The effect of the parameter \(\lambda\) in skew-symmetric models

The parameter \(\lambda\) in skew-symmetric models of the type (Azzalini 1985)

\[s(x\mid \mu, \sigma ,\lambda) = 2 f\left(\dfrac{x-\mu}{\sigma}\right)G\left(\lambda\dfrac{x-\mu}{\sigma}\right),\] controls the asymmetry of the probability density function (pdf), however, it has a different role for different choices of \(f\) and \(G\). In the case \(f=\phi\) and \(G=\Phi\), we obtain the skew-normal distribution (Azzalini 1985). In this case, Rubio and Genton (2016) pointed out that the normal distribution is virtually symmetric for \(\vert \lambda \vert < 1.25\). In this region, the shape parameter \(\lambda\) affects mainly the location of the mode and the scale of the density function, but the effect on asymmetry is negligible.

I previously analysed the effect of \(\lambda\) in terms of the minimum total variation distance and divergence measure, see: The effect of the shape (skewness) parameter in skew-symmetric models and The effect of the shape (skewness) parameter in skew-symmetric models, Part II. In this document, we use instead the Le Cam divergence (Le Cam 2012):

\[ d(f \mid\mid g) = \dfrac{1}{2}\int_{\mathcal{X}} \dfrac{(f(x)-g(x))^2}{f(x)+g(x)}dx. \]

In the context of skew-symmetric models, we might be interested on identifying whether the skewness parameter has a non-negligible effect on the pdf or not, even if it is theoretically non-zero (Dette, Ley, and Rubio 2018). Thus, we can think of comparing a skew-symmetric model with parameters \((0,1,\lambda)\) and the corresponding “closest” nested symmetric density \(f\) with location \(\mu\) and scale \(\sigma\). In the skew-normal case, we would like to compare the skew normal density with parameters \((0,1,\lambda)\) and the closest Normal density with location \(\mu\) and scale \(\sigma\). This is, we would like to find the closest normal model to the skew normal model. For this purpose, we can employ the divergence measure above and define the minimum divergence

\[\begin{align} m(\lambda) &= \min_{\mu,\sigma} d\left(s(\mu,\sigma,0) \mid\mid s(0,1,\lambda)\right) \\ &= \min_{\mu,\sigma} \int_{-\infty}^{\infty} \dfrac{ \left[\dfrac{1}{\sigma}f\left(\dfrac{x-\mu}{\sigma}\right) - 2f(x)G(\lambda x) \right]^2}{\dfrac{1}{\sigma}f\left(\dfrac{x-\mu}{\sigma}\right)+2f(x)G(\lambda x)} dx. \end{align}\]

The following R code shows the minimum divergence between some skew-symmetric models and the corresponding nested symmetric models, as a function of \(\lambda\). We can see that the effect of the skewness parameter differ for different skew-symmetric distributions. This also provides an intuition about the nature of some inferential problems which appear when estimating \(\lambda\), such as those in the skew-normal distribution (Pewsey 2000). That is, in a neighbourhood of \(\lambda=0\), it is difficult to distinguish the skew-symmetric model from the nested symmetric model (Rubio and Genton 2016).

The Skew Normal distribution

##################################################################################################
# Skew Normal
##################################################################################################

rm(list=ls())

# The Skew Normal is virtually symmetric for |lambda| < 1.25

lcd_min <- Vectorize(function(lambda){
  # Absolute value using the symmetry of the divergence measure
  lambda <- abs(lambda)
  # divergence
  disc <- function(par){
    # Integrand
    tempf <- Vectorize(function(x){
      num <- ( dnorm(x,par[1],exp(par[2])) -  2*dnorm(x)*pnorm(lambda*x) )^2
      den <- dnorm(x,par[1],exp(par[2])) + 2*dnorm(x)*pnorm(lambda*x)
      out <- num/den
      return(out)
    })
    # Integral (heuristic choice of integration range)
    int <- integrate(tempf,-10,10)$value
    return(0.5*int)
  }
  
  # Initial value (mean and sd)
  init <- c(0,0)
  
  # Minimum translated divergence
  val <- nlminb(init,disc)$objective
  return(val)
})

lcd_min(0)
## [1] 0
lcd_min(1)
## [1] 0.000754854
lcd_min(3)
## [1] 0.01856986
curve(lcd_min, -10, 10, n = 300, lwd = 2, ylab = "m", xlab = expression(lambda))
abline(h=0.005, lwd = 2, col = "red")

The Skew Logistic distribution

##################################################################################################
# Skew Logistic
##################################################################################################

rm(list=ls())

# Minimum divergence between the skew-logistic distribution and the closest logistic model

lcd_min <- Vectorize(function(lambda){
  # Absolute value using the symmetry of the divergence measure
  lambda <- abs(lambda)
  # divergence
  disc <- function(par){
    # Integrand
    tempf <- Vectorize(function(x){
      num <- ( dlogis(x,par[1],exp(par[2])) -  2*dlogis(x)*plogis(lambda*x) )^2
      den <- dlogis(x,par[1],exp(par[2])) + 2*dlogis(x)*plogis(lambda*x)
      out <- num/den
      return(out)
    })
    # Integral (heuristic choice of integration range)
    int <- integrate(tempf,-10,10)$value
    return(0.5*int)
  }
  
  # Initial value (mean and sd)
  init <- c(0,0)
  
  # Minimum translated divergence
  val <- nlminb(init,disc)$objective
  return(val)
})

lcd_min(0)
## [1] 0
lcd_min(1)
## [1] 0.006196338
lcd_min(3)
## [1] 0.02882869
curve(lcd_min, -10, 10, n = 300, lwd = 2, ylab = "m", xlab = expression(lambda))
abline(h=0.005, lwd = 2, col = "red")

References

Azzalini, A. 1985. “A Class of Distributions Which Includes the Normal Ones.” Scandinavian Journal of Statistics, 171–78.
Dette, H., C. Ley, and F. J. Rubio. 2018. “Natural (Non-) Informative Priors for Skew-Symmetric Distributions.” Scandinavian Journal of Statistics 45 (2): 405–20.
Le Cam, L. 2012. Asymptotic Methods in Statistical Decision Theory. Springer Science & Business Media.
Pewsey, A. 2000. “Problems of Inference for Azzalini’s Skewnormal Distribution.” Journal of Applied Statistics 27 (7): 859–70.
Rubio, F. J., and M. G. Genton. 2016. “Bayesian Linear Regression with Skew-Symmetric Error Distributions with Applications to Survival Analysis.” Statistics in Medicine 35 (14): 2441–54.