A simple Shiny application that predicts car fuel efficiency using regression.
Coursera Developing Data Products
A simple Shiny application that predicts car fuel efficiency using regression.
Fuel efficiency is an important factor when choosing a car. This app allows users to explore how different car features affect MPG.
The application uses the built-in mtcars dataset.
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb ## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
A linear regression model is trained using cylinders, horsepower, and weight.
model <- lm(mpg ~ cyl + hp + wt, data = mtcars) summary(model)
## ## Call: ## lm(formula = mpg ~ cyl + hp + wt, data = mtcars) ## ## Residuals: ## Min 1Q Median 3Q Max ## -3.9290 -1.5598 -0.5311 1.1850 5.8986 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 38.75179 1.78686 21.687 < 2e-16 *** ## cyl -0.94162 0.55092 -1.709 0.098480 . ## hp -0.01804 0.01188 -1.519 0.140015 ## wt -3.16697 0.74058 -4.276 0.000199 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.512 on 28 degrees of freedom ## Multiple R-squared: 0.8431, Adjusted R-squared: 0.8263 ## F-statistic: 50.17 on 3 and 28 DF, p-value: 2.184e-11