library (gapminder)
## Warning: package 'gapminder' was built under R version 4.5.2
library (dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library (ggplot2)
data("gapminder")
names(gapminder)
## [1] "country" "continent" "year" "lifeExp" "pop" "gdpPercap"
glimpse(penguins)
## Rows: 344
## Columns: 8
## $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Ad…
## $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgersen, Tor…
## $ bill_len <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, 42.0, …
## $ bill_dep <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, 20.2, …
## $ flipper_len <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186, 180,…
## $ body_mass <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, 4250, …
## $ sex <fct> male, female, female, NA, female, male, female, male, NA, …
## $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007…
ulke (country)
yil (year)
yasam_beklentisi (lifeExp)
kisi_basi_gelir (gdpPercap)
kita (continent)
gapminder_tr<-gapminder %>%
rename(
ulke = country,
yil = year,
yasam_beklentisi = lifeExp,
kisi_basi_gelir = gdpPercap,
kita = continent
)
na.omit(gapminder_tr)
## # A tibble: 1,704 × 6
## ulke kita yil yasam_beklentisi pop kisi_basi_gelir
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
## 7 Afghanistan Asia 1982 39.9 12881816 978.
## 8 Afghanistan Asia 1987 40.8 13867957 852.
## 9 Afghanistan Asia 1992 41.7 16317921 649.
## 10 Afghanistan Asia 1997 41.8 22227415 635.
## # ℹ 1,694 more rows
summary(gapminder_tr)
## ulke kita yil yasam_beklentisi
## Afghanistan: 12 Africa :624 Min. :1952 Min. :23.60
## Albania : 12 Americas:300 1st Qu.:1966 1st Qu.:48.20
## Algeria : 12 Asia :396 Median :1980 Median :60.71
## Angola : 12 Europe :360 Mean :1980 Mean :59.47
## Argentina : 12 Oceania : 24 3rd Qu.:1993 3rd Qu.:70.85
## Australia : 12 Max. :2007 Max. :82.60
## (Other) :1632
## pop kisi_basi_gelir
## Min. :6.001e+04 Min. : 241.2
## 1st Qu.:2.794e+06 1st Qu.: 1202.1
## Median :7.024e+06 Median : 3531.8
## Mean :2.960e+07 Mean : 7215.3
## 3rd Qu.:1.959e+07 3rd Qu.: 9325.5
## Max. :1.319e+09 Max. :113523.1
##
mean(gapminder_tr$yasam_beklentisi)
## [1] 59.47444
median(gapminder_tr$yasam_beklentisi)
## [1] 60.7125
range(gapminder_tr$yasam_beklentisi)
## [1] 23.599 82.603
table(gapminder_tr$kita)
##
## Africa Americas Asia Europe Oceania
## 624 300 396 360 24
prop.table(table(gapminder_tr$kita))
##
## Africa Americas Asia Europe Oceania
## 0.36619718 0.17605634 0.23239437 0.21126761 0.01408451
gapminder_tr %>%
count(kita) %>%
mutate(yuzde = round((n/ sum(n))*100, 2))
## # A tibble: 5 × 3
## kita n yuzde
## <fct> <int> <dbl>
## 1 Africa 624 36.6
## 2 Americas 300 17.6
## 3 Asia 396 23.2
## 4 Europe 360 21.1
## 5 Oceania 24 1.41
gapminder_tr<- gapminder_tr|>
select(yasam_beklentisi, kisi_basi_gelir) |>
na.omit(gapminder_tr)
ggplot(gapminder_tr, aes(x = yasam_beklentisi, y = kisi_basi_gelir)) + geom_point() +
labs (x = "Yaşam beklentisi ",
y = "Kişi başına düşen gelir ",
title = "Yaşam Beklentisi ile Kişi Başına Düşen Gelir"
)
gap_mod<- lm(kisi_basi_gelir~ yasam_beklentisi, data = gapminder_tr)
summary(gap_mod)
##
## Call:
## lm(formula = kisi_basi_gelir ~ yasam_beklentisi, data = gapminder_tr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11483 -4539 -1223 2482 106950
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -19277.25 914.09 -21.09 <2e-16 ***
## yasam_beklentisi 445.44 15.02 29.66 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8006 on 1702 degrees of freedom
## Multiple R-squared: 0.3407, Adjusted R-squared: 0.3403
## F-statistic: 879.6 on 1 and 1702 DF, p-value: < 2.2e-16
coef(gap_mod)
## (Intercept) yasam_beklentisi
## -19277.2490 445.4447
eğim (β₁) yaşam beklentisi yani 445.4447’dir. Yaşam kalitesi arttığında, kişi başı gelir de artar pozitif bir ilişki vardır.
kesişim (β₀) = yaşam kalitesi olmasaydı kişi başı gelirde olmazdı.
R-kare (R²) = 0.3407 kişi başı gelirdeki değişimin yaşam kalitesi üzerindeki yüzdesi
ggplot(gapminder_tr,aes(x = yasam_beklentisi, y = kisi_basi_gelir))+ geom_point() +
geom_smooth(method = "lm", se= FALSE, color= "red") +
labs(x = "Yaşam Beklentisi",
y= "Kişi Başına Düşen Gelir",
title = "Yaşam Beklentisi ile Kişi Başına Düşen Gelir" )
## `geom_smooth()` using formula = 'y ~ x'
geom_jitter fonksiyonunun kullanım amacı
nedir?değişkenlerin özelliklerini yazarken kullanırız.