e+04   0.000
## country_feLesotho                           1.679e-01  1.819e+04   0.000
## country_feMadagascar                        1.250e-01  2.070e+04   0.000
## country_feMalaysia                          2.219e+01  1.572e+04   0.001
## country_feMauritania                        3.319e-02  2.344e+04   0.000
## country_feMexico                            1.562e-01  1.868e+04   0.000
## country_feMozambique                        1.616e-01  2.021e+04   0.000
## country_feNamibia                           1.954e-02  1.652e+04   0.000
## country_feNicaragua                        -1.604e-01  2.075e+04   0.000
## country_feNiger                             1.670e-01  2.069e+04   0.000
## country_feNigeria                          -2.388e-01  2.538e+04   0.000
## country_fePanama                            3.227e-01  1.946e+04   0.000
## country_feParaguay                         -2.384e-01  2.299e+04   0.000
## country_fePeru                             -2.172e-02  1.689e+04   0.000
## country_fePhilippines                       2.647e-02  2.076e+04   0.000
## country_feRussia                            2.107e+01  1.572e+04   0.001
## country_feRwanda                            8.126e-01  2.240e+04   0.000
## country_feSenegal                           8.510e-01  1.975e+04   0.000
## country_feSerbia                           -7.827e-02  2.041e+04   0.000
## country_feSierra Leone                     -6.158e-02  2.217e+04   0.000
## country_feSingapore                         1.523e+00  2.111e+04   0.000
## country_feSouth Korea                       2.502e-01  1.659e+04   0.000
## country_feSri Lanka                         1.777e+01  1.572e+04   0.001
## country_feTaiwan                            2.148e-01  1.617e+04   0.000
## country_feTajikistan                       -7.344e-01  1.991e+04   0.000
## country_feTanzania                          2.756e-01  1.750e+04   0.000
## country_feThe Gambia                       -6.667e-02  2.068e+04   0.000
## country_feTogo                             -3.549e-01  2.158e+04   0.000
## country_feTürkiye                          -1.808e-02  1.864e+04   0.000
## country_feTurkmenistan                     -9.810e-01  1.870e+04   0.000
## country_feUganda                            9.216e-02  2.185e+04   0.000
## country_feUzbekistan                       -9.035e-01  1.887e+04   0.000
## country_feVenezuela                         1.837e+01  1.572e+04   0.001
## country_feZambia                            3.655e-01  1.816e+04   0.000
## country_feZimbabwe                         -1.008e-01  2.156e+04   0.000
## jud_ind:exec_corrupt_index                 -6.440e+00  3.077e+00  -2.093
##                                            Pr(>|z|)  
## (Intercept)                                  0.9990  
## jud_ind                                      0.0352 *
## exec_corrupt_index                           0.6147  
## country_feAlgeria                            0.9990  
## country_feAngola                             1.0000  
## country_feArmenia                            1.0000  
## country_feAzerbaijan                         1.0000  
## country_feBangladesh                         1.0000  
## country_feBelarus                            0.9990  
## country_feBurkina Faso                       0.9990  
## country_feCambodia                           1.0000  
## country_feCameroon                           0.9991  
## country_feCentral African Republic           0.9990  
## country_feCroatia                            1.0000  
## country_feDemocratic Republic of the Congo   1.0000  
## country_feDjibouti                           0.9990  
## country_feEgypt                              0.9990  
## country_feEquatorial Guinea                  0.9990  
## country_feEthiopia                           1.0000  
## country_feGabon                              1.0000  
## country_feGeorgia                            0.9990  
## country_feGhana                              0.9990  
## country_feGuinea                             1.0000  
## country_feGuinea-Bissau                      0.9990  
## country_feGuyana                             1.0000  
## country_feHaiti                              1.0000  
## country_feIvory Coast                        1.0000  
## country_feKazakhstan                         1.0000  
## country_feKenya                              1.0000  
## country_feKyrgyzstan                         1.0000  
## country_feLesotho                            1.0000  
## country_feMadagascar                         1.0000  
## country_feMalaysia                           0.9989  
## country_feMauritania                         1.0000  
## country_feMexico                             1.0000  
## country_feMozambique                         1.0000  
## country_feNamibia                            1.0000  
## country_feNicaragua                          1.0000  
## country_feNiger                              1.0000  
## country_feNigeria                            1.0000  
## country_fePanama                             1.0000  
## country_feParaguay                           1.0000  
## country_fePeru                               1.0000  
## country_fePhilippines                        1.0000  
## country_feRussia                             0.9989  
## country_feRwanda                             1.0000  
## country_feSenegal                            1.0000  
## country_feSerbia                             1.0000  
## country_feSierra Leone                       1.0000  
## country_feSingapore                          0.9999  
## country_feSouth Korea                        1.0000  
## country_feSri Lanka                          0.9991  
## country_feTaiwan                             1.0000  
## country_feTajikistan                         1.0000  
## country_feTanzania                           1.0000  
## country_feThe Gambia                         1.0000  
## country_feTogo                               1.0000  
## country_feTürkiye                            1.0000  
## country_feTurkmenistan                       1.0000  
## country_feUganda                             1.0000  
## country_feUzbekistan                         1.0000  
## country_feVenezuela                          0.9991  
## country_feZambia                             1.0000  
## country_feZimbabwe                           1.0000  
## jud_ind:exec_corrupt_index                   0.0364 *
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   3.199      2.340   1.367   0.1716  
## jud_ind                       2.613      1.342   1.946   0.0516 .
## exec_corrupt_index           -2.714      3.536  -0.768   0.4427  
## jud_ind:exec_corrupt_index   -3.637      1.728  -2.105   0.0353 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 34 
## Log-likelihood: -119.1 on 69 Df
summary(zip_models$n_elec_zip2)
## 
## Call:
## zeroinfl(formula = f2, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.896e-01 -2.385e-05 -1.488e-05 -1.115e-05  6.445e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -1.851e+01  1.563e+04  -0.001
## jud_ind                                     3.848e+00  1.972e+00   1.952
## exec_corrupt_index                          2.139e-01  3.257e+00   0.066
## polyarchy                                  -8.118e+00  3.922e+00  -2.070
## country_feAlgeria                           2.054e+01  1.563e+04   0.001
## country_feAngola                           -7.810e-01  2.049e+04   0.000
## country_feArmenia                           1.501e-01  2.041e+04   0.000
## country_feAzerbaijan                       -6.906e-01  1.958e+04   0.000
## country_feBangladesh                       -8.742e-02  2.100e+04   0.000
## country_feBelarus                           2.071e+01  1.563e+04   0.001
## country_feBurkina Faso                      2.058e+01  1.563e+04   0.001
## country_feCambodia                         -5.596e-01  1.927e+04   0.000
## country_feCameroon                          1.799e+01  1.563e+04   0.001
## country_feCentral African Republic          1.969e+01  1.563e+04   0.001
## country_feCroatia                           6.593e-01  2.006e+04   0.000
## country_feDemocratic Republic of the Congo -7.497e-01  2.044e+04   0.000
## country_feDjibouti                          1.904e+01  1.563e+04   0.001
## country_feEgypt                             1.918e+01  1.563e+04   0.001
## country_feEquatorial Guinea                 1.867e+01  1.563e+04   0.001
## country_feEthiopia                          1.180e-01  2.480e+04   0.000
## country_feGabon                            -2.871e-01  2.127e+04   0.000
## country_feGeorgia                           1.998e+01  1.563e+04   0.001
## country_feGhana                             1.926e+01  1.563e+04   0.001
## country_feGuinea                           -6.452e-01  1.928e+04   0.000
## country_feGuinea-Bissau                     1.903e+01  1.563e+04   0.001
## country_feGuyana                            1.900e-01  2.103e+04   0.000
## country_feHaiti                            -2.696e-01  2.132e+04   0.000
## country_feIvory Coast                      -1.033e-01  2.168e+04   0.000
## country_feKazakhstan                       -5.322e-01  1.902e+04   0.000
## country_feKenya                            -1.270e-01  2.117e+04   0.000
## country_feKyrgyzstan                       -2.295e-01  1.993e+04   0.000
## country_feLesotho                          -1.159e-01  2.024e+04   0.000
## country_feMadagascar                        4.265e-01  2.040e+04   0.000
## country_feMalaysia                          2.180e+01  1.563e+04   0.001
## country_feMauritania                        3.314e-01  2.204e+04   0.000
## country_feMexico                            4.675e-01  2.035e+04   0.000
## country_feMozambique                       -5.450e-02  2.149e+04   0.000
## country_feNamibia                          -3.075e-03  1.751e+04   0.000
## country_feNicaragua                         4.386e-01  1.958e+04   0.000
## country_feNiger                             2.857e-01  2.175e+04   0.000
## country_feNigeria                          -3.498e-01  2.231e+04   0.000
## country_fePanama                            1.015e+00  2.301e+04   0.000
## country_feParaguay                          2.031e-01  2.241e+04   0.000
## country_fePeru                              2.128e-01  1.826e+04   0.000
## country_fePhilippines                       1.941e-01  2.154e+04   0.000
## country_feRussia                            2.106e+01  1.563e+04   0.001
## country_feRwanda                            2.003e-01  2.620e+04   0.000
## country_feSenegal                           1.417e+00  2.539e+04   0.000
## country_feSerbia                           -6.072e-03  2.026e+04   0.000
## country_feSierra Leone                      9.623e-02  2.173e+04   0.000
## country_feSingapore                         1.258e+00  2.882e+04   0.000
## country_feSouth Korea                       7.838e-01  1.787e+04   0.000
## country_feSri Lanka                         1.891e+01  1.563e+04   0.001
## country_feTaiwan                            4.294e-01  1.715e+04   0.000
## country_feTajikistan                       -7.768e-01  1.931e+04   0.000
## country_feTanzania                         -9.668e-02  1.967e+04   0.000
## country_feThe Gambia                       -3.322e-01  2.110e+04   0.000
## country_feTogo                             -2.185e-01  2.007e+04   0.000
## country_feTürkiye                          -1.320e-01  1.982e+04   0.000
## country_feTurkmenistan                     -9.904e-01  1.946e+04   0.000
## country_feUganda                           -2.581e-01  2.174e+04   0.000
## country_feUzbekistan                       -8.233e-01  1.913e+04   0.000
## country_feVenezuela                         1.962e+01  1.563e+04   0.001
## country_feZambia                            1.498e-01  2.048e+04   0.000
## country_feZimbabwe                         -5.888e-01  2.136e+04   0.000
## jud_ind:exec_corrupt_index                 -5.081e+00  2.649e+00  -1.918
##                                            Pr(>|z|)  
## (Intercept)                                  0.9991  
## jud_ind                                      0.0510 .
## exec_corrupt_index                           0.9476  
## polyarchy                                    0.0385 *
## country_feAlgeria                            0.9990  
## country_feAngola                             1.0000  
## country_feArmenia                            1.0000  
## country_feAzerbaijan                         1.0000  
## country_feBangladesh                         1.0000  
## country_feBelarus                            0.9989  
## country_feBurkina Faso                       0.9989  
## country_feCambodia                           1.0000  
## country_feCameroon                           0.9991  
## country_feCentral African Republic           0.9990  
## country_feCroatia                            1.0000  
## country_feDemocratic Republic of the Congo   1.0000  
## country_feDjibouti                           0.9990  
## country_feEgypt                              0.9990  
## country_feEquatorial Guinea                  0.9990  
## country_feEthiopia                           1.0000  
## country_feGabon                              1.0000  
## country_feGeorgia                            0.9990  
## country_feGhana                              0.9990  
## country_feGuinea                             1.0000  
## country_feGuinea-Bissau                      0.9990  
## country_feGuyana                             1.0000  
## country_feHaiti                              1.0000  
## country_feIvory Coast                        1.0000  
## country_feKazakhstan                         1.0000  
## country_feKenya                              1.0000  
## country_feKyrgyzstan                         1.0000  
## country_feLesotho                            1.0000  
## country_feMadagascar                         1.0000  
## country_feMalaysia                           0.9989  
## country_feMauritania                         1.0000  
## country_feMexico                             1.0000  
## country_feMozambique                         1.0000  
## country_feNamibia                            1.0000  
## country_feNicaragua                          1.0000  
## country_feNiger                              1.0000  
## country_feNigeria                            1.0000  
## country_fePanama                             1.0000  
## country_feParaguay                           1.0000  
## country_fePeru                               1.0000  
## country_fePhilippines                        1.0000  
## country_feRussia                             0.9989  
## country_feRwanda                             1.0000  
## country_feSenegal                            1.0000  
## country_feSerbia                             1.0000  
## country_feSierra Leone                       1.0000  
## country_feSingapore                          1.0000  
## country_feSouth Korea                        1.0000  
## country_feSri Lanka                          0.9990  
## country_feTaiwan                             1.0000  
## country_feTajikistan                         1.0000  
## country_feTanzania                           1.0000  
## country_feThe Gambia                         1.0000  
## country_feTogo                               1.0000  
## country_feTürkiye                            1.0000  
## country_feTurkmenistan                       1.0000  
## country_feUganda                             1.0000  
## country_feUzbekistan                         1.0000  
## country_feVenezuela                          0.9990  
## country_feZambia                             1.0000  
## country_feZimbabwe                           1.0000  
## jud_ind:exec_corrupt_index                   0.0551 .
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   5.064      2.925   1.731   0.0834 .
## jud_ind                       2.242      1.427   1.571   0.1162  
## exec_corrupt_index           -2.087      4.000  -0.522   0.6019  
## polyarchy                    -7.900      4.764  -1.658   0.0973 .
## jud_ind:exec_corrupt_index   -3.181      1.907  -1.669   0.0952 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 39 
## Log-likelihood: -117.1 on 71 Df
# Parliamentary support
summary(zip_models$n_parl_zip0)
## 
## Call:
## zeroinfl(formula = f0, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -5.450e-01 -2.300e-01 -3.995e-05 -2.553e-05  5.964e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                   -5.3951     1.9535  -2.762
## jud_ind                                        0.1246     0.2611   0.477
## exec_corrupt_index                             6.9794     2.1817   3.199
## country_feAlgeria                              0.5257     1.4729   0.357
## country_feAngola                             -19.1869  4231.0144  -0.005
## country_feArmenia                             -1.5698     1.7210  -0.912
## country_feAzerbaijan                          -2.0491     1.6328  -1.255
## country_feBangladesh                         -18.6319  5016.5822  -0.004
## country_feBelarus                             -0.2238     1.4812  -0.151
## country_feBurkina Faso                        -0.6039     1.6454  -0.367
## country_feCambodia                            -1.4969     1.5393  -0.972
## country_feCameroon                            -2.0908     1.6361  -1.278
## country_feCentral African Republic           -18.8124  4480.6332  -0.004
## country_feCroatia                            -17.5484  5496.2288  -0.003
## country_feDemocratic Republic of the Congo    -0.9077     1.5015  -0.604
## country_feDjibouti                            -0.7159     1.5241  -0.470
## country_feEgypt                                2.2122     1.4338   1.543
## country_feEquatorial Guinea                  -19.4477  3749.6672  -0.005
## country_feEthiopia                           -17.5347  6605.9796  -0.003
## country_feGabon                              -18.8136  5121.0088  -0.004
## country_feGeorgia                             -0.7322     1.4459  -0.506
## country_feGhana                              -18.5311  6349.7684  -0.003
## country_feGuinea                             -19.3583  3973.6169  -0.005
## country_feGuinea-Bissau                      -19.1484  4705.0855  -0.004
## country_feGuyana                             -18.1319  6025.4563  -0.003
## country_feHaiti                              -18.8285  5069.5038  -0.004
## country_feIvory Coast                        -18.5386  5638.3064  -0.003
## country_feKazakhstan                          -0.3290     1.5468  -0.213
## country_feKenya                              -18.6696  5236.3063  -0.004
## country_feKyrgyzstan                          -0.2424     1.4466  -0.168
## country_feLesotho                            -17.6275  7074.7166  -0.002
## country_feMadagascar                          -1.5205     1.7700  -0.859
## country_feMalaysia                             1.6211     1.3246   1.224
## country_feMauritania                          -0.1637     1.5243  -0.107
## country_feMexico                             -17.8305  5940.1978  -0.003
## country_feMozambique                         -18.0177  6254.1163  -0.003
## country_feNamibia                            -16.9267  9175.4232  -0.002
## country_feNicaragua                          -18.6125  4105.5348  -0.005
## country_feNiger                                0.4791     1.4181   0.338
## country_feNigeria                            -19.1803  5007.3154  -0.004
## country_fePanama                             -17.6056  6963.7092  -0.003
## country_feParaguay                           -19.0164  4865.9179  -0.004
## country_fePeru                               -17.8042  5153.8249  -0.003
## country_fePhilippines                        -18.3512  5909.8178  -0.003
## country_feRussia                               1.0119     1.4278   0.709
## country_feRwanda                             -17.2769  6946.3249  -0.002
## country_feSenegal                            -16.7777  8215.3210  -0.002
## country_feSerbia                              -1.8268     1.7234  -1.060
## country_feSierra Leone                       -18.5706  4887.5122  -0.004
## country_feSingapore                          -15.8671 10509.8901  -0.002
## country_feSouth Korea                        -16.9092  7546.9277  -0.002
## country_feSri Lanka                            0.8453     1.3824   0.611
## country_feTaiwan                             -16.7217  8491.8548  -0.002
## country_feTajikistan                          -1.5974     1.5616  -1.023
## country_feTanzania                           -17.1508  8027.3126  -0.002
## country_feThe Gambia                         -18.4985  5093.5081  -0.004
## country_feTogo                               -18.9855  4456.1066  -0.004
## country_feTürkiye                            -18.1970  5852.0309  -0.003
## country_feTurkmenistan                        -3.0103     1.8941  -1.589
## country_feUganda                             -18.3337  5456.6473  -0.003
## country_feUzbekistan                          -1.0735     1.6352  -0.656
## country_feVenezuela                           -1.9346     1.7144  -1.128
## country_feZambia                             -17.2998  6896.3240  -0.003
## country_feZimbabwe                           -18.7134  5077.2597  -0.004
##                                            Pr(>|z|)   
## (Intercept)                                 0.00575 **
## jud_ind                                     0.63323   
## exec_corrupt_index                          0.00138 **
## country_feAlgeria                           0.72116   
## country_feAngola                            0.99638   
## country_feArmenia                           0.36170   
## country_feAzerbaijan                        0.20948   
## country_feBangladesh                        0.99704   
## country_feBelarus                           0.87992   
## country_feBurkina Faso                      0.71359   
## country_feCambodia                          0.33084   
## country_feCameroon                          0.20128   
## country_feCentral African Republic          0.99665   
## country_feCroatia                           0.99745   
## country_feDemocratic Republic of the Congo  0.54552   
## country_feDjibouti                          0.63855   
## country_feEgypt                             0.12286   
## country_feEquatorial Guinea                 0.99586   
## country_feEthiopia                          0.99788   
## country_feGabon                             0.99707   
## country_feGeorgia                           0.61257   
## country_feGhana                             0.99767   
## country_feGuinea                            0.99611   
## country_feGuinea-Bissau                     0.99675   
## country_feGuyana                            0.99760   
## country_feHaiti                             0.99704   
## country_feIvory Coast                       0.99738   
## country_feKazakhstan                        0.83154   
## country_feKenya                             0.99716   
## country_feKyrgyzstan                        0.86693   
## country_feLesotho                           0.99801   
## country_feMadagascar                        0.39032   
## country_feMalaysia                          0.22099   
## country_feMauritania                        0.91447   
## country_feMexico                            0.99761   
## country_feMozambique                        0.99770   
## country_feNamibia                           0.99853   
## country_feNicaragua                         0.99638   
## country_feNiger                             0.73547   
## country_feNigeria                           0.99694   
## country_fePanama                            0.99798   
## country_feParaguay                          0.99688   
## country_fePeru                              0.99724   
## country_fePhilippines                       0.99752   
## country_feRussia                            0.47852   
## country_feRwanda                            0.99802   
## country_feSenegal                           0.99837   
## country_feSerbia                            0.28914   
## country_feSierra Leone                      0.99697   
## country_feSingapore                         0.99880   
## country_feSouth Korea                       0.99821   
## country_feSri Lanka                         0.54090   
## country_feTaiwan                            0.99843   
## country_feTajikistan                        0.30633   
## country_feTanzania                          0.99830   
## country_feThe Gambia                        0.99710   
## country_feTogo                              0.99660   
## country_feTürkiye                           0.99752   
## country_feTurkmenistan                      0.11199   
## country_feUganda                            0.99732   
## country_feUzbekistan                        0.51153   
## country_feVenezuela                         0.25913   
## country_feZambia                            0.99800   
## country_feZimbabwe                          0.99706   
## 
## Zero-inflation model coefficients (binomial with logit link):
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)          0.1691     1.4663   0.115   0.9082  
## jud_ind              0.4201     0.2109   1.992   0.0463 *
## exec_corrupt_index   1.8026     1.9194   0.939   0.3477  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 37 
## Log-likelihood: -272.3 on 67 Df
summary(zip_models$n_parl_zip1)
## 
## Call:
## zeroinfl(formula = f1, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -5.500e-01 -2.307e-01 -4.044e-05 -2.349e-05  5.865e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                   -5.5940     2.0631  -2.711
## jud_ind                                       -0.4133     1.2912  -0.320
## exec_corrupt_index                             7.3788     2.4359   3.029
## country_feAlgeria                              0.3724     1.6562   0.225
## country_feAngola                             -19.2903  4370.3232  -0.004
## country_feArmenia                             -1.6405     1.8582  -0.883
## country_feAzerbaijan                          -2.0147     1.7866  -1.128
## country_feBangladesh                         -18.6951  5004.8095  -0.004
## country_feBelarus                             -0.3475     1.6618  -0.209
## country_feBurkina Faso                        -0.6484     1.7749  -0.365
## country_feCambodia                            -1.4928     1.7010  -0.878
## country_feCameroon                            -2.0569     1.7916  -1.148
## country_feCentral African Republic           -18.8989  4577.3545  -0.004
## country_feCroatia                            -17.8131  6123.4004  -0.003
## country_feDemocratic Republic of the Congo    -1.0263     1.6820  -0.610
## country_feDjibouti                            -0.8103     1.6799  -0.482
## country_feEgypt                                2.3601     1.5940   1.481
## country_feEquatorial Guinea                  -19.8234  4781.7253  -0.004
## country_feEthiopia                           -17.4674  6053.0475  -0.003
## country_feGabon                              -18.8071  4822.3246  -0.004
## country_feGeorgia                             -0.8662     1.6640  -0.521
## country_feGhana                              -18.5663  6183.9947  -0.003
## country_feGuinea                             -19.5928  4527.9831  -0.004
## country_feGuinea-Bissau                      -19.1321  4377.4203  -0.004
## country_feGuyana                             -18.2739  6340.7445  -0.003
## country_feHaiti                              -18.8409  4858.5063  -0.004
## country_feIvory Coast                        -18.5374  5343.2890  -0.003
## country_feKazakhstan                          -0.2496     1.7143  -0.146
## country_feKenya                              -18.7144  5155.8322  -0.004
## country_feKyrgyzstan                          -0.2779     1.6176  -0.172
## country_feLesotho                            -17.9555  8761.9265  -0.002
## country_feMadagascar                          -1.5426     1.8925  -0.815
## country_feMalaysia                             1.5377     1.5090   1.019
## country_feMauritania                          -0.2981     1.6975  -0.176
## country_feMexico                             -18.0530  6601.5675  -0.003
## country_feMozambique                         -18.1335  6572.2430  -0.003
## country_feNamibia                            -17.7897 17954.6050  -0.001
## country_feNicaragua                          -18.6703  4229.0561  -0.004
## country_feNiger                                0.4439     1.5655   0.284
## country_feNigeria                            -19.0820  4365.8680  -0.004
## country_fePanama                             -17.7771  7745.0366  -0.002
## country_feParaguay                           -19.0020  4547.6729  -0.004
## country_fePeru                               -18.1956  6131.6032  -0.003
## country_fePhilippines                        -18.4315  5965.2335  -0.003
## country_feRussia                               0.8899     1.6092   0.553
## country_feRwanda                             -17.0971  5815.6863  -0.003
## country_feSenegal                            -16.8472  8527.2168  -0.002
## country_feSerbia                              -1.8565     1.8664  -0.995
## country_feSierra Leone                       -18.5937  4757.3716  -0.004
## country_feSingapore                          -15.7391  9436.3203  -0.002
## country_feSouth Korea                        -17.5145 11109.7177  -0.002
## country_feSri Lanka                            0.8067     1.5586   0.518
## country_feTaiwan                             -17.4073 13140.8651  -0.001
## country_feTajikistan                          -1.5347     1.7226  -0.891
## country_feTanzania                           -17.6238 11429.7545  -0.002
## country_feThe Gambia                         -18.5730  5090.1681  -0.004
## country_feTogo                               -19.0812  4575.2062  -0.004
## country_feTürkiye                            -18.4101  6304.4742  -0.003
## country_feTurkmenistan                        -2.8246     2.0712  -1.364
## country_feUganda                             -18.3463  5261.6658  -0.003
## country_feUzbekistan                          -0.9213     1.8218  -0.506
## country_feVenezuela                           -1.7740     1.8915  -0.938
## country_feZambia                             -17.6012  8336.8712  -0.002
## country_feZimbabwe                           -18.7296  4784.9212  -0.004
## jud_ind:exec_corrupt_index                     0.7395     1.7286   0.428
##                                            Pr(>|z|)   
## (Intercept)                                 0.00670 **
## jud_ind                                     0.74889   
## exec_corrupt_index                          0.00245 **
## country_feAlgeria                           0.82208   
## country_feAngola                            0.99648   
## country_feArmenia                           0.37734   
## country_feAzerbaijan                        0.25944   
## country_feBangladesh                        0.99702   
## country_feBelarus                           0.83436   
## country_feBurkina Faso                      0.71486   
## country_feCambodia                          0.38017   
## country_feCameroon                          0.25094   
## country_feCentral African Republic          0.99671   
## country_feCroatia                           0.99768   
## country_feDemocratic Republic of the Congo  0.54177   
## country_feDjibouti                          0.62955   
## country_feEgypt                             0.13872   
## country_feEquatorial Guinea                 0.99669   
## country_feEthiopia                          0.99770   
## country_feGabon                             0.99689   
## country_feGeorgia                           0.60270   
## country_feGhana                             0.99760   
## country_feGuinea                            0.99655   
## country_feGuinea-Bissau                     0.99651   
## country_feGuyana                            0.99770   
## country_feHaiti                             0.99691   
## country_feIvory Coast                       0.99723   
## country_feKazakhstan                        0.88426   
## country_feKenya                             0.99710   
## country_feKyrgyzstan                        0.86362   
## country_feLesotho                           0.99836   
## country_feMadagascar                        0.41502   
## country_feMalaysia                          0.30820   
## country_feMauritania                        0.86061   
## country_feMexico                            0.99782   
## country_feMozambique                        0.99780   
## country_feNamibia                           0.99921   
## country_feNicaragua                         0.99648   
## country_feNiger                             0.77676   
## country_feNigeria                           0.99651   
## country_fePanama                            0.99817   
## country_feParaguay                          0.99667   
## country_fePeru                              0.99763   
## country_fePhilippines                       0.99753   
## country_feRussia                            0.58026   
## country_feRwanda                            0.99765   
## country_feSenegal                           0.99842   
## country_feSerbia                            0.31990   
## country_feSierra Leone                      0.99688   
## country_feSingapore                         0.99867   
## country_feSouth Korea                       0.99874   
## country_feSri Lanka                         0.60473   
## country_feTaiwan                            0.99894   
## country_feTajikistan                        0.37297   
## country_feTanzania                          0.99877   
## country_feThe Gambia                        0.99709   
## country_feTogo                              0.99667   
## country_feTürkiye                           0.99767   
## country_feTurkmenistan                      0.17264   
## country_feUganda                            0.99722   
## country_feUzbekistan                        0.61305   
## country_feVenezuela                         0.34830   
## country_feZambia                            0.99832   
## country_feZimbabwe                          0.99688   
## jud_ind:exec_corrupt_index                  0.66882   
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  0.1009     1.6280   0.062    0.951
## jud_ind                      0.2856     1.1360   0.251    0.802
## exec_corrupt_index           1.9061     2.1891   0.871    0.384
## jud_ind:exec_corrupt_index   0.1849     1.4817   0.125    0.901
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 39 
## Log-likelihood: -272.2 on 69 Df
summary(zip_models$n_parl_zip2)
## 
## Call:
## zeroinfl(formula = f2, data = subset_data, dist = "poisson")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -5.776e-01 -2.276e-01 -2.773e-05 -1.578e-05  6.812e+00 
## 
## Count model coefficients (poisson with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -2.596e+00  2.566e+00  -1.012
## jud_ind                                     2.471e-01  1.297e+00   0.190
## exec_corrupt_index                          6.452e+00  2.316e+00   2.786
## polyarchy                                  -8.977e+00  3.600e+00  -2.494
## country_feAlgeria                           1.403e+00  1.136e+00   1.235
## country_feAngola                           -1.991e+01  6.981e+03  -0.003
## country_feArmenia                          -8.292e-01  1.394e+00  -0.595
## country_feAzerbaijan                       -1.506e+00  1.340e+00  -1.124
## country_feBangladesh                       -1.871e+01  7.060e+03  -0.003
## country_feBelarus                           7.352e-01  1.160e+00   0.634
## country_feBurkina Faso                      4.224e-01  1.412e+00   0.299
## country_feCambodia                         -5.984e-01  1.194e+00  -0.501
## country_feCameroon                         -1.314e+00  1.311e+00  -1.002
## country_feCentral African Republic         -1.880e+01  6.390e+03  -0.003
## country_feCroatia                          -1.735e+01  7.526e+03  -0.002
## country_feDemocratic Republic of the Congo -1.708e-01  1.092e+00  -0.156
## country_feDjibouti                         -5.292e-01  1.220e+00  -0.434
## country_feEgypt                             9.500e-01  1.603e+00   0.593
## country_feEquatorial Guinea                -2.010e+01  6.621e+03  -0.003
## country_feEthiopia                         -1.819e+01  8.404e+03  -0.002
## country_feGabon                            -1.908e+01  6.941e+03  -0.003
## country_feGeorgia                          -9.292e-02  1.008e+00  -0.092
## country_feGhana                            -1.848e+01  8.254e+03  -0.002
## country_feGuinea                           -1.969e+01  6.386e+03  -0.003
## country_feGuinea-Bissau                    -1.920e+01  6.462e+03  -0.003
## country_feGuyana                           -1.815e+01  8.444e+03  -0.002
## country_feHaiti                            -1.906e+01  6.980e+03  -0.003
## country_feIvory Coast                      -1.876e+01  7.310e+03  -0.003
## country_feKazakhstan                        5.391e-01  1.243e+00   0.434
## country_feKenya                            -1.879e+01  7.138e+03  -0.003
## country_feKyrgyzstan                        5.260e-01  1.035e+00   0.508
## country_feLesotho                          -1.855e+01  1.051e+04  -0.002
## country_feMadagascar                       -7.123e-01  1.488e+00  -0.479
## country_feMalaysia                          1.845e+00  9.244e-01   1.995
## country_feMauritania                        7.896e-01  1.180e+00   0.669
## country_feMexico                           -1.759e+01  9.349e+03  -0.002
## country_feMozambique                       -1.849e+01  8.954e+03  -0.002
## country_feNamibia                          -1.791e+01  2.735e+04  -0.001
## country_feNicaragua                        -1.792e+01  5.513e+03  -0.003
## country_feNiger                             1.071e+00  1.044e+00   1.026
## country_feNigeria                          -1.931e+01  6.655e+03  -0.003
## country_fePanama                           -1.671e+01  1.338e+04  -0.001
## country_feParaguay                         -1.834e+01  6.360e+03  -0.003
## country_fePeru                             -1.802e+01  7.717e+03  -0.002
## country_fePhilippines                      -1.817e+01  8.134e+03  -0.002
## country_feRussia                            1.845e+00  1.036e+00   1.781
## country_feRwanda                           -1.806e+01  8.522e+03  -0.002
## country_feSenegal                          -1.591e+01  1.627e+04  -0.001
## country_feSerbia                           -1.410e+00  1.425e+00  -0.989
## country_feSierra Leone                     -1.847e+01  6.824e+03  -0.003
## country_feSingapore                        -1.604e+01  1.354e+04  -0.001
## country_feSouth Korea                      -1.672e+01  1.990e+04  -0.001
## country_feSri Lanka                         1.435e+00  1.016e+00   1.413
## country_feTaiwan                           -1.721e+01  1.501e+04  -0.001
## country_feTajikistan                       -1.303e+00  1.246e+00  -1.046
## country_feTanzania                         -1.825e+01  1.389e+04  -0.001
## country_feThe Gambia                       -1.907e+01  7.453e+03  -0.003
## country_feTogo                             -1.899e+01  6.328e+03  -0.003
## country_feTürkiye                          -1.864e+01  8.543e+03  -0.002
## country_feTurkmenistan                     -2.508e+00  1.800e+00  -1.393
## country_feUganda                           -1.892e+01  7.535e+03  -0.003
## country_feUzbekistan                       -6.936e-01  1.440e+00  -0.482
## country_feVenezuela                        -3.055e-01  1.577e+00  -0.194
## country_feZambia                           -1.796e+01  1.101e+04  -0.002
## country_feZimbabwe                         -1.951e+01  7.669e+03  -0.003
## jud_ind:exec_corrupt_index                  2.283e-01  1.665e+00   0.137
##                                            Pr(>|z|)   
## (Intercept)                                 0.31161   
## jud_ind                                     0.84892   
## exec_corrupt_index                          0.00534 **
## polyarchy                                   0.01264 * 
## country_feAlgeria                           0.21699   
## country_feAngola                            0.99772   
## country_feArmenia                           0.55197   
## country_feAzerbaijan                        0.26095   
## country_feBangladesh                        0.99789   
## country_feBelarus                           0.52621   
## country_feBurkina Faso                      0.76486   
## country_feCambodia                          0.61637   
## country_feCameroon                          0.31611   
## country_feCentral African Republic          0.99765   
## country_feCroatia                           0.99816   
## country_feDemocratic Republic of the Congo  0.87569   
## country_feDjibouti                          0.66456   
## country_feEgypt                             0.55331   
## country_feEquatorial Guinea                 0.99758   
## country_feEthiopia                          0.99827   
## country_feGabon                             0.99781   
## country_feGeorgia                           0.92658   
## country_feGhana                             0.99821   
## country_feGuinea                            0.99754   
## country_feGuinea-Bissau                     0.99763   
## country_feGuyana                            0.99829   
## country_feHaiti                             0.99782   
## country_feIvory Coast                       0.99795   
## country_feKazakhstan                        0.66464   
## country_feKenya                             0.99790   
## country_feKyrgyzstan                        0.61114   
## country_feLesotho                           0.99859   
## country_feMadagascar                        0.63209   
## country_feMalaysia                          0.04599 * 
## country_feMauritania                        0.50348   
## country_feMexico                            0.99850   
## country_feMozambique                        0.99835   
## country_feNamibia                           0.99948   
## country_feNicaragua                         0.99741   
## country_feNiger                             0.30512   
## country_feNigeria                           0.99769   
## country_fePanama                            0.99900   
## country_feParaguay                          0.99770   
## country_fePeru                              0.99814   
## country_fePhilippines                       0.99822   
## country_feRussia                            0.07497 . 
## country_feRwanda                            0.99831   
## country_feSenegal                           0.99922   
## country_feSerbia                            0.32252   
## country_feSierra Leone                      0.99784   
## country_feSingapore                         0.99905   
## country_feSouth Korea                       0.99933   
## country_feSri Lanka                         0.15777   
## country_feTaiwan                            0.99908   
## country_feTajikistan                        0.29568   
## country_feTanzania                          0.99895   
## country_feThe Gambia                        0.99796   
## country_feTogo                              0.99761   
## country_feTürkiye                           0.99826   
## country_feTurkmenistan                      0.16347   
## country_feUganda                            0.99800   
## country_feUzbekistan                        0.63013   
## country_feVenezuela                         0.84640   
## country_feZambia                            0.99870   
## country_feZimbabwe                          0.99797   
## jud_ind:exec_corrupt_index                  0.89092   
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  1.2371     1.8474   0.670   0.5031  
## jud_ind                     -0.4794     1.2091  -0.396   0.6918  
## exec_corrupt_index           2.9465     2.3733   1.242   0.2144  
## polyarchy                   -7.0390     4.2321  -1.663   0.0963 .
## jud_ind:exec_corrupt_index   1.0938     1.5644   0.699   0.4844  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 55 
## Log-likelihood: -269.7 on 71 Df

5.2 Zero-inflated negative binomial models

zinb_models <- list()

for (y in outcomes) {
  
  f0 <- as.formula(paste0(
    y, " ~ jud_ind + exec_corrupt_index + country_fe | 
          jud_ind + exec_corrupt_index"
  ))
  
  f1 <- as.formula(paste0(
    y, " ~ jud_ind * exec_corrupt_index + country_fe | 
          jud_ind * exec_corrupt_index"
  ))
  
  f2 <- as.formula(paste0(
    y, " ~ jud_ind * exec_corrupt_index + polyarchy + country_fe | 
          jud_ind * exec_corrupt_index + polyarchy"
  ))
  
  zinb_models[[paste0(y, "_zinb0")]] <- zeroinfl(f0, data = subset_data, dist = "negbin")
  zinb_models[[paste0(y, "_zinb1")]] <- zeroinfl(f1, data = subset_data, dist = "negbin")
  zinb_models[[paste0(y, "_zinb2")]] <- zeroinfl(f2, data = subset_data, dist = "negbin")
}
## Warning in sqrt(diag(vc)[np]): NaNs produced
## Warning in sqrt(diag(vc)[np]): NaNs produced
## Warning in sqrt(diag(vc)[np]): NaNs produced
## Warning in sqrt(diag(vc)[np]): NaNs produced
## Warning in sqrt(diag(vc)[np]): NaNs produced

WE HAVE CONVERGENCE ISSUE HERE – NANS produced. I have to check why this is happening.

Let’s see the results. – Nothing is statistically significant across models.

# Total cooptation
summary(zinb_models$n_coopt_zinb0)
## 
## Call:
## zeroinfl(formula = f0, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.355e-01 -2.806e-01 -1.700e-01 -4.107e-05  6.611e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -2.934e+00  1.314e+00  -2.232
## jud_ind                                     1.698e-01  2.144e-01   0.792
## exec_corrupt_index                          3.688e+00  1.492e+00   2.471
## country_feAlgeria                           9.994e-01  1.041e+00   0.960
## country_feAngola                           -1.839e+01  3.756e+03  -0.005
## country_feArmenia                           7.386e-01  9.365e-01   0.789
## country_feAzerbaijan                       -1.337e+00  1.232e+00  -1.085
## country_feBangladesh                       -6.967e-01  1.158e+00  -0.602
## country_feBelarus                           6.282e-03  1.048e+00   0.006
## country_feBurkina Faso                      8.767e-01  9.490e-01   0.924
## country_feCambodia                         -7.865e-01  1.113e+00  -0.706
## country_feCameroon                         -1.379e+00  1.242e+00  -1.110
## country_feCentral African Republic         -6.967e-01  1.230e+00  -0.566
## country_feCroatia                          -1.696e+01  4.084e+03  -0.004
## country_feDemocratic Republic of the Congo  4.387e-01  1.043e+00   0.421
## country_feDjibouti                          4.133e-02  1.124e+00   0.037
## country_feEgypt                             1.407e+00  1.037e+00   1.357
## country_feEquatorial Guinea                -1.336e+00  1.291e+00  -1.035
## country_feEthiopia                         -1.701e+01  4.547e+03  -0.004
## country_feGabon                            -2.347e-01  9.656e-01  -0.243
## country_feGeorgia                           2.476e-01  9.384e-01   0.264
## country_feGhana                            -1.297e+00  1.357e+00  -0.956
## country_feGuinea                           -2.087e+00  1.428e+00  -1.461
## country_feGuinea-Bissau                    -2.319e-01  1.005e+00  -0.231
## country_feGuyana                           -1.756e+01  4.170e+03  -0.004
## country_feHaiti                             6.526e-01  9.841e-01   0.663
## country_feIvory Coast                      -1.228e+00  1.359e+00  -0.904
## country_feKazakhstan                        3.990e-01  1.091e+00   0.366
## country_feKenya                            -1.802e+01  4.102e+03  -0.004
## country_feKyrgyzstan                        1.042e+00  9.468e-01   1.101
## country_feLesotho                          -1.717e+01  4.524e+03  -0.004
## country_feMadagascar                       -1.092e+00  1.415e+00  -0.772
## country_feMalaysia                          1.478e+00  8.605e-01   1.717
## country_feMauritania                        8.905e-01  1.070e+00   0.832
## country_feMexico                           -1.729e+01  4.267e+03  -0.004
## country_feMozambique                       -1.748e+01  4.366e+03  -0.004
## country_feNamibia                          -1.664e+01  5.523e+03  -0.003
## country_feNicaragua                        -1.780e+01  3.672e+03  -0.005
## country_feNiger                             7.798e-01  1.030e+00   0.757
## country_feNigeria                          -1.949e+00  1.362e+00  -1.431
## country_fePanama                           -1.713e+01  4.589e+03  -0.004
## country_feParaguay                         -1.832e+01  3.919e+03  -0.005
## country_fePeru                             -1.720e+01  3.968e+03  -0.004
## country_fePhilippines                      -1.777e+01  4.222e+03  -0.004
## country_feRussia                            1.370e+00  9.742e-01   1.406
## country_feRwanda                            2.252e+00  1.158e+00   1.946
## country_feSenegal                           5.827e-01  1.480e+00   0.394
## country_feSerbia                           -8.617e-01  1.164e+00  -0.740
## country_feSierra Leone                     -3.442e-01  1.226e+00  -0.281
## country_feSingapore                        -1.559e+01  5.379e+03  -0.003
## country_feSouth Korea                      -1.652e+01  4.643e+03  -0.004
## country_feSri Lanka                         7.133e-01  9.885e-01   0.722
## country_feTaiwan                           -1.640e+01  4.996e+03  -0.003
## country_feTajikistan                       -8.629e-01  1.125e+00  -0.767
## country_feTanzania                         -1.677e+01  4.811e+03  -0.003
## country_feThe Gambia                       -1.783e+01  4.078e+03  -0.004
## country_feTogo                             -9.755e-01  1.186e+00  -0.822
## country_feTürkiye                          -1.764e+01  4.146e+03  -0.004
## country_feTurkmenistan                     -2.045e+00  1.522e+00  -1.343
## country_feUganda                           -3.455e-01  1.021e+00  -0.339
## country_feUzbekistan                        4.339e-02  1.185e+00   0.037
## country_feVenezuela                        -5.824e-01  1.239e+00  -0.470
## country_feZambia                           -1.682e+01  4.411e+03  -0.004
## country_feZimbabwe                         -6.983e-01  1.187e+00  -0.588
## Log(theta)                                  1.670e+01  6.955e+01   0.240
##                                            Pr(>|z|)  
## (Intercept)                                  0.0256 *
## jud_ind                                      0.4285  
## exec_corrupt_index                           0.0135 *
## country_feAlgeria                            0.3370  
## country_feAngola                             0.9961  
## country_feArmenia                            0.4303  
## country_feAzerbaijan                         0.2777  
## country_feBangladesh                         0.5474  
## country_feBelarus                            0.9952  
## country_feBurkina Faso                       0.3556  
## country_feCambodia                           0.4800  
## country_feCameroon                           0.2671  
## country_feCentral African Republic           0.5712  
## country_feCroatia                            0.9967  
## country_feDemocratic Republic of the Congo   0.6740  
## country_feDjibouti                           0.9707  
## country_feEgypt                              0.1748  
## country_feEquatorial Guinea                  0.3008  
## country_feEthiopia                           0.9970  
## country_feGabon                              0.8080  
## country_feGeorgia                            0.7919  
## country_feGhana                              0.3389  
## country_feGuinea                             0.1440  
## country_feGuinea-Bissau                      0.8175  
## country_feGuyana                             0.9966  
## country_feHaiti                              0.5072  
## country_feIvory Coast                        0.3662  
## country_feKazakhstan                         0.7146  
## country_feKenya                              0.9965  
## country_feKyrgyzstan                         0.2710  
## country_feLesotho                            0.9970  
## country_feMadagascar                         0.4403  
## country_feMalaysia                           0.0859 .
## country_feMauritania                         0.4051  
## country_feMexico                             0.9968  
## country_feMozambique                         0.9968  
## country_feNamibia                            0.9976  
## country_feNicaragua                          0.9961  
## country_feNiger                              0.4492  
## country_feNigeria                            0.1524  
## country_fePanama                             0.9970  
## country_feParaguay                           0.9963  
## country_fePeru                               0.9965  
## country_fePhilippines                        0.9966  
## country_feRussia                             0.1596  
## country_feRwanda                             0.0517 .
## country_feSenegal                            0.6938  
## country_feSerbia                             0.4592  
## country_feSierra Leone                       0.7789  
## country_feSingapore                          0.9977  
## country_feSouth Korea                        0.9972  
## country_feSri Lanka                          0.4705  
## country_feTaiwan                             0.9974  
## country_feTajikistan                         0.4429  
## country_feTanzania                           0.9972  
## country_feThe Gambia                         0.9965  
## country_feTogo                               0.4109  
## country_feTürkiye                            0.9966  
## country_feTurkmenistan                       0.1791  
## country_feUganda                             0.7350  
## country_feUzbekistan                         0.9708  
## country_feVenezuela                          0.6383  
## country_feZambia                             0.9970  
## country_feZimbabwe                           0.5562  
## Log(theta)                                   0.8102  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                    Estimate Std. Error z value Pr(>|z|)   
## (Intercept)          1.9736     0.7294   2.706  0.00681 **
## jud_ind              0.1999     0.1364   1.466  0.14271   
## exec_corrupt_index  -0.4030     0.9564  -0.421  0.67347   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 17952595.2154 
## Number of iterations in BFGS optimization: 104 
## Log-likelihood:  -450 on 68 Df
summary(zinb_models$n_coopt_zinb1)
## 
## Call:
## zeroinfl(formula = f1, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.286e-01 -2.783e-01 -1.741e-01 -4.591e-05  6.574e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                  -3.89413    1.48700  -2.619
## jud_ind                                      -1.76076    1.21955  -1.444
## exec_corrupt_index                            5.44883    1.92305   2.833
## country_feAlgeria                             0.46495    1.21799   0.382
## country_feAngola                            -18.30243 3250.19002  -0.006
## country_feArmenia                             0.36989    1.12586   0.329
## country_feAzerbaijan                         -1.27625    1.36272  -0.937
## country_feBangladesh                         -0.91506    1.29975  -0.704
## country_feBelarus                            -0.46728    1.23118  -0.380
## country_feBurkina Faso                        0.71450    1.08595   0.658
## country_feCambodia                           -0.81475    1.26558  -0.644
## country_feCameroon                           -1.29680    1.37451  -0.943
## country_feCentral African Republic           -0.88793    1.35933  -0.653
## country_feCroatia                           -16.84519 3628.53374  -0.005
## country_feDemocratic Republic of the Congo   -0.11452    1.24461  -0.092
## country_feDjibouti                           -0.32024    1.26816  -0.253
## country_feEgypt                               2.06101    1.14466   1.801
## country_feEquatorial Guinea                  -1.04142    1.43217  -0.727
## country_feEthiopia                          -17.04103 3777.74643  -0.005
## country_feGabon                              -0.69841    1.16744  -0.598
## country_feGeorgia                            -0.28042    1.17420  -0.239
## country_feGhana                              -1.65221    1.48794  -1.110
## country_feGuinea                             -2.00979    1.54676  -1.299
## country_feGuinea-Bissau                      -0.73911    1.20960  -0.611
## country_feGuyana                            -17.49136 3703.53374  -0.005
## country_feHaiti                               0.33347    1.14253   0.292
## country_feIvory Coast                        -1.53871    1.50507  -1.022
## country_feKazakhstan                          0.63692    1.22980   0.518
## country_feKenya                             -17.98759 3475.50533  -0.005
## country_feKyrgyzstan                          0.85441    1.11653   0.765
## country_feLesotho                           -16.93665 4707.02751  -0.004
## country_feMadagascar                         -1.29762    1.51636  -0.856
## country_feMalaysia                            1.19435    1.03809   1.151
## country_feMauritania                          0.41042    1.24058   0.331
## country_feMexico                            -17.14492 3950.50713  -0.004
## country_feMozambique                        -17.38354 3987.26980  -0.004
## country_feNamibia                           -15.98385 8136.99840  -0.002
## country_feNicaragua                         -17.66673 3255.66048  -0.005
## country_feNiger                               0.62447    1.16321   0.537
## country_feNigeria                            -2.62843    1.55719  -1.688
## country_fePanama                            -16.98549 4590.28230  -0.004
## country_feParaguay                          -18.33432 3087.04220  -0.006
## country_fePeru                              -17.05189 3478.19946  -0.005
## country_fePhilippines                       -17.71892 3643.05655  -0.005
## country_feRussia                              0.92242    1.16653   0.791
## country_feRwanda                              1.49102    1.30249   1.145
## country_feSenegal                             0.55844    1.53743   0.363
## country_feSerbia                             -1.00383    1.30728  -0.768
## country_feSierra Leone                       -0.67545    1.35259  -0.499
## country_feSingapore                         -15.64204 4670.30489  -0.003
## country_feSouth Korea                       -16.14096 5144.07392  -0.003
## country_feSri Lanka                           0.58371    1.13470   0.514
## country_feTaiwan                            -15.93857 5217.35455  -0.003
## country_feTajikistan                         -0.71802    1.26264  -0.569
## country_feTanzania                          -16.41141 5869.05977  -0.003
## country_feThe Gambia                        -17.79005 3473.23793  -0.005
## country_feTogo                               -1.22416    1.32025  -0.927
## country_feTürkiye                           -17.53371 3562.19873  -0.005
## country_feTurkmenistan                       -1.44135    1.67272  -0.862
## country_feUganda                             -0.69785    1.18558  -0.589
## country_feUzbekistan                          0.58207    1.37149   0.424
## country_feVenezuela                          -0.02344    1.45072  -0.016
## country_feZambia                            -16.62243 4514.84015  -0.004
## country_feZimbabwe                           -1.16299    1.37610  -0.845
## jud_ind:exec_corrupt_index                    2.65087    1.65805   1.599
## Log(theta)                                   18.18411   20.97220   0.867
##                                            Pr(>|z|)   
## (Intercept)                                 0.00882 **
## jud_ind                                     0.14880   
## exec_corrupt_index                          0.00461 **
## country_feAlgeria                           0.70266   
## country_feAngola                            0.99551   
## country_feArmenia                           0.74250   
## country_feAzerbaijan                        0.34899   
## country_feBangladesh                        0.48142   
## country_feBelarus                           0.70429   
## country_feBurkina Faso                      0.51057   
## country_feCambodia                          0.51972   
## country_feCameroon                          0.34544   
## country_feCentral African Republic          0.51362   
## country_feCroatia                           0.99630   
## country_feDemocratic Republic of the Congo  0.92669   
## country_feDjibouti                          0.80064   
## country_feEgypt                             0.07178 . 
## country_feEquatorial Guinea                 0.46713   
## country_feEthiopia                          0.99640   
## country_feGabon                             0.54968   
## country_feGeorgia                           0.81125   
## country_feGhana                             0.26683   
## country_feGuinea                            0.19382   
## country_feGuinea-Bissau                     0.54118   
## country_feGuyana                            0.99623   
## country_feHaiti                             0.77038   
## country_feIvory Coast                       0.30661   
## country_feKazakhstan                        0.60453   
## country_feKenya                             0.99587   
## country_feKyrgyzstan                        0.44413   
## country_feLesotho                           0.99713   
## country_feMadagascar                        0.39214   
## country_feMalaysia                          0.24992   
## country_feMauritania                        0.74077   
## country_feMexico                            0.99654   
## country_feMozambique                        0.99652   
## country_feNamibia                           0.99843   
## country_feNicaragua                         0.99567   
## country_feNiger                             0.59137   
## country_feNigeria                           0.09142 . 
## country_fePanama                            0.99705   
## country_feParaguay                          0.99526   
## country_fePeru                              0.99609   
## country_fePhilippines                       0.99612   
## country_feRussia                            0.42909   
## country_feRwanda                            0.25231   
## country_feSenegal                           0.71643   
## country_feSerbia                            0.44256   
## country_feSierra Leone                      0.61752   
## country_feSingapore                         0.99733   
## country_feSouth Korea                       0.99750   
## country_feSri Lanka                         0.60696   
## country_feTaiwan                            0.99756   
## country_feTajikistan                        0.56958   
## country_feTanzania                          0.99777   
## country_feThe Gambia                        0.99591   
## country_feTogo                              0.35382   
## country_feTürkiye                           0.99607   
## country_feTurkmenistan                      0.38886   
## country_feUganda                            0.55612   
## country_feUzbekistan                        0.67127   
## country_feVenezuela                         0.98711   
## country_feZambia                            0.99706   
## country_feZimbabwe                          0.39804   
## jud_ind:exec_corrupt_index                  0.10987   
## Log(theta)                                  0.38591   
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  1.3871     1.0918   1.270    0.204
## jud_ind                     -0.3326     0.8792  -0.378    0.705
## exec_corrupt_index           0.3816     1.4484   0.263    0.792
## jud_ind:exec_corrupt_index   0.7202     1.1629   0.619    0.536
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 78933038.1259 
## Number of iterations in BFGS optimization: 66 
## Log-likelihood: -448.6 on 70 Df
summary(zinb_models$n_coopt_zinb2)
## 
## Call:
## zeroinfl(formula = f2, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.302e-01 -2.760e-01 -1.706e-01 -3.329e-05  5.999e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                  -1.71848    1.94695  -0.883
## jud_ind                                      -0.90831    1.34472  -0.675
## exec_corrupt_index                            4.17705    1.98813   2.101
## polyarchy                                    -4.83066    2.68880  -1.797
## country_feAlgeria                             1.22338    1.02786   1.190
## country_feAngola                            -18.68228 4000.25827  -0.005
## country_feArmenia                             1.05918    0.88100   1.202
## country_feAzerbaijan                         -0.93724    1.18520  -0.791
## country_feBangladesh                         -0.60495    1.06375  -0.569
## country_feBelarus                             0.26437    1.03757   0.255
## country_feBurkina Faso                        1.58519    0.92505   1.714
## country_feCambodia                           -0.14514    1.07834  -0.135
## country_feCameroon                           -0.66357    1.20519  -0.551
## country_feCentral African Republic           -0.25277    1.18630  -0.213
## country_feCroatia                           -16.53239 4328.01021  -0.004
## country_feDemocratic Republic of the Congo    0.40525    0.96837   0.418
## country_feDjibouti                           -0.17653    1.06710  -0.165
## country_feEgypt                               0.92269    1.29838   0.711
## country_feEquatorial Guinea                  -0.80900    1.28708  -0.629
## country_feEthiopia                          -17.62337 4695.20198  -0.004
## country_feGabon                              -0.36924    0.89539  -0.412
## country_feGeorgia                             0.31372    0.89047   0.352
## country_feGhana                              -1.49679    1.28266  -1.167
## country_feGuinea                             -1.54230    1.40249  -1.100
## country_feGuinea-Bissau                      -0.07837    0.97379  -0.080
## country_feGuyana                            -17.41249 4836.32772  -0.004
## country_feHaiti                               1.11829    0.94571   1.182
## country_feIvory Coast                        -1.14049    1.35233  -0.843
## country_feKazakhstan                          1.22832    1.05811   1.161
## country_feKenya                             -18.01218 4524.20434  -0.004
## country_feKyrgyzstan                          1.49227    0.88110   1.694
## country_feLesotho                           -17.26260 4872.68837  -0.004
## country_feMadagascar                         -0.59988    1.35625  -0.442
## country_feMalaysia                            1.37161    0.77797   1.763
## country_feMauritania                          1.14405    1.04019   1.100
## country_feMexico                            -16.87194 5257.03861  -0.003
## country_feMozambique                        -17.60948 5037.49543  -0.003
## country_feNamibia                           -16.05355 8617.53592  -0.002
## country_feNicaragua                         -16.98728 4182.47269  -0.004
## country_feNiger                               0.90160    0.91620   0.984
## country_feNigeria                            -2.06514    1.35190  -1.528
## country_fePanama                            -16.26810 5944.19052  -0.003
## country_feParaguay                          -17.87786 4463.89415  -0.004
## country_fePeru                              -16.93503 4165.42361  -0.004
## country_fePhilippines                       -17.56481 4934.11163  -0.004
## country_feRussia                              1.68686    0.96987   1.739
## country_feRwanda                              1.29051    1.17235   1.101
## country_feSenegal                             1.62524    1.47746   1.100
## country_feSerbia                             -0.57351    1.11059  -0.516
## country_feSierra Leone                       -0.06274    1.17623  -0.053
## country_feSingapore                         -16.06235 5739.22881  -0.003
## country_feSouth Korea                       -15.64804 6693.50941  -0.002
## country_feSri Lanka                           1.05742    0.92524   1.143
## country_feTaiwan                            -15.95339 5578.93088  -0.003
## country_feTajikistan                         -0.51831    1.06528  -0.487
## country_feTanzania                          -16.87337 6513.18445  -0.003
## country_feThe Gambia                        -18.12828 4362.58839  -0.004
## country_feTogo                               -0.49746    1.15120  -0.432
## country_feTürkiye                           -17.69833 4542.81685  -0.004
## country_feTurkmenistan                       -1.26239    1.59115  -0.793
## country_feUganda                             -0.52797    0.95875  -0.551
## country_feUzbekistan                          0.78279    1.24830   0.627
## country_feVenezuela                           1.19178    1.44581   0.824
## country_feZambia                            -16.91102 5585.83566  -0.003
## country_feZimbabwe                           -1.10131    1.15466  -0.954
## jud_ind:exec_corrupt_index                    1.82806    1.76905   1.033
## Log(theta)                                   18.64300   16.20430   1.150
##                                            Pr(>|z|)  
## (Intercept)                                  0.3774  
## jud_ind                                      0.4994  
## exec_corrupt_index                           0.0356 *
## polyarchy                                    0.0724 .
## country_feAlgeria                            0.2340  
## country_feAngola                             0.9963  
## country_feArmenia                            0.2293  
## country_feAzerbaijan                         0.4291  
## country_feBangladesh                         0.5696  
## country_feBelarus                            0.7989  
## country_feBurkina Faso                       0.0866 .
## country_feCambodia                           0.8929  
## country_feCameroon                           0.5819  
## country_feCentral African Republic           0.8313  
## country_feCroatia                            0.9970  
## country_feDemocratic Republic of the Congo   0.6756  
## country_feDjibouti                           0.8686  
## country_feEgypt                              0.4773  
## country_feEquatorial Guinea                  0.5296  
## country_feEthiopia                           0.9970  
## country_feGabon                              0.6801  
## country_feGeorgia                            0.7246  
## country_feGhana                              0.2432  
## country_feGuinea                             0.2715  
## country_feGuinea-Bissau                      0.9359  
## country_feGuyana                             0.9971  
## country_feHaiti                              0.2370  
## country_feIvory Coast                        0.3990  
## country_feKazakhstan                         0.2457  
## country_feKenya                              0.9968  
## country_feKyrgyzstan                         0.0903 .
## country_feLesotho                            0.9972  
## country_feMadagascar                         0.6583  
## country_feMalaysia                           0.0779 .
## country_feMauritania                         0.2714  
## country_feMexico                             0.9974  
## country_feMozambique                         0.9972  
## country_feNamibia                            0.9985  
## country_feNicaragua                          0.9968  
## country_feNiger                              0.3251  
## country_feNigeria                            0.1266  
## country_fePanama                             0.9978  
## country_feParaguay                           0.9968  
## country_fePeru                               0.9968  
## country_fePhilippines                        0.9972  
## country_feRussia                             0.0820 .
## country_feRwanda                             0.2710  
## country_feSenegal                            0.2713  
## country_feSerbia                             0.6056  
## country_feSierra Leone                       0.9575  
## country_feSingapore                          0.9978  
## country_feSouth Korea                        0.9981  
## country_feSri Lanka                          0.2531  
## country_feTaiwan                             0.9977  
## country_feTajikistan                         0.6266  
## country_feTanzania                           0.9979  
## country_feThe Gambia                         0.9967  
## country_feTogo                               0.6656  
## country_feTürkiye                            0.9969  
## country_feTurkmenistan                       0.4276  
## country_feUganda                             0.5818  
## country_feUzbekistan                         0.5306  
## country_feVenezuela                          0.4098  
## country_feZambia                             0.9976  
## country_feZimbabwe                           0.3402  
## jud_ind:exec_corrupt_index                   0.3014  
## Log(theta)                                   0.2499  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  1.7016     1.2341   1.379    0.168
## jud_ind                     -0.2132     0.9065  -0.235    0.814
## exec_corrupt_index           0.3581     1.5027   0.238    0.812
## polyarchy                   -1.1853     1.9099  -0.621    0.535
## jud_ind:exec_corrupt_index   0.5072     1.1861   0.428    0.669
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 124896718.7799 
## Number of iterations in BFGS optimization: 65 
## Log-likelihood: -446.7 on 72 Df
# Cabinet
summary(zinb_models$n_cabinet_zinb0)
## 
## Call:
## zeroinfl(formula = f0, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.726e-01 -2.038e-01 -4.445e-05 -1.506e-05  6.855e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                 1.592e+00  2.428e+00   0.656
## jud_ind                                     1.494e+00  4.311e-01   3.465
## exec_corrupt_index                         -5.585e+00  3.141e+00  -1.778
## country_feAlgeria                           3.054e+00  1.642e+00   1.860
## country_feAngola                           -1.821e+01  2.292e+04  -0.001
## country_feArmenia                           3.978e+00  1.344e+00   2.959
## country_feAzerbaijan                       -1.820e+01  2.771e+04  -0.001
## country_feBangladesh                        2.026e+00  1.446e+00   1.401
## country_feBelarus                          -1.760e+01  1.474e+04  -0.001
## country_feBurkina Faso                      2.195e+00  1.372e+00   1.600
## country_feCambodia                          3.652e+00  1.685e+00   2.167
## country_feCameroon                         -1.829e+01  3.939e+04   0.000
## country_feCentral African Republic         -1.789e+01  2.041e+04  -0.001
## country_feCroatia                          -1.699e+01  5.256e+03  -0.003
## country_feDemocratic Republic of the Congo  2.499e+00  1.582e+00   1.580
## country_feDjibouti                         -1.770e+01  1.458e+04  -0.001
## country_feEgypt                            -1.789e+01  9.759e+03  -0.002
## country_feEquatorial Guinea                -1.832e+01  5.190e+04   0.000
## country_feEthiopia                         -1.698e+01  7.277e+03  -0.002
## country_feGabon                             2.650e+00  1.306e+00   2.029
## country_feGeorgia                           2.061e+00  1.728e+00   1.193
## country_feGhana                            -1.792e+01  8.604e+03  -0.002
## country_feGuinea                            2.691e+00  1.883e+00   1.429
## country_feGuinea-Bissau                     2.730e+00  1.399e+00   1.952
## country_feGuyana                           -1.753e+01  7.532e+03  -0.002
## country_feHaiti                             3.369e+00  1.299e+00   2.592
## country_feIvory Coast                       3.885e-01  1.528e+00   0.254
## country_feKazakhstan                       -1.818e+01  4.825e+04   0.000
## country_feKenya                            -1.791e+01  1.163e+04  -0.002
## country_feKyrgyzstan                        4.130e+00  1.394e+00   2.964
## country_feLesotho                          -1.717e+01  5.568e+03  -0.003
## country_feMadagascar                       -1.741e+01  1.132e+04  -0.002
## country_feMalaysia                          3.617e+00  1.202e+00   3.009
## country_feMauritania                        3.254e+00  1.611e+00   2.020
## country_feMexico                           -1.727e+01  6.399e+03  -0.003
## country_feMozambique                       -1.743e+01  7.897e+03  -0.002
## country_feNamibia                          -1.671e+01  3.386e+03  -0.005
## country_feNicaragua                        -1.769e+01  1.548e+04  -0.001
## country_feNiger                             8.744e-01  1.714e+00   0.510
## country_feNigeria                           8.884e-01  1.635e+00   0.543
## country_fePanama                           -1.711e+01  6.318e+03  -0.003
## country_feParaguay                         -1.818e+01  1.419e+04  -0.001
## country_fePeru                             -1.723e+01  5.207e+03  -0.003
## country_fePhilippines                      -1.770e+01  8.998e+03  -0.002
## country_feRussia                            1.697e+00  1.706e+00   0.995
## country_feRwanda                            2.391e+00  1.750e+00   1.367
## country_feSenegal                          -6.479e-02  2.062e+00  -0.031
## country_feSerbia                            3.072e+00  2.134e+00   1.439
## country_feSierra Leone                      2.253e+00  1.521e+00   1.481
## country_feSingapore                        -1.572e+01  2.696e+03  -0.006
## country_feSouth Korea                      -1.661e+01  3.484e+03  -0.005
## country_feSri Lanka                         3.147e+00  1.279e+00   2.461
## country_feTaiwan                           -1.648e+01  3.131e+03  -0.005
## country_feTajikistan                       -1.828e+01  3.413e+04  -0.001
## country_feTanzania                         -1.681e+01  4.325e+03  -0.004
## country_feThe Gambia                       -1.773e+01  1.138e+04  -0.002
## country_feTogo                              2.426e+00  1.530e+00   1.586
## country_feTürkiye                          -1.762e+01  6.880e+03  -0.003
## country_feTurkmenistan                     -1.821e+01  8.160e+04   0.000
## country_feUganda                            1.745e+00  1.306e+00   1.336
## country_feUzbekistan                        4.046e+00  2.162e+00   1.871
## country_feVenezuela                         3.780e+00  2.127e+00   1.777
## country_feZambia                           -1.687e+01  4.781e+03  -0.004
## country_feZimbabwe                          3.442e+00  1.905e+00   1.807
## Log(theta)                                  1.379e+01        NaN     NaN
##                                            Pr(>|z|)    
## (Intercept)                                 0.51191    
## jud_ind                                     0.00053 ***
## exec_corrupt_index                          0.07539 .  
## country_feAlgeria                           0.06293 .  
## country_feAngola                            0.99937    
## country_feArmenia                           0.00308 ** 
## country_feAzerbaijan                        0.99948    
## country_feBangladesh                        0.16121    
## country_feBelarus                           0.99905    
## country_feBurkina Faso                      0.10966    
## country_feCambodia                          0.03026 *  
## country_feCameroon                          0.99963    
## country_feCentral African Republic          0.99930    
## country_feCroatia                           0.99742    
## country_feDemocratic Republic of the Congo  0.11417    
## country_feDjibouti                          0.99903    
## country_feEgypt                             0.99854    
## country_feEquatorial Guinea                 0.99972    
## country_feEthiopia                          0.99814    
## country_feGabon                             0.04241 *  
## country_feGeorgia                           0.23301    
## country_feGhana                             0.99834    
## country_feGuinea                            0.15297    
## country_feGuinea-Bissau                     0.05096 .  
## country_feGuyana                            0.99814    
## country_feHaiti                             0.00953 ** 
## country_feIvory Coast                       0.79931    
## country_feKazakhstan                        0.99970    
## country_feKenya                             0.99877    
## country_feKyrgyzstan                        0.00304 ** 
## country_feLesotho                           0.99754    
## country_feMadagascar                        0.99877    
## country_feMalaysia                          0.00262 ** 
## country_feMauritania                        0.04340 *  
## country_feMexico                            0.99785    
## country_feMozambique                        0.99824    
## country_feNamibia                           0.99606    
## country_feNicaragua                         0.99909    
## country_feNiger                             0.60994    
## country_feNigeria                           0.58695    
## country_fePanama                            0.99784    
## country_feParaguay                          0.99898    
## country_fePeru                              0.99736    
## country_fePhilippines                       0.99843    
## country_feRussia                            0.31983    
## country_feRwanda                            0.17167    
## country_feSenegal                           0.97493    
## country_feSerbia                            0.15005    
## country_feSierra Leone                      0.13857    
## country_feSingapore                         0.99535    
## country_feSouth Korea                       0.99620    
## country_feSri Lanka                         0.01384 *  
## country_feTaiwan                            0.99580    
## country_feTajikistan                        0.99957    
## country_feTanzania                          0.99690    
## country_feThe Gambia                        0.99876    
## country_feTogo                              0.11285    
## country_feTürkiye                           0.99796    
## country_feTurkmenistan                      0.99982    
## country_feUganda                            0.18151    
## country_feUzbekistan                        0.06130 .  
## country_feVenezuela                         0.07558 .  
## country_feZambia                            0.99718    
## country_feZimbabwe                          0.07073 .  
## Log(theta)                                      NaN    
## 
## Zero-inflation model coefficients (binomial with logit link):
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          4.8340     0.9377   5.155 2.53e-07 ***
## jud_ind              1.0959     0.3602   3.042  0.00235 ** 
## exec_corrupt_index  -4.2341     1.3759  -3.077  0.00209 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 976531.4287 
## Number of iterations in BFGS optimization: 38 
## Log-likelihood: -246.1 on 68 Df
summary(zinb_models$n_cabinet_zinb1)
## 
## Call:
## zeroinfl(formula = f1, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.444e-01 -2.010e-01 -3.001e-05 -1.851e-05  6.762e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                   -6.6264     3.8622  -1.716
## jud_ind                                       -4.4100     3.5000  -1.260
## exec_corrupt_index                             6.5853     4.8311   1.363
## country_feAlgeria                              1.2774     1.7059   0.749
## country_feAngola                             -17.7874  7634.1376  -0.002
## country_feArmenia                              2.2119     1.3631   1.623
## country_feAzerbaijan                         -17.2758  8834.4556  -0.002
## country_feBangladesh                           1.1674     1.5225   0.767
## country_feBelarus                            -17.5742  8139.7992  -0.002
## country_feBurkina Faso                         2.0927     1.4389   1.454
## country_feCambodia                             1.5641     1.6212   0.965
## country_feCameroon                           -17.2769  9243.1264  -0.002
## country_feCentral African Republic           -17.4967  8464.7001  -0.002
## country_feCroatia                            -16.3217  7428.6855  -0.002
## country_feDemocratic Republic of the Congo     0.3149     1.5264   0.206
## country_feDjibouti                           -17.5999  8046.0279  -0.002
## country_feEgypt                              -17.9379  6265.1649  -0.003
## country_feEquatorial Guinea                  -16.9163 10084.4322  -0.002
## country_feEthiopia                           -17.1287  8524.7960  -0.002
## country_feGabon                                1.0401     1.3459   0.773
## country_feGeorgia                             -0.1088     1.6709  -0.065
## country_feGhana                              -17.8054  6640.7022  -0.003
## country_feGuinea                               0.8407     1.8563   0.453
## country_feGuinea-Bissau                        0.6931     1.4020   0.494
## country_feGuyana                             -17.0694  7334.9254  -0.002
## country_feHaiti                                2.2992     1.3628   1.687
## country_feIvory Coast                          0.1586     1.6982   0.093
## country_feKazakhstan                         -16.9145 10148.8318  -0.002
## country_feKenya                              -17.6794  7531.5338  -0.002
## country_feKyrgyzstan                           2.8148     1.4027   2.007
## country_feLesotho                            -15.9644  8926.1716  -0.002
## country_feMadagascar                         -17.4306  7777.6090  -0.002
## country_feMalaysia                             3.1679     1.2951   2.446
## country_feMauritania                           1.3481     1.6925   0.796
## country_feMexico                             -16.5160  7959.0046  -0.002
## country_feMozambique                         -16.9274  8377.3616  -0.002
## country_feNamibia                            -13.4150 14665.8376  -0.001
## country_feNicaragua                          -17.3160  8382.0724  -0.002
## country_feNiger                                0.9288     1.6477   0.564
## country_feNigeria                             -1.3051     1.7063  -0.765
## country_fePanama                             -16.3668  9483.4521  -0.002
## country_feParaguay                           -18.2521  6507.2889  -0.003
## country_fePeru                               -16.4072  6587.0556  -0.002
## country_fePhilippines                        -17.3899  7368.4864  -0.002
## country_feRussia                               0.2474     1.7817   0.139
## country_feRwanda                               2.5161     1.7404   1.446
## country_feSenegal                              2.3699     1.9133   1.239
## country_feSerbia                               0.8358     1.7127   0.488
## country_feSierra Leone                         1.2221     1.5691   0.779
## country_feSingapore                          -16.0136 10208.0222  -0.002
## country_feSouth Korea                        -14.8055  8355.8313  -0.002
## country_feSri Lanka                            2.0470     1.3788   1.485
## country_feTaiwan                             -14.9413  8512.8254  -0.002
## country_feTajikistan                         -17.2555  8985.3216  -0.002
## country_feTanzania                           -14.9425 11862.0175  -0.001
## country_feThe Gambia                         -17.4449  7842.6701  -0.002
## country_feTogo                                 0.9416     1.5460   0.609
## country_feTürkiye                            -17.0701  6423.6832  -0.003
## country_feTurkmenistan                       -16.3472 12994.7421  -0.001
## country_feUganda                               1.0535     1.3688   0.770
## country_feUzbekistan                           2.1937     2.2050   0.995
## country_feVenezuela                            2.1886     2.6515   0.825
## country_feZambia                             -15.7683  8955.0242  -0.002
## country_feZimbabwe                             0.5735     1.5747   0.364
## jud_ind:exec_corrupt_index                     6.6932     4.3735   1.530
## Log(theta)                                    15.7563   184.2390   0.086
##                                            Pr(>|z|)  
## (Intercept)                                  0.0862 .
## jud_ind                                      0.2077  
## exec_corrupt_index                           0.1729  
## country_feAlgeria                            0.4540  
## country_feAngola                             0.9981  
## country_feArmenia                            0.1047  
## country_feAzerbaijan                         0.9984  
## country_feBangladesh                         0.4432  
## country_feBelarus                            0.9983  
## country_feBurkina Faso                       0.1459  
## country_feCambodia                           0.3346  
## country_feCameroon                           0.9985  
## country_feCentral African Republic           0.9984  
## country_feCroatia                            0.9982  
## country_feDemocratic Republic of the Congo   0.8366  
## country_feDjibouti                           0.9983  
## country_feEgypt                              0.9977  
## country_feEquatorial Guinea                  0.9987  
## country_feEthiopia                           0.9984  
## country_feGabon                              0.4397  
## country_feGeorgia                            0.9481  
## country_feGhana                              0.9979  
## country_feGuinea                             0.6506  
## country_feGuinea-Bissau                      0.6210  
## country_feGuyana                             0.9981  
## country_feHaiti                              0.0916 .
## country_feIvory Coast                        0.9256  
## country_feKazakhstan                         0.9987  
## country_feKenya                              0.9981  
## country_feKyrgyzstan                         0.0448 *
## country_feLesotho                            0.9986  
## country_feMadagascar                         0.9982  
## country_feMalaysia                           0.0144 *
## country_feMauritania                         0.4257  
## country_feMexico                             0.9983  
## country_feMozambique                         0.9984  
## country_feNamibia                            0.9993  
## country_feNicaragua                          0.9984  
## country_feNiger                              0.5729  
## country_feNigeria                            0.4444  
## country_fePanama                             0.9986  
## country_feParaguay                           0.9978  
## country_fePeru                               0.9980  
## country_fePhilippines                        0.9981  
## country_feRussia                             0.8896  
## country_feRwanda                             0.1483  
## country_feSenegal                            0.2155  
## country_feSerbia                             0.6255  
## country_feSierra Leone                       0.4360  
## country_feSingapore                          0.9987  
## country_feSouth Korea                        0.9986  
## country_feSri Lanka                          0.1377  
## country_feTaiwan                             0.9986  
## country_feTajikistan                         0.9985  
## country_feTanzania                           0.9990  
## country_feThe Gambia                         0.9982  
## country_feTogo                               0.5425  
## country_feTürkiye                            0.9979  
## country_feTurkmenistan                       0.9990  
## country_feUganda                             0.4415  
## country_feUzbekistan                         0.3198  
## country_feVenezuela                          0.4091  
## country_feZambia                             0.9986  
## country_feZimbabwe                           0.7157  
## jud_ind:exec_corrupt_index                   0.1259  
## Log(theta)                                   0.9318  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  0.7947     3.7409   0.212    0.832
## jud_ind                     -1.1360     3.1888  -0.356    0.722
## exec_corrupt_index           1.0054     4.7494   0.212    0.832
## jud_ind:exec_corrupt_index   1.9793     3.9090   0.506    0.613
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 6963950.9151 
## Number of iterations in BFGS optimization: 47 
## Log-likelihood: -245.9 on 70 Df
summary(zinb_models$n_cabinet_zinb2)
## 
## Call:
## zeroinfl(formula = f2, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -6.042e-01 -1.951e-01 -3.388e-05 -1.782e-05  8.904e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                   -4.5940     3.2669  -1.406
## jud_ind                                       -4.3120     2.8928  -1.491
## exec_corrupt_index                             3.1679     4.3907   0.722
## polyarchy                                      2.4367     4.2818   0.569
## country_feAlgeria                              1.2759     2.2515   0.567
## country_feAngola                             -18.1401  8875.8321  -0.002
## country_feArmenia                              2.2700     1.9565   1.160
## country_feAzerbaijan                         -17.4003 11174.2010  -0.002
## country_feBangladesh                           1.3847     1.9899   0.696
## country_feBelarus                            -17.5706  8854.5558  -0.002
## country_feBurkina Faso                         1.6360     1.9094   0.857
## country_feCambodia                             2.1555     2.0871   1.033
## country_feCameroon                           -17.1361 12794.0015  -0.001
## country_feCentral African Republic           -17.4561  8967.5781  -0.002
## country_feCroatia                            -16.1898  6509.5735  -0.002
## country_feDemocratic Republic of the Congo     0.3027     2.0583   0.147
## country_feDjibouti                           -17.9039  7913.1468  -0.002
## country_feEgypt                              -18.6295  5460.5638  -0.003
## country_feEquatorial Guinea                  -17.0131 19622.9442  -0.001
## country_feEthiopia                           -17.6538  6745.3026  -0.003
## country_feGabon                                0.8621     1.8880   0.457
## country_feGeorgia                             -0.1737     2.1853  -0.079
## country_feGhana                              -17.7107  5721.3664  -0.003
## country_feGuinea                               1.4940     2.2161   0.674
## country_feGuinea-Bissau                        0.6958     1.9827   0.351
## country_feGuyana                             -16.9965  6216.4550  -0.003
## country_feHaiti                                2.0190     1.9073   1.059
## country_feIvory Coast                         -0.2959     2.0650  -0.143
## country_feKazakhstan                         -16.7982 15634.2638  -0.001
## country_feKenya                              -17.6996  6816.9149  -0.003
## country_feKyrgyzstan                           2.6311     1.9917   1.321
## country_feLesotho                            -16.3156  6217.9174  -0.003
## country_feMadagascar                         -17.2828  6949.5511  -0.002
## country_feMalaysia                             2.8916     1.7235   1.678
## country_feMauritania                           1.6076     2.2411   0.717
## country_feMexico                             -16.2744  6909.1665  -0.002
## country_feMozambique                         -17.0902  6784.2001  -0.003
## country_feNamibia                            -13.2803  8742.3780  -0.002
## country_feNicaragua                          -16.7653  8724.0918  -0.002
## country_feNiger                                0.7801     2.0387   0.383
## country_feNigeria                             -1.4074     2.1968  -0.641
## country_fePanama                             -15.7623  7776.8109  -0.002
## country_feParaguay                           -17.8806  6421.4591  -0.003
## country_fePeru                               -16.4038  5963.8834  -0.003
## country_fePhilippines                        -17.2457  6431.3851  -0.003
## country_feRussia                               0.1972     2.3006   0.086
## country_feRwanda                               1.3537     2.2210   0.609
## country_feSenegal                              1.4125     2.6822   0.527
## country_feSerbia                               1.0741     2.1882   0.491
## country_feSierra Leone                         1.3321     2.0294   0.656
## country_feSingapore                          -16.4332  6514.3438  -0.003
## country_feSouth Korea                        -14.3320  6767.8147  -0.002
## country_feSri Lanka                            1.5238     1.8994   0.802
## country_feTaiwan                             -15.1362  5764.5162  -0.003
## country_feTajikistan                         -17.3801 11835.6732  -0.001
## country_feTanzania                           -15.2427  7523.8534  -0.002
## country_feThe Gambia                         -17.7477  7746.6297  -0.002
## country_feTogo                                 1.0722     2.0686   0.518
## country_feTürkiye                            -17.2217  5561.0090  -0.003
## country_feTurkmenistan                       -16.3973 40721.9651   0.000
## country_feUganda                               0.4945     1.8154   0.272
## country_feUzbekistan                           3.5501     2.3782   1.493
## country_feVenezuela                            4.6590     2.6716   1.744
## country_feZambia                             -15.9383  6698.4072  -0.002
## country_feZimbabwe                             0.1333     2.0156   0.066
## jud_ind:exec_corrupt_index                     7.3679     3.7173   1.982
## Log(theta)                                    16.9161        NaN     NaN
##                                            Pr(>|z|)  
## (Intercept)                                  0.1597  
## jud_ind                                      0.1361  
## exec_corrupt_index                           0.4706  
## polyarchy                                    0.5693  
## country_feAlgeria                            0.5709  
## country_feAngola                             0.9984  
## country_feArmenia                            0.2460  
## country_feAzerbaijan                         0.9988  
## country_feBangladesh                         0.4865  
## country_feBelarus                            0.9984  
## country_feBurkina Faso                       0.3916  
## country_feCambodia                           0.3017  
## country_feCameroon                           0.9989  
## country_feCentral African Republic           0.9984  
## country_feCroatia                            0.9980  
## country_feDemocratic Republic of the Congo   0.8831  
## country_feDjibouti                           0.9982  
## country_feEgypt                              0.9973  
## country_feEquatorial Guinea                  0.9993  
## country_feEthiopia                           0.9979  
## country_feGabon                              0.6479  
## country_feGeorgia                            0.9366  
## country_feGhana                              0.9975  
## country_feGuinea                             0.5002  
## country_feGuinea-Bissau                      0.7256  
## country_feGuyana                             0.9978  
## country_feHaiti                              0.2898  
## country_feIvory Coast                        0.8861  
## country_feKazakhstan                         0.9991  
## country_feKenya                              0.9979  
## country_feKyrgyzstan                         0.1865  
## country_feLesotho                            0.9979  
## country_feMadagascar                         0.9980  
## country_feMalaysia                           0.0934 .
## country_feMauritania                         0.4732  
## country_feMexico                             0.9981  
## country_feMozambique                         0.9980  
## country_feNamibia                            0.9988  
## country_feNicaragua                          0.9985  
## country_feNiger                              0.7020  
## country_feNigeria                            0.5217  
## country_fePanama                             0.9984  
## country_feParaguay                           0.9978  
## country_fePeru                               0.9978  
## country_fePhilippines                        0.9979  
## country_feRussia                             0.9317  
## country_feRwanda                             0.5422  
## country_feSenegal                            0.5984  
## country_feSerbia                             0.6235  
## country_feSierra Leone                       0.5116  
## country_feSingapore                          0.9980  
## country_feSouth Korea                        0.9983  
## country_feSri Lanka                          0.4224  
## country_feTaiwan                             0.9979  
## country_feTajikistan                         0.9988  
## country_feTanzania                           0.9984  
## country_feThe Gambia                         0.9982  
## country_feTogo                               0.6042  
## country_feTürkiye                            0.9975  
## country_feTurkmenistan                       0.9997  
## country_feUganda                             0.7853  
## country_feUzbekistan                         0.1355  
## country_feVenezuela                          0.0812 .
## country_feZambia                             0.9981  
## country_feZimbabwe                           0.9473  
## jud_ind:exec_corrupt_index                   0.0475 *
## Log(theta)                                      NaN  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                 -0.0141     2.7008  -0.005   0.9958  
## jud_ind                     -1.4756     2.1869  -0.675   0.4998  
## exec_corrupt_index          -0.8861     3.0694  -0.289   0.7728  
## polyarchy                    6.1814     3.6629   1.688   0.0915 .
## jud_ind:exec_corrupt_index   2.8467     2.8707   0.992   0.3214  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 22211694.3377 
## Number of iterations in BFGS optimization: 77 
## Log-likelihood: -243.7 on 72 Df
# Electoral support
summary(zinb_models$n_elec_zinb0)
## 
## Call:
## zeroinfl(formula = f0, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.267e-01 -2.007e-05 -1.625e-05 -1.288e-05  5.673e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -2.491e+01  1.254e+04  -0.002
## jud_ind                                     2.239e-01  3.323e-01   0.674
## exec_corrupt_index                          6.459e+00  2.952e+00   2.188
## country_feAlgeria                           1.951e+01  1.254e+04   0.002
## country_feAngola                           -3.207e-01  1.646e+04   0.000
## country_feArmenia                           6.563e-03  1.696e+04   0.000
## country_feAzerbaijan                       -3.648e-01  1.614e+04   0.000
## country_feBangladesh                       -5.316e-02  1.711e+04   0.000
## country_feBelarus                           1.956e+01  1.254e+04   0.002
## country_feBurkina Faso                      1.988e+01  1.254e+04   0.002
## country_feCambodia                         -4.315e-01  1.622e+04   0.000
## country_feCameroon                          1.796e+01  1.254e+04   0.001
## country_feCentral African Republic          1.920e+01  1.254e+04   0.002
## country_feCroatia                           4.719e-01  1.859e+04   0.000
## country_feDemocratic Republic of the Congo -3.943e-01  1.652e+04   0.000
## country_feDjibouti                          1.870e+01  1.254e+04   0.001
## country_feEgypt                             2.199e+01  1.254e+04   0.002
## country_feEquatorial Guinea                 1.875e+01  1.254e+04   0.001
## country_feEthiopia                          4.047e-01  1.910e+04   0.000
## country_feGabon                            -1.312e-01  1.716e+04   0.000
## country_feGeorgia                           1.891e+01  1.254e+04   0.002
## country_feGhana                             1.890e+01  1.254e+04   0.002
## country_feGuinea                           -4.170e-01  1.614e+04   0.000
## country_feGuinea-Bissau                     1.837e+01  1.254e+04   0.001
## country_feGuyana                            2.001e-01  1.809e+04   0.000
## country_feHaiti                            -1.362e-01  1.713e+04   0.000
## country_feIvory Coast                       2.886e-03  1.762e+04   0.000
## country_feKazakhstan                       -4.063e-01  1.594e+04   0.000
## country_feKenya                            -6.500e-02  1.724e+04   0.000
## country_feKyrgyzstan                       -2.180e-01  1.660e+04   0.000
## country_feLesotho                           4.235e-01  1.895e+04   0.000
## country_feMadagascar                        1.136e-01  1.720e+04   0.000
## country_feMalaysia                          2.152e+01  1.254e+04   0.002
## country_feMauritania                       -4.919e-02  1.697e+04   0.000
## country_feMexico                            3.322e-01  1.831e+04   0.000
## country_feMozambique                        2.267e-01  1.810e+04   0.000
## country_feNamibia                           7.456e-01  2.082e+04   0.000
## country_feNicaragua                        -6.998e-02  1.660e+04   0.000
## country_feNiger                             1.979e-01  1.797e+04   0.000
## country_feNigeria                          -2.808e-01  1.716e+04   0.000
## country_fePanama                            4.031e-01  1.888e+04   0.000
## country_feParaguay                         -2.091e-01  1.708e+04   0.000
## country_fePeru                              3.802e-01  1.803e+04   0.000
## country_fePhilippines                       9.291e-02  1.782e+04   0.000
## country_feRussia                            2.016e+01  1.254e+04   0.002
## country_feRwanda                            5.114e-01  2.020e+04   0.000
## country_feSenegal                           7.506e-01  2.227e+04   0.000
## country_feSerbia                            4.496e-02  1.711e+04   0.000
## country_feSierra Leone                     -5.307e-02  1.698e+04   0.000
## country_feSingapore                         1.139e+00  3.183e+04   0.000
## country_feSouth Korea                       7.589e-01  2.064e+04   0.000
## country_feSri Lanka                         1.946e+01  1.254e+04   0.002
## country_feTaiwan                            8.205e-01  2.158e+04   0.000
## country_feTajikistan                       -4.133e-01  1.607e+04   0.000
## country_feTanzania                          6.261e-01  2.008e+04   0.000
## country_feThe Gambia                       -2.929e-03  1.714e+04   0.000
## country_feTogo                             -2.360e-01  1.657e+04   0.000
## country_feTürkiye                           1.999e-01  1.821e+04   0.000
## country_feTurkmenistan                     -4.714e-01  1.571e+04   0.000
## country_feUganda                            8.763e-02  1.762e+04   0.000
## country_feUzbekistan                       -4.441e-01  1.578e+04   0.000
## country_feVenezuela                         1.935e+01  1.254e+04   0.002
## country_feZambia                            5.675e-01  1.950e+04   0.000
## country_feZimbabwe                         -5.874e-02  1.739e+04   0.000
## Log(theta)                                  1.862e+01        NaN     NaN
##                                            Pr(>|z|)  
## (Intercept)                                  0.9984  
## jud_ind                                      0.5004  
## exec_corrupt_index                           0.0287 *
## country_feAlgeria                            0.9988  
## country_feAngola                             1.0000  
## country_feArmenia                            1.0000  
## country_feAzerbaijan                         1.0000  
## country_feBangladesh                         1.0000  
## country_feBelarus                            0.9988  
## country_feBurkina Faso                       0.9987  
## country_feCambodia                           1.0000  
## country_feCameroon                           0.9989  
## country_feCentral African Republic           0.9988  
## country_feCroatia                            1.0000  
## country_feDemocratic Republic of the Congo   1.0000  
## country_feDjibouti                           0.9988  
## country_feEgypt                              0.9986  
## country_feEquatorial Guinea                  0.9988  
## country_feEthiopia                           1.0000  
## country_feGabon                              1.0000  
## country_feGeorgia                            0.9988  
## country_feGhana                              0.9988  
## country_feGuinea                             1.0000  
## country_feGuinea-Bissau                      0.9988  
## country_feGuyana                             1.0000  
## country_feHaiti                              1.0000  
## country_feIvory Coast                        1.0000  
## country_feKazakhstan                         1.0000  
## country_feKenya                              1.0000  
## country_feKyrgyzstan                         1.0000  
## country_feLesotho                            1.0000  
## country_feMadagascar                         1.0000  
## country_feMalaysia                           0.9986  
## country_feMauritania                         1.0000  
## country_feMexico                             1.0000  
## country_feMozambique                         1.0000  
## country_feNamibia                            1.0000  
## country_feNicaragua                          1.0000  
## country_feNiger                              1.0000  
## country_feNigeria                            1.0000  
## country_fePanama                             1.0000  
## country_feParaguay                           1.0000  
## country_fePeru                               1.0000  
## country_fePhilippines                        1.0000  
## country_feRussia                             0.9987  
## country_feRwanda                             1.0000  
## country_feSenegal                            1.0000  
## country_feSerbia                             1.0000  
## country_feSierra Leone                       1.0000  
## country_feSingapore                          1.0000  
## country_feSouth Korea                        1.0000  
## country_feSri Lanka                          0.9988  
## country_feTaiwan                             1.0000  
## country_feTajikistan                         1.0000  
## country_feTanzania                           1.0000  
## country_feThe Gambia                         1.0000  
## country_feTogo                               1.0000  
## country_feTürkiye                            1.0000  
## country_feTurkmenistan                       1.0000  
## country_feUganda                             1.0000  
## country_feUzbekistan                         1.0000  
## country_feVenezuela                          0.9988  
## country_feZambia                             1.0000  
## country_feZimbabwe                           1.0000  
## Log(theta)                                      NaN  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)         -1.5963     2.3598  -0.676    0.499
## jud_ind              0.4389     0.3246   1.352    0.176
## exec_corrupt_index   4.6190     3.2121   1.438    0.150
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 122551011.3995 
## Number of iterations in BFGS optimization: 52 
## Log-likelihood: -119.5 on 68 Df
summary(zinb_models$n_elec_zinb1)
## 
## Call:
## zeroinfl(formula = f1, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.502e-01 -3.699e-05 -1.448e-05 -1.171e-05  6.823e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -1.961e+01  1.572e+04  -0.001
## jud_ind                                     4.658e+00  2.211e+00   2.106
## exec_corrupt_index                         -2.162e+00  4.297e+00  -0.503
## country_feAlgeria                           2.052e+01  1.572e+04   0.001
## country_feAngola                           -4.740e-01  2.153e+04   0.000
## country_feArmenia                          -3.587e-02  2.150e+04   0.000
## country_feAzerbaijan                       -6.481e-01  2.013e+04   0.000
## country_feBangladesh                       -1.190e-01  2.149e+04   0.000
## country_feBelarus                           2.067e+01  1.572e+04   0.001
## country_feBurkina Faso                      2.005e+01  1.572e+04   0.001
## country_feCambodia                         -6.767e-01  2.097e+04   0.000
## country_feCameroon                          1.816e+01  1.572e+04   0.001
## country_feCentral African Republic          1.975e+01  1.572e+04   0.001
## country_feCroatia                           2.543e-01  1.776e+04   0.000
## country_feDemocratic Republic of the Congo -5.225e-01  2.244e+04   0.000
## country_feDjibouti                          1.935e+01  1.572e+04   0.001
## country_feEgypt                             2.015e+01  1.572e+04   0.001
## country_feEquatorial Guinea                 1.939e+01  1.572e+04   0.001
## country_feEthiopia                          5.795e-01  2.223e+04   0.000
## country_feGabon                            -1.421e-01  2.292e+04   0.000
## country_feGeorgia                           2.031e+01  1.572e+04   0.001
## country_feGhana                             1.924e+01  1.572e+04   0.001
## country_feGuinea                           -6.990e-01  2.041e+04   0.000
## country_feGuinea-Bissau                     1.928e+01  1.572e+04   0.001
## country_feGuyana                            8.602e-02  1.950e+04   0.000
## country_feHaiti                            -1.688e-01  2.251e+04   0.000
## country_feIvory Coast                       5.808e-03  2.230e+04   0.000
## country_feKazakhstan                       -7.657e-01  1.958e+04   0.000
## country_feKenya                            -1.154e-01  2.184e+04   0.000
## country_feKyrgyzstan                       -3.323e-01  2.161e+04   0.000
## country_feLesotho                           1.678e-01  1.819e+04   0.000
## country_feMadagascar                        1.250e-01  2.070e+04   0.000
## country_feMalaysia                          2.219e+01  1.572e+04   0.001
## country_feMauritania                        3.318e-02  2.344e+04   0.000
## country_feMexico                            1.562e-01  1.868e+04   0.000
## country_feMozambique                        1.615e-01  2.021e+04   0.000
## country_feNamibia                           1.944e-02  1.652e+04   0.000
## country_feNicaragua                        -1.604e-01  2.075e+04   0.000
## country_feNiger                             1.669e-01  2.069e+04   0.000
## country_feNigeria                          -2.388e-01  2.538e+04   0.000
## country_fePanama                            3.227e-01  1.947e+04   0.000
## country_feParaguay                         -2.384e-01  2.299e+04   0.000
## country_fePeru                             -2.178e-02  1.689e+04   0.000
## country_fePhilippines                       2.646e-02  2.076e+04   0.000
## country_feRussia                            2.107e+01  1.572e+04   0.001
## country_feRwanda                            8.126e-01  2.240e+04   0.000
## country_feSenegal                           8.509e-01  1.975e+04   0.000
## country_feSerbia                           -7.828e-02  2.041e+04   0.000
## country_feSierra Leone                     -6.159e-02  2.217e+04   0.000
## country_feSingapore                         1.523e+00  2.111e+04   0.000
## country_feSouth Korea                       2.501e-01  1.659e+04   0.000
## country_feSri Lanka                         1.777e+01  1.572e+04   0.001
## country_feTaiwan                            2.147e-01  1.617e+04   0.000
## country_feTajikistan                       -7.344e-01  1.991e+04   0.000
## country_feTanzania                          2.756e-01  1.750e+04   0.000
## country_feThe Gambia                       -6.669e-02  2.068e+04   0.000
## country_feTogo                             -3.549e-01  2.158e+04   0.000
## country_feTürkiye                          -1.810e-02  1.864e+04   0.000
## country_feTurkmenistan                     -9.810e-01  1.870e+04   0.000
## country_feUganda                            9.215e-02  2.185e+04   0.000
## country_feUzbekistan                       -9.035e-01  1.887e+04   0.000
## country_feVenezuela                         1.837e+01  1.572e+04   0.001
## country_feZambia                            3.655e-01  1.816e+04   0.000
## country_feZimbabwe                         -1.008e-01  2.156e+04   0.000
## jud_ind:exec_corrupt_index                 -6.439e+00  3.078e+00  -2.092
## Log(theta)                                  1.688e+01  3.385e+01   0.499
##                                            Pr(>|z|)  
## (Intercept)                                  0.9990  
## jud_ind                                      0.0352 *
## exec_corrupt_index                           0.6149  
## country_feAlgeria                            0.9990  
## country_feAngola                             1.0000  
## country_feArmenia                            1.0000  
## country_feAzerbaijan                         1.0000  
## country_feBangladesh                         1.0000  
## country_feBelarus                            0.9990  
## country_feBurkina Faso                       0.9990  
## country_feCambodia                           1.0000  
## country_feCameroon                           0.9991  
## country_feCentral African Republic           0.9990  
## country_feCroatia                            1.0000  
## country_feDemocratic Republic of the Congo   1.0000  
## country_feDjibouti                           0.9990  
## country_feEgypt                              0.9990  
## country_feEquatorial Guinea                  0.9990  
## country_feEthiopia                           1.0000  
## country_feGabon                              1.0000  
## country_feGeorgia                            0.9990  
## country_feGhana                              0.9990  
## country_feGuinea                             1.0000  
## country_feGuinea-Bissau                      0.9990  
## country_feGuyana                             1.0000  
## country_feHaiti                              1.0000  
## country_feIvory Coast                        1.0000  
## country_feKazakhstan                         1.0000  
## country_feKenya                              1.0000  
## country_feKyrgyzstan                         1.0000  
## country_feLesotho                            1.0000  
## country_feMadagascar                         1.0000  
## country_feMalaysia                           0.9989  
## country_feMauritania                         1.0000  
## country_feMexico                             1.0000  
## country_feMozambique                         1.0000  
## country_feNamibia                            1.0000  
## country_feNicaragua                          1.0000  
## country_feNiger                              1.0000  
## country_feNigeria                            1.0000  
## country_fePanama                             1.0000  
## country_feParaguay                           1.0000  
## country_fePeru                               1.0000  
## country_fePhilippines                        1.0000  
## country_feRussia                             0.9989  
## country_feRwanda                             1.0000  
## country_feSenegal                            1.0000  
## country_feSerbia                             1.0000  
## country_feSierra Leone                       1.0000  
## country_feSingapore                          0.9999  
## country_feSouth Korea                        1.0000  
## country_feSri Lanka                          0.9991  
## country_feTaiwan                             1.0000  
## country_feTajikistan                         1.0000  
## country_feTanzania                           1.0000  
## country_feThe Gambia                         1.0000  
## country_feTogo                               1.0000  
## country_feTürkiye                            1.0000  
## country_feTurkmenistan                       1.0000  
## country_feUganda                             1.0000  
## country_feUzbekistan                         1.0000  
## country_feVenezuela                          0.9991  
## country_feZambia                             1.0000  
## country_feZimbabwe                           1.0000  
## jud_ind:exec_corrupt_index                   0.0364 *
## Log(theta)                                   0.6181  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   3.199      2.340   1.367   0.1717  
## jud_ind                       2.613      1.342   1.946   0.0516 .
## exec_corrupt_index           -2.714      3.537  -0.767   0.4428  
## jud_ind:exec_corrupt_index   -3.637      1.728  -2.104   0.0353 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 21328138.3958 
## Number of iterations in BFGS optimization: 48 
## Log-likelihood: -119.1 on 70 Df
summary(zinb_models$n_elec_zinb2)
## 
## Call:
## zeroinfl(formula = f2, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -4.896e-01 -2.385e-05 -1.488e-05 -1.115e-05  6.445e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -1.851e+01  1.563e+04  -0.001
## jud_ind                                     3.849e+00  1.971e+00   1.952
## exec_corrupt_index                          2.134e-01  3.257e+00   0.066
## polyarchy                                  -8.118e+00  3.922e+00  -2.070
## country_feAlgeria                           2.054e+01  1.563e+04   0.001
## country_feAngola                           -7.810e-01  2.049e+04   0.000
## country_feArmenia                           1.501e-01  2.042e+04   0.000
## country_feAzerbaijan                       -6.906e-01  1.958e+04   0.000
## country_feBangladesh                       -8.743e-02  2.101e+04   0.000
## country_feBelarus                           2.071e+01  1.563e+04   0.001
## country_feBurkina Faso                      2.058e+01  1.563e+04   0.001
## country_feCambodia                         -5.596e-01  1.927e+04   0.000
## country_feCameroon                          1.799e+01  1.563e+04   0.001
## country_feCentral African Republic          1.969e+01  1.563e+04   0.001
## country_feCroatia                           6.593e-01  2.006e+04   0.000
## country_feDemocratic Republic of the Congo -7.497e-01  2.044e+04   0.000
## country_feDjibouti                          1.904e+01  1.563e+04   0.001
## country_feEgypt                             1.918e+01  1.563e+04   0.001
## country_feEquatorial Guinea                 1.867e+01  1.563e+04   0.001
## country_feEthiopia                          1.180e-01  2.480e+04   0.000
## country_feGabon                            -2.871e-01  2.128e+04   0.000
## country_feGeorgia                           1.998e+01  1.563e+04   0.001
## country_feGhana                             1.926e+01  1.563e+04   0.001
## country_feGuinea                           -6.452e-01  1.928e+04   0.000
## country_feGuinea-Bissau                     1.903e+01  1.563e+04   0.001
## country_feGuyana                            1.900e-01  2.104e+04   0.000
## country_feHaiti                            -2.696e-01  2.132e+04   0.000
## country_feIvory Coast                      -1.033e-01  2.168e+04   0.000
## country_feKazakhstan                       -5.322e-01  1.902e+04   0.000
## country_feKenya                            -1.270e-01  2.117e+04   0.000
## country_feKyrgyzstan                       -2.295e-01  1.993e+04   0.000
## country_feLesotho                          -1.159e-01  2.024e+04   0.000
## country_feMadagascar                        4.265e-01  2.040e+04   0.000
## country_feMalaysia                          2.180e+01  1.563e+04   0.001
## country_feMauritania                        3.314e-01  2.204e+04   0.000
## country_feMexico                            4.675e-01  2.035e+04   0.000
## country_feMozambique                       -5.452e-02  2.149e+04   0.000
## country_feNamibia                          -3.111e-03  1.751e+04   0.000
## country_feNicaragua                         4.385e-01  1.959e+04   0.000
## country_feNiger                             2.857e-01  2.176e+04   0.000
## country_feNigeria                          -3.498e-01  2.231e+04   0.000
## country_fePanama                            1.015e+00  2.301e+04   0.000
## country_feParaguay                          2.030e-01  2.241e+04   0.000
## country_fePeru                              2.127e-01  1.826e+04   0.000
## country_fePhilippines                       1.941e-01  2.154e+04   0.000
## country_feRussia                            2.106e+01  1.563e+04   0.001
## country_feRwanda                            2.003e-01  2.620e+04   0.000
## country_feSenegal                           1.417e+00  2.539e+04   0.000
## country_feSerbia                           -6.086e-03  2.026e+04   0.000
## country_feSierra Leone                      9.622e-02  2.173e+04   0.000
## country_feSingapore                         1.258e+00  2.883e+04   0.000
## country_feSouth Korea                       7.838e-01  1.788e+04   0.000
## country_feSri Lanka                         1.891e+01  1.563e+04   0.001
## country_feTaiwan                            4.293e-01  1.715e+04   0.000
## country_feTajikistan                       -7.768e-01  1.931e+04   0.000
## country_feTanzania                         -9.669e-02  1.967e+04   0.000
## country_feThe Gambia                       -3.322e-01  2.110e+04   0.000
## country_feTogo                             -2.185e-01  2.007e+04   0.000
## country_feTürkiye                          -1.320e-01  1.982e+04   0.000
## country_feTurkmenistan                     -9.904e-01  1.946e+04   0.000
## country_feUganda                           -2.582e-01  2.175e+04   0.000
## country_feUzbekistan                       -8.233e-01  1.913e+04   0.000
## country_feVenezuela                         1.962e+01  1.563e+04   0.001
## country_feZambia                            1.498e-01  2.048e+04   0.000
## country_feZimbabwe                         -5.888e-01  2.136e+04   0.000
## jud_ind:exec_corrupt_index                 -5.081e+00  2.648e+00  -1.919
## Log(theta)                                  1.684e+01        NaN     NaN
##                                            Pr(>|z|)  
## (Intercept)                                  0.9991  
## jud_ind                                      0.0509 .
## exec_corrupt_index                           0.9478  
## polyarchy                                    0.0385 *
## country_feAlgeria                            0.9990  
## country_feAngola                             1.0000  
## country_feArmenia                            1.0000  
## country_feAzerbaijan                         1.0000  
## country_feBangladesh                         1.0000  
## country_feBelarus                            0.9989  
## country_feBurkina Faso                       0.9989  
## country_feCambodia                           1.0000  
## country_feCameroon                           0.9991  
## country_feCentral African Republic           0.9990  
## country_feCroatia                            1.0000  
## country_feDemocratic Republic of the Congo   1.0000  
## country_feDjibouti                           0.9990  
## country_feEgypt                              0.9990  
## country_feEquatorial Guinea                  0.9990  
## country_feEthiopia                           1.0000  
## country_feGabon                              1.0000  
## country_feGeorgia                            0.9990  
## country_feGhana                              0.9990  
## country_feGuinea                             1.0000  
## country_feGuinea-Bissau                      0.9990  
## country_feGuyana                             1.0000  
## country_feHaiti                              1.0000  
## country_feIvory Coast                        1.0000  
## country_feKazakhstan                         1.0000  
## country_feKenya                              1.0000  
## country_feKyrgyzstan                         1.0000  
## country_feLesotho                            1.0000  
## country_feMadagascar                         1.0000  
## country_feMalaysia                           0.9989  
## country_feMauritania                         1.0000  
## country_feMexico                             1.0000  
## country_feMozambique                         1.0000  
## country_feNamibia                            1.0000  
## country_feNicaragua                          1.0000  
## country_feNiger                              1.0000  
## country_feNigeria                            1.0000  
## country_fePanama                             1.0000  
## country_feParaguay                           1.0000  
## country_fePeru                               1.0000  
## country_fePhilippines                        1.0000  
## country_feRussia                             0.9989  
## country_feRwanda                             1.0000  
## country_feSenegal                            1.0000  
## country_feSerbia                             1.0000  
## country_feSierra Leone                       1.0000  
## country_feSingapore                          1.0000  
## country_feSouth Korea                        1.0000  
## country_feSri Lanka                          0.9990  
## country_feTaiwan                             1.0000  
## country_feTajikistan                         1.0000  
## country_feTanzania                           1.0000  
## country_feThe Gambia                         1.0000  
## country_feTogo                               1.0000  
## country_feTürkiye                            1.0000  
## country_feTurkmenistan                       1.0000  
## country_feUganda                             1.0000  
## country_feUzbekistan                         1.0000  
## country_feVenezuela                          0.9990  
## country_feZambia                             1.0000  
## country_feZimbabwe                           1.0000  
## jud_ind:exec_corrupt_index                   0.0550 .
## Log(theta)                                      NaN  
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   5.064      2.925   1.732   0.0833 .
## jud_ind                       2.242      1.427   1.571   0.1161  
## exec_corrupt_index           -2.088      4.000  -0.522   0.6017  
## polyarchy                    -7.899      4.763  -1.658   0.0973 .
## jud_ind:exec_corrupt_index   -3.182      1.906  -1.669   0.0952 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 20593968.1762 
## Number of iterations in BFGS optimization: 58 
## Log-likelihood: -117.1 on 72 Df
# Parliamentary support
summary(zinb_models$n_parl_zinb0)
## 
## Call:
## zeroinfl(formula = f0, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -5.450e-01 -2.300e-01 -3.995e-05 -2.553e-05  5.964e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                   -5.3951     1.9535  -2.762
## jud_ind                                        0.1246     0.2611   0.477
## exec_corrupt_index                             6.9793     2.1816   3.199
## country_feAlgeria                              0.5257     1.4729   0.357
## country_feAngola                             -19.1870  4231.3125  -0.005
## country_feArmenia                             -1.5697     1.7210  -0.912
## country_feAzerbaijan                          -2.0490     1.6327  -1.255
## country_feBangladesh                         -18.6320  5016.8484  -0.004
## country_feBelarus                             -0.2237     1.4811  -0.151
## country_feBurkina Faso                        -0.6039     1.6454  -0.367
## country_feCambodia                            -1.4968     1.5393  -0.972
## country_feCameroon                            -2.0907     1.6360  -1.278
## country_feCentral African Republic           -18.8125  4480.9003  -0.004
## country_feCroatia                            -17.5485  5496.4504  -0.003
## country_feDemocratic Republic of the Congo    -0.9075     1.5015  -0.604
## country_feDjibouti                            -0.7159     1.5241  -0.470
## country_feEgypt                                2.2122     1.4337   1.543
## country_feEquatorial Guinea                  -19.4478  3749.9673  -0.005
## country_feEthiopia                           -17.5347  6606.1255  -0.003
## country_feGabon                              -18.8137  5121.2864  -0.004
## country_feGeorgia                             -0.7321     1.4459  -0.506
## country_feGhana                              -18.5311  6350.0392  -0.003
## country_feGuinea                             -19.3583  3973.9179  -0.005
## country_feGuinea-Bissau                      -19.1484  4705.3869  -0.004
## country_feGuyana                             -18.1319  6025.6958  -0.003
## country_feHaiti                              -18.8285  5069.7827  -0.004
## country_feIvory Coast                        -18.5386  5638.5688  -0.003
## country_feKazakhstan                          -0.3289     1.5467  -0.213
## country_feKenya                              -18.6696  5236.5732  -0.004
## country_feKyrgyzstan                          -0.2423     1.4466  -0.168
## country_feLesotho                            -17.6275  7074.8970  -0.002
## country_feMadagascar                          -1.5205     1.7700  -0.859
## country_feMalaysia                             1.6212     1.3245   1.224
## country_feMauritania                          -0.1637     1.5242  -0.107
## country_feMexico                             -17.8305  5940.4210  -0.003
## country_feMozambique                         -18.0177  6254.3255  -0.003
## country_feNamibia                            -16.9267  9175.4824  -0.002
## country_feNicaragua                          -18.6126  4105.8065  -0.005
## country_feNiger                                0.4792     1.4181   0.338
## country_feNigeria                            -19.1803  5007.6227  -0.004
## country_fePanama                             -17.6056  6963.8661  -0.003
## country_feParaguay                           -19.0164  4866.2171  -0.004
## country_fePeru                               -17.8042  5154.0733  -0.003
## country_fePhilippines                        -18.3512  5910.0669  -0.003
## country_feRussia                               1.0119     1.4278   0.709
## country_feRwanda                             -17.2769  6946.4419  -0.002
## country_feSenegal                            -16.7777  8215.3642  -0.002
## country_feSerbia                              -1.8267     1.7234  -1.060
## country_feSierra Leone                       -18.5707  4887.7656  -0.004
## country_feSingapore                          -15.8671 10509.7540  -0.002
## country_feSouth Korea                        -16.9092  7547.0636  -0.002
## country_feSri Lanka                            0.8454     1.3824   0.612
## country_feTaiwan                             -16.7217  8491.9103  -0.002
## country_feTajikistan                          -1.5973     1.5615  -1.023
## country_feTanzania                           -17.1508  8027.4174  -0.002
## country_feThe Gambia                         -18.4985  5093.7590  -0.004
## country_feTogo                               -18.9856  4456.3887  -0.004
## country_feTürkiye                            -18.1970  5848.9054  -0.003
## country_feTurkmenistan                        -3.0102     1.8940  -1.589
## country_feUganda                             -18.3338  5456.8969  -0.003
## country_feUzbekistan                          -1.0734     1.6352  -0.656
## country_feVenezuela                           -1.9346     1.7144  -1.128
## country_feZambia                             -17.2998  6896.4871  -0.003
## country_feZimbabwe                           -18.7135  5077.5494  -0.004
## Log(theta)                                    16.5575        NaN     NaN
##                                            Pr(>|z|)   
## (Intercept)                                 0.00575 **
## jud_ind                                     0.63325   
## exec_corrupt_index                          0.00138 **
## country_feAlgeria                           0.72113   
## country_feAngola                            0.99638   
## country_feArmenia                           0.36172   
## country_feAzerbaijan                        0.20949   
## country_feBangladesh                        0.99704   
## country_feBelarus                           0.87994   
## country_feBurkina Faso                      0.71361   
## country_feCambodia                          0.33085   
## country_feCameroon                          0.20128   
## country_feCentral African Republic          0.99665   
## country_feCroatia                           0.99745   
## country_feDemocratic Republic of the Congo  0.54556   
## country_feDjibouti                          0.63857   
## country_feEgypt                             0.12284   
## country_feEquatorial Guinea                 0.99586   
## country_feEthiopia                          0.99788   
## country_feGabon                             0.99707   
## country_feGeorgia                           0.61261   
## country_feGhana                             0.99767   
## country_feGuinea                            0.99611   
## country_feGuinea-Bissau                     0.99675   
## country_feGuyana                            0.99760   
## country_feHaiti                             0.99704   
## country_feIvory Coast                       0.99738   
## country_feKazakhstan                        0.83158   
## country_feKenya                             0.99716   
## country_feKyrgyzstan                        0.86697   
## country_feLesotho                           0.99801   
## country_feMadagascar                        0.39032   
## country_feMalaysia                          0.22095   
## country_feMauritania                        0.91449   
## country_feMexico                            0.99761   
## country_feMozambique                        0.99770   
## country_feNamibia                           0.99853   
## country_feNicaragua                         0.99638   
## country_feNiger                             0.73543   
## country_feNigeria                           0.99694   
## country_fePanama                            0.99798   
## country_feParaguay                          0.99688   
## country_fePeru                              0.99724   
## country_fePhilippines                       0.99752   
## country_feRussia                            0.47848   
## country_feRwanda                            0.99802   
## country_feSenegal                           0.99837   
## country_feSerbia                            0.28915   
## country_feSierra Leone                      0.99697   
## country_feSingapore                         0.99880   
## country_feSouth Korea                       0.99821   
## country_feSri Lanka                         0.54086   
## country_feTaiwan                            0.99843   
## country_feTajikistan                        0.30634   
## country_feTanzania                          0.99830   
## country_feThe Gambia                        0.99710   
## country_feTogo                              0.99660   
## country_feTürkiye                           0.99752   
## country_feTurkmenistan                      0.11199   
## country_feUganda                            0.99732   
## country_feUzbekistan                        0.51154   
## country_feVenezuela                         0.25914   
## country_feZambia                            0.99800   
## country_feZimbabwe                          0.99706   
## Log(theta)                                      NaN   
## 
## Zero-inflation model coefficients (binomial with logit link):
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)          0.1691     1.4663   0.115   0.9082  
## jud_ind              0.4201     0.2109   1.992   0.0463 *
## exec_corrupt_index   1.8027     1.9194   0.939   0.3476  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 15518332.6601 
## Number of iterations in BFGS optimization: 57 
## Log-likelihood: -272.3 on 68 Df
summary(zinb_models$n_parl_zinb1)
## 
## Call:
## zeroinfl(formula = f1, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -5.500e-01 -2.307e-01 -4.044e-05 -2.349e-05  5.865e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                   -5.5939     2.0631  -2.711
## jud_ind                                       -0.4134     1.2913  -0.320
## exec_corrupt_index                             7.3790     2.4360   3.029
## country_feAlgeria                              0.3722     1.6564   0.225
## country_feAngola                             -19.2904  4370.0114  -0.004
## country_feArmenia                             -1.6407     1.8585  -0.883
## country_feAzerbaijan                          -2.0150     1.7868  -1.128
## country_feBangladesh                         -18.6952  5004.4132  -0.004
## country_feBelarus                             -0.3477     1.6621  -0.209
## country_feBurkina Faso                        -0.6486     1.7751  -0.365
## country_feCambodia                            -1.4930     1.7013  -0.878
## country_feCameroon                            -2.0571     1.7918  -1.148
## country_feCentral African Republic           -18.8990  4577.0041  -0.004
## country_feCroatia                            -17.8131  6122.8566  -0.003
## country_feDemocratic Republic of the Congo    -1.0265     1.6823  -0.610
## country_feDjibouti                            -0.8106     1.6802  -0.482
## country_feEgypt                                2.3599     1.5942   1.480
## country_feEquatorial Guinea                  -19.8234  4781.3490  -0.004
## country_feEthiopia                           -17.4675  6052.5185  -0.003
## country_feGabon                              -18.8072  4821.9644  -0.004
## country_feGeorgia                             -0.8664     1.6643  -0.521
## country_feGhana                              -18.5663  6183.5022  -0.003
## country_feGuinea                             -19.5928  4527.6420  -0.004
## country_feGuinea-Bissau                      -19.1322  4377.1236  -0.004
## country_feGuyana                             -18.2740  6340.2068  -0.003
## country_feHaiti                              -18.8410  4858.1394  -0.004
## country_feIvory Coast                        -18.5375  5342.8710  -0.003
## country_feKazakhstan                          -0.2498     1.7146  -0.146
## country_feKenya                              -18.7145  5155.4212  -0.004
## country_feKyrgyzstan                          -0.2781     1.6179  -0.172
## country_feLesotho                            -17.9555  8761.1270  -0.002
## country_feMadagascar                          -1.5428     1.8927  -0.815
## country_feMalaysia                             1.5375     1.5093   1.019
## country_feMauritania                          -0.2983     1.6977  -0.176
## country_feMexico                             -18.0530  6600.9789  -0.003
## country_feMozambique                         -18.1335  6571.6647  -0.003
## country_feNamibia                            -17.7897 17952.9897  -0.001
## country_feNicaragua                          -18.6703  4228.7591  -0.004
## country_feNiger                                0.4437     1.5657   0.283
## country_feNigeria                            -19.0821  4365.5858  -0.004
## country_fePanama                             -17.7771  7744.3310  -0.002
## country_feParaguay                           -19.0020  4547.3556  -0.004
## country_fePeru                               -18.1956  6131.0597  -0.003
## country_fePhilippines                        -18.4315  5964.7368  -0.003
## country_feRussia                               0.8897     1.6094   0.553
## country_feRwanda                             -17.0971  5815.1832  -0.003
## country_feSenegal                            -16.8472  8526.4542  -0.002
## country_feSerbia                              -1.8567     1.8667  -0.995
## country_feSierra Leone                       -18.5938  4756.9997  -0.004
## country_feSingapore                          -15.7391  9435.5348  -0.002
## country_feSouth Korea                        -17.5145 11108.6803  -0.002
## country_feSri Lanka                            0.8065     1.5588   0.517
## country_feTaiwan                             -17.4073 13139.6295  -0.001
## country_feTajikistan                          -1.5349     1.7228  -0.891
## country_feTanzania                           -17.6239 11428.7034  -0.002
## country_feThe Gambia                         -18.5731  5089.7544  -0.004
## country_feTogo                               -19.0812  4574.8615  -0.004
## country_feTürkiye                            -18.4101  6303.9466  -0.003
## country_feTurkmenistan                        -2.8248     2.0714  -1.364
## country_feUganda                             -18.3464  5261.2471  -0.003
## country_feUzbekistan                          -0.9215     1.8220  -0.506
## country_feVenezuela                           -1.7742     1.8917  -0.938
## country_feZambia                             -17.6013  8336.1112  -0.002
## country_feZimbabwe                           -18.7297  4784.5762  -0.004
## jud_ind:exec_corrupt_index                     0.7396     1.7288   0.428
## Log(theta)                                    17.2655    15.1150   1.142
##                                            Pr(>|z|)   
## (Intercept)                                 0.00670 **
## jud_ind                                     0.74886   
## exec_corrupt_index                          0.00245 **
## country_feAlgeria                           0.82223   
## country_feAngola                            0.99648   
## country_feArmenia                           0.37733   
## country_feAzerbaijan                        0.25945   
## country_feBangladesh                        0.99702   
## country_feBelarus                           0.83428   
## country_feBurkina Faso                      0.71480   
## country_feCambodia                          0.38018   
## country_feCameroon                          0.25095   
## country_feCentral African Republic          0.99671   
## country_feCroatia                           0.99768   
## country_feDemocratic Republic of the Congo  0.54175   
## country_feDjibouti                          0.62949   
## country_feEgypt                             0.13879   
## country_feEquatorial Guinea                 0.99669   
## country_feEthiopia                          0.99770   
## country_feGabon                             0.99689   
## country_feGeorgia                           0.60267   
## country_feGhana                             0.99760   
## country_feGuinea                            0.99655   
## country_feGuinea-Bissau                     0.99651   
## country_feGuyana                            0.99770   
## country_feHaiti                             0.99691   
## country_feIvory Coast                       0.99723   
## country_feKazakhstan                        0.88418   
## country_feKenya                             0.99710   
## country_feKyrgyzstan                        0.86353   
## country_feLesotho                           0.99836   
## country_feMadagascar                        0.41500   
## country_feMalaysia                          0.30835   
## country_feMauritania                        0.86053   
## country_feMexico                            0.99782   
## country_feMozambique                        0.99780   
## country_feNamibia                           0.99921   
## country_feNicaragua                         0.99648   
## country_feNiger                             0.77690   
## country_feNigeria                           0.99651   
## country_fePanama                            0.99817   
## country_feParaguay                          0.99667   
## country_fePeru                              0.99763   
## country_fePhilippines                       0.99753   
## country_feRussia                            0.58041   
## country_feRwanda                            0.99765   
## country_feSenegal                           0.99842   
## country_feSerbia                            0.31990   
## country_feSierra Leone                      0.99688   
## country_feSingapore                         0.99867   
## country_feSouth Korea                       0.99874   
## country_feSri Lanka                         0.60490   
## country_feTaiwan                            0.99894   
## country_feTajikistan                        0.37297   
## country_feTanzania                          0.99877   
## country_feThe Gambia                        0.99709   
## country_feTogo                              0.99667   
## country_feTürkiye                           0.99767   
## country_feTurkmenistan                      0.17265   
## country_feUganda                            0.99722   
## country_feUzbekistan                        0.61302   
## country_feVenezuela                         0.34829   
## country_feZambia                            0.99832   
## country_feZimbabwe                          0.99688   
## jud_ind:exec_corrupt_index                  0.66879   
## Log(theta)                                  0.25334   
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  0.1008     1.6280   0.062    0.951
## jud_ind                      0.2855     1.1360   0.251    0.802
## exec_corrupt_index           1.9064     2.1891   0.871    0.384
## jud_ind:exec_corrupt_index   0.1850     1.4818   0.125    0.901
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 31501403.6354 
## Number of iterations in BFGS optimization: 64 
## Log-likelihood: -272.2 on 70 Df
summary(zinb_models$n_parl_zinb2)
## 
## Call:
## zeroinfl(formula = f2, data = subset_data, dist = "negbin")
## 
## Pearson residuals:
##        Min         1Q     Median         3Q        Max 
## -5.776e-01 -2.276e-01 -2.773e-05 -1.578e-05  6.813e+00 
## 
## Count model coefficients (negbin with log link):
##                                              Estimate Std. Error z value
## (Intercept)                                -2.595e+00  2.566e+00  -1.011
## jud_ind                                     2.474e-01  1.297e+00   0.191
## exec_corrupt_index                          6.451e+00  2.316e+00   2.785
## polyarchy                                  -8.978e+00  3.600e+00  -2.494
## country_feAlgeria                           1.403e+00  1.136e+00   1.235
## country_feAngola                           -1.991e+01  6.980e+03  -0.003
## country_feArmenia                          -8.293e-01  1.394e+00  -0.595
## country_feAzerbaijan                       -1.506e+00  1.340e+00  -1.124
## country_feBangladesh                       -1.871e+01  7.060e+03  -0.003
## country_feBelarus                           7.351e-01  1.160e+00   0.634
## country_feBurkina Faso                      4.223e-01  1.412e+00   0.299
## country_feCambodia                         -5.985e-01  1.194e+00  -0.501
## country_feCameroon                         -1.314e+00  1.311e+00  -1.003
## country_feCentral African Republic         -1.880e+01  6.390e+03  -0.003
## country_feCroatia                          -1.735e+01  7.526e+03  -0.002
## country_feDemocratic Republic of the Congo -1.709e-01  1.092e+00  -0.157
## country_feDjibouti                         -5.295e-01  1.220e+00  -0.434
## country_feEgypt                             9.494e-01  1.603e+00   0.592
## country_feEquatorial Guinea                -2.010e+01  6.621e+03  -0.003
## country_feEthiopia                         -1.819e+01  8.403e+03  -0.002
## country_feGabon                            -1.908e+01  6.940e+03  -0.003
## country_feGeorgia                          -9.301e-02  1.008e+00  -0.092
## country_feGhana                            -1.848e+01  8.253e+03  -0.002
## country_feGuinea                           -1.969e+01  6.386e+03  -0.003
## country_feGuinea-Bissau                    -1.920e+01  6.462e+03  -0.003
## country_feGuyana                           -1.815e+01  8.443e+03  -0.002
## country_feHaiti                            -1.906e+01  6.980e+03  -0.003
## country_feIvory Coast                      -1.876e+01  7.310e+03  -0.003
## country_feKazakhstan                        5.390e-01  1.243e+00   0.433
## country_feKenya                            -1.879e+01  7.138e+03  -0.003
## country_feKyrgyzstan                        5.260e-01  1.035e+00   0.508
## country_feLesotho                          -1.855e+01  1.051e+04  -0.002
## country_feMadagascar                       -7.123e-01  1.488e+00  -0.479
## country_feMalaysia                          1.844e+00  9.244e-01   1.995
## country_feMauritania                        7.896e-01  1.180e+00   0.669
## country_feMexico                           -1.759e+01  9.349e+03  -0.002
## country_feMozambique                       -1.849e+01  8.953e+03  -0.002
## country_feNamibia                          -1.791e+01  2.734e+04  -0.001
## country_feNicaragua                        -1.792e+01  5.513e+03  -0.003
## country_feNiger                             1.070e+00  1.044e+00   1.025
## country_feNigeria                          -1.931e+01  6.656e+03  -0.003
## country_fePanama                           -1.671e+01  1.338e+04  -0.001
## country_feParaguay                         -1.834e+01  6.362e+03  -0.003
## country_fePeru                             -1.802e+01  7.717e+03  -0.002
## country_fePhilippines                      -1.817e+01  8.134e+03  -0.002
## country_feRussia                            1.845e+00  1.036e+00   1.781
## country_feRwanda                           -1.806e+01  8.520e+03  -0.002
## country_feSenegal                          -1.591e+01  1.627e+04  -0.001
## country_feSerbia                           -1.410e+00  1.425e+00  -0.989
## country_feSierra Leone                     -1.847e+01  6.823e+03  -0.003
## country_feSingapore                        -1.604e+01  1.354e+04  -0.001
## country_feSouth Korea                      -1.672e+01  1.990e+04  -0.001
## country_feSri Lanka                         1.435e+00  1.016e+00   1.412
## country_feTaiwan                           -1.721e+01  1.501e+04  -0.001
## country_feTajikistan                       -1.303e+00  1.246e+00  -1.046
## country_feTanzania                         -1.825e+01  1.389e+04  -0.001
## country_feThe Gambia                       -1.907e+01  7.452e+03  -0.003
## country_feTogo                             -1.899e+01  6.328e+03  -0.003
## country_feTürkiye                          -1.864e+01  8.543e+03  -0.002
## country_feTurkmenistan                     -2.508e+00  1.800e+00  -1.394
## country_feUganda                           -1.892e+01  7.534e+03  -0.003
## country_feUzbekistan                       -6.937e-01  1.440e+00  -0.482
## country_feVenezuela                        -3.055e-01  1.577e+00  -0.194
## country_feZambia                           -1.796e+01  1.101e+04  -0.002
## country_feZimbabwe                         -1.951e+01  7.668e+03  -0.003
## jud_ind:exec_corrupt_index                  2.279e-01  1.665e+00   0.137
## Log(theta)                                  1.661e+01  2.271e+01   0.731
##                                            Pr(>|z|)   
## (Intercept)                                 0.31180   
## jud_ind                                     0.84872   
## exec_corrupt_index                          0.00535 **
## polyarchy                                   0.01264 * 
## country_feAlgeria                           0.21701   
## country_feAngola                            0.99772   
## country_feArmenia                           0.55194   
## country_feAzerbaijan                        0.26091   
## country_feBangladesh                        0.99789   
## country_feBelarus                           0.52625   
## country_feBurkina Faso                      0.76493   
## country_feCambodia                          0.61636   
## country_feCameroon                          0.31609   
## country_feCentral African Republic          0.99765   
## country_feCroatia                           0.99816   
## country_feDemocratic Republic of the Congo  0.87562   
## country_feDjibouti                          0.66443   
## country_feEgypt                             0.55357   
## country_feEquatorial Guinea                 0.99758   
## country_feEthiopia                          0.99827   
## country_feGabon                             0.99781   
## country_feGeorgia                           0.92651   
## country_feGhana                             0.99821   
## country_feGuinea                            0.99754   
## country_feGuinea-Bissau                     0.99763   
## country_feGuyana                            0.99829   
## country_feHaiti                             0.99782   
## country_feIvory Coast                       0.99795   
## country_feKazakhstan                        0.66469   
## country_feKenya                             0.99790   
## country_feKyrgyzstan                        0.61116   
## country_feLesotho                           0.99859   
## country_feMadagascar                        0.63205   
## country_feMalaysia                          0.04601 * 
## country_feMauritania                        0.50348   
## country_feMexico                            0.99850   
## country_feMozambique                        0.99835   
## country_feNamibia                           0.99948   
## country_feNicaragua                         0.99741   
## country_feNiger                             0.30520   
## country_feNigeria                           0.99769   
## country_fePanama                            0.99900   
## country_feParaguay                          0.99770   
## country_fePeru                              0.99814   
## country_fePhilippines                       0.99822   
## country_feRussia                            0.07498 . 
## country_feRwanda                            0.99831   
## country_feSenegal                           0.99922   
## country_feSerbia                            0.32248   
## country_feSierra Leone                      0.99784   
## country_feSingapore                         0.99905   
## country_feSouth Korea                       0.99933   
## country_feSri Lanka                         0.15781   
## country_feTaiwan                            0.99908   
## country_feTajikistan                        0.29563   
## country_feTanzania                          0.99895   
## country_feThe Gambia                        0.99796   
## country_feTogo                              0.99761   
## country_feTürkiye                           0.99826   
## country_feTurkmenistan                      0.16345   
## country_feUganda                            0.99800   
## country_feUzbekistan                        0.63006   
## country_feVenezuela                         0.84642   
## country_feZambia                            0.99870   
## country_feZimbabwe                          0.99797   
## jud_ind:exec_corrupt_index                  0.89110   
## Log(theta)                                  0.46451   
## 
## Zero-inflation model coefficients (binomial with logit link):
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  1.2370     1.8475   0.670   0.5031  
## jud_ind                     -0.4793     1.2091  -0.396   0.6918  
## exec_corrupt_index           2.9468     2.3734   1.242   0.2144  
## polyarchy                   -7.0393     4.2321  -1.663   0.0963 .
## jud_ind:exec_corrupt_index   1.0938     1.5644   0.699   0.4845  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 16338728.7736 
## Number of iterations in BFGS optimization: 70 
## Log-likelihood: -269.7 on 72 Df