library(MASS)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
data("Boston")
head(Boston)
## crim zn indus chas nox rm age dis rad tax ptratio black lstat
## 1 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98
## 2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14
## 3 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03
## 4 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94
## 5 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33
## 6 0.02985 0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12 5.21
## medv
## 1 24.0
## 2 21.6
## 3 34.7
## 4 33.4
## 5 36.2
## 6 28.7
names(Boston)
## [1] "crim" "zn" "indus" "chas" "nox" "rm" "age"
## [8] "dis" "rad" "tax" "ptratio" "black" "lstat" "medv"
boston_tr <- Boston %>% dplyr::select(medv,rm,lstat,chas,tax)
head(boston_tr)
## medv rm lstat chas tax
## 1 24.0 6.575 4.98 0 296
## 2 21.6 6.421 9.14 0 242
## 3 34.7 7.185 4.03 0 242
## 4 33.4 6.998 2.94 0 222
## 5 36.2 7.147 5.33 0 222
## 6 28.7 6.430 5.21 0 222
boston_tr2 <- boston_tr %>%
rename (konut_degeri = medv,
oda_sayisi = rm,
dusuk_sosyoek = lstat,
nehir_kenari = chas,
emlak_vergisi = tax,)
head(boston_tr2)
## konut_degeri oda_sayisi dusuk_sosyoek nehir_kenari emlak_vergisi
## 1 24.0 6.575 4.98 0 296
## 2 21.6 6.421 9.14 0 242
## 3 34.7 7.185 4.03 0 242
## 4 33.4 6.998 2.94 0 222
## 5 36.2 7.147 5.33 0 222
## 6 28.7 6.430 5.21 0 222
names(boston_tr2)
## [1] "konut_degeri" "oda_sayisi" "dusuk_sosyoek" "nehir_kenari"
## [5] "emlak_vergisi"
summary(boston_tr2)
## konut_degeri oda_sayisi dusuk_sosyoek nehir_kenari
## Min. : 5.00 Min. :3.561 Min. : 1.73 Min. :0.00000
## 1st Qu.:17.02 1st Qu.:5.886 1st Qu.: 6.95 1st Qu.:0.00000
## Median :21.20 Median :6.208 Median :11.36 Median :0.00000
## Mean :22.53 Mean :6.285 Mean :12.65 Mean :0.06917
## 3rd Qu.:25.00 3rd Qu.:6.623 3rd Qu.:16.95 3rd Qu.:0.00000
## Max. :50.00 Max. :8.780 Max. :37.97 Max. :1.00000
## emlak_vergisi
## Min. :187.0
## 1st Qu.:279.0
## Median :330.0
## Mean :408.2
## 3rd Qu.:666.0
## Max. :711.0
mean(boston_tr2$konut_degeri)
## [1] 22.53281
median(boston_tr2$konut_degeri)
## [1] 21.2
table(boston_tr2$konut_degeri)
##
## 5 5.6 6.3 7 7.2 7.4 7.5 8.1 8.3 8.4 8.5 8.7 8.8 9.5 9.6 9.7
## 2 1 1 2 3 1 1 1 2 2 2 1 2 1 1 1
## 10.2 10.4 10.5 10.8 10.9 11 11.3 11.5 11.7 11.8 11.9 12 12.1 12.3 12.5 12.6
## 3 2 2 1 2 1 1 1 2 2 2 1 1 1 1 1
## 12.7 12.8 13 13.1 13.2 13.3 13.4 13.5 13.6 13.8 13.9 14 14.1 14.2 14.3 14.4
## 3 1 1 4 1 3 4 2 2 5 2 1 3 1 2 2
## 14.5 14.6 14.8 14.9 15 15.1 15.2 15.3 15.4 15.6 15.7 16 16.1 16.2 16.3 16.4
## 3 2 1 3 3 1 3 1 2 5 1 1 3 2 1 1
## 16.5 16.6 16.7 16.8 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18 18.1
## 2 2 2 2 1 3 3 1 3 3 1 1 5 1 1 1
## 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7
## 3 2 3 4 2 3 2 4 2 4 2 5 6 4 5 2
## 19.8 19.9 20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21 21.1 21.2 21.4
## 3 4 5 5 2 4 4 3 6 2 3 2 3 2 5 5
## 21.5 21.6 21.7 21.8 21.9 22 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 23
## 2 2 7 2 3 7 1 5 2 2 3 5 2 4 4 4
## 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 24 24.1 24.2 24.3 24.4 24.5 24.6
## 7 4 4 2 1 2 4 4 5 2 3 1 3 4 3 2
## 24.7 24.8 25 25.1 25.2 25.3 26.2 26.4 26.5 26.6 26.7 27 27.1 27.5 27.9 28
## 3 4 8 1 1 1 1 2 1 3 1 1 2 4 2 1
## 28.1 28.2 28.4 28.5 28.6 28.7 29 29.1 29.4 29.6 29.8 29.9 30.1 30.3 30.5 30.7
## 1 1 2 1 1 3 2 2 1 2 2 1 3 1 1 1
## 30.8 31 31.1 31.2 31.5 31.6 31.7 32 32.2 32.4 32.5 32.7 32.9 33 33.1 33.2
## 1 1 1 1 2 2 1 2 1 1 1 1 1 1 2 2
## 33.3 33.4 33.8 34.6 34.7 34.9 35.1 35.2 35.4 36 36.1 36.2 36.4 36.5 37 37.2
## 1 2 1 1 1 3 1 1 2 1 1 2 1 1 1 1
## 37.3 37.6 37.9 38.7 39.8 41.3 41.7 42.3 42.8 43.1 43.5 43.8 44 44.8 45.4 46
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 46.7 48.3 48.5 48.8 50
## 1 1 1 1 16
prop.table(table(boston_tr2$konut_degeri)) *100
##
## 5 5.6 6.3 7 7.2 7.4 7.5 8.1
## 0.3952569 0.1976285 0.1976285 0.3952569 0.5928854 0.1976285 0.1976285 0.1976285
## 8.3 8.4 8.5 8.7 8.8 9.5 9.6 9.7
## 0.3952569 0.3952569 0.3952569 0.1976285 0.3952569 0.1976285 0.1976285 0.1976285
## 10.2 10.4 10.5 10.8 10.9 11 11.3 11.5
## 0.5928854 0.3952569 0.3952569 0.1976285 0.3952569 0.1976285 0.1976285 0.1976285
## 11.7 11.8 11.9 12 12.1 12.3 12.5 12.6
## 0.3952569 0.3952569 0.3952569 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285
## 12.7 12.8 13 13.1 13.2 13.3 13.4 13.5
## 0.5928854 0.1976285 0.1976285 0.7905138 0.1976285 0.5928854 0.7905138 0.3952569
## 13.6 13.8 13.9 14 14.1 14.2 14.3 14.4
## 0.3952569 0.9881423 0.3952569 0.1976285 0.5928854 0.1976285 0.3952569 0.3952569
## 14.5 14.6 14.8 14.9 15 15.1 15.2 15.3
## 0.5928854 0.3952569 0.1976285 0.5928854 0.5928854 0.1976285 0.5928854 0.1976285
## 15.4 15.6 15.7 16 16.1 16.2 16.3 16.4
## 0.3952569 0.9881423 0.1976285 0.1976285 0.5928854 0.3952569 0.1976285 0.1976285
## 16.5 16.6 16.7 16.8 17 17.1 17.2 17.3
## 0.3952569 0.3952569 0.3952569 0.3952569 0.1976285 0.5928854 0.5928854 0.1976285
## 17.4 17.5 17.6 17.7 17.8 17.9 18 18.1
## 0.5928854 0.5928854 0.1976285 0.1976285 0.9881423 0.1976285 0.1976285 0.1976285
## 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9
## 0.5928854 0.3952569 0.5928854 0.7905138 0.3952569 0.5928854 0.3952569 0.7905138
## 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7
## 0.3952569 0.7905138 0.3952569 0.9881423 1.1857708 0.7905138 0.9881423 0.3952569
## 19.8 19.9 20 20.1 20.2 20.3 20.4 20.5
## 0.5928854 0.7905138 0.9881423 0.9881423 0.3952569 0.7905138 0.7905138 0.5928854
## 20.6 20.7 20.8 20.9 21 21.1 21.2 21.4
## 1.1857708 0.3952569 0.5928854 0.3952569 0.5928854 0.3952569 0.9881423 0.9881423
## 21.5 21.6 21.7 21.8 21.9 22 22.1 22.2
## 0.3952569 0.3952569 1.3833992 0.3952569 0.5928854 1.3833992 0.1976285 0.9881423
## 22.3 22.4 22.5 22.6 22.7 22.8 22.9 23
## 0.3952569 0.3952569 0.5928854 0.9881423 0.3952569 0.7905138 0.7905138 0.7905138
## 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8
## 1.3833992 0.7905138 0.7905138 0.3952569 0.1976285 0.3952569 0.7905138 0.7905138
## 23.9 24 24.1 24.2 24.3 24.4 24.5 24.6
## 0.9881423 0.3952569 0.5928854 0.1976285 0.5928854 0.7905138 0.5928854 0.3952569
## 24.7 24.8 25 25.1 25.2 25.3 26.2 26.4
## 0.5928854 0.7905138 1.5810277 0.1976285 0.1976285 0.1976285 0.1976285 0.3952569
## 26.5 26.6 26.7 27 27.1 27.5 27.9 28
## 0.1976285 0.5928854 0.1976285 0.1976285 0.3952569 0.7905138 0.3952569 0.1976285
## 28.1 28.2 28.4 28.5 28.6 28.7 29 29.1
## 0.1976285 0.1976285 0.3952569 0.1976285 0.1976285 0.5928854 0.3952569 0.3952569
## 29.4 29.6 29.8 29.9 30.1 30.3 30.5 30.7
## 0.1976285 0.3952569 0.3952569 0.1976285 0.5928854 0.1976285 0.1976285 0.1976285
## 30.8 31 31.1 31.2 31.5 31.6 31.7 32
## 0.1976285 0.1976285 0.1976285 0.1976285 0.3952569 0.3952569 0.1976285 0.3952569
## 32.2 32.4 32.5 32.7 32.9 33 33.1 33.2
## 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285 0.3952569 0.3952569
## 33.3 33.4 33.8 34.6 34.7 34.9 35.1 35.2
## 0.1976285 0.3952569 0.1976285 0.1976285 0.1976285 0.5928854 0.1976285 0.1976285
## 35.4 36 36.1 36.2 36.4 36.5 37 37.2
## 0.3952569 0.1976285 0.1976285 0.3952569 0.1976285 0.1976285 0.1976285 0.1976285
## 37.3 37.6 37.9 38.7 39.8 41.3 41.7 42.3
## 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285
## 42.8 43.1 43.5 43.8 44 44.8 45.4 46
## 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285 0.1976285
## 46.7 48.3 48.5 48.8 50
## 0.1976285 0.1976285 0.1976285 0.1976285 3.1620553
table(boston_tr2$nehir_kenari)
##
## 0 1
## 471 35
prop.table(table(boston_tr2$nehir_kenari)) *100
##
## 0 1
## 93.083004 6.916996
`
#### **4.b) Bu iki değişken arasındaki korelasyon katsayısını hesaplayınız ve korelasyon katsayısını yorumlayınız.**
### **Soru 5 – Basit Doğrusal Regresyon**
#### **5.a) Oda sayısı değişkeninin konut değeri değişkenini yordayıp yordamadığını test eden bir basit doğrusal regresyon modeli kurunuz.**
eğim (β₁)
kesişim (β₀)
R-kare (R²)
geom_jitter fonksiyonunun kullanım amacı
nedir?