library (gapminder)
## Warning: package 'gapminder' was built under R version 4.5.2
library (dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library (ggplot2)
## Warning: package 'ggplot2' was built under R version 4.5.2
library(dplyr)
library(gapminder)
library(ggplot2)
data(gapminder)
head(gapminder)
## # A tibble: 6 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
names(gapminder)
## [1] "country" "continent" "year" "lifeExp" "pop" "gdpPercap"
ulke (country)
yil (year)
yasam_beklentisi (lifeExp)
kisi_basi_gelir (gdpPercap)
kita (continent)
gapminder_tr<-gapminder %>%
rename(ulke= country,
yil=year,
yasam_beklentisi=lifeExp,
kisi_basi_gelir=gdpPercap,
kita=continent)
gapminder_tr
## # A tibble: 1,704 × 6
## ulke kita yil yasam_beklentisi pop kisi_basi_gelir
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
## 7 Afghanistan Asia 1982 39.9 12881816 978.
## 8 Afghanistan Asia 1987 40.8 13867957 852.
## 9 Afghanistan Asia 1992 41.7 16317921 649.
## 10 Afghanistan Asia 1997 41.8 22227415 635.
## # ℹ 1,694 more rows
# rename(ulke=country,
# yil=year,
# yasam_beklentisi=lifeExp,
# kisi_basi_gelir=gdpPercap,
# kita=continent)
summary(gapminder_tr)
## ulke kita yil yasam_beklentisi
## Afghanistan: 12 Africa :624 Min. :1952 Min. :23.60
## Albania : 12 Americas:300 1st Qu.:1966 1st Qu.:48.20
## Algeria : 12 Asia :396 Median :1980 Median :60.71
## Angola : 12 Europe :360 Mean :1980 Mean :59.47
## Argentina : 12 Oceania : 24 3rd Qu.:1993 3rd Qu.:70.85
## Australia : 12 Max. :2007 Max. :82.60
## (Other) :1632
## pop kisi_basi_gelir
## Min. :6.001e+04 Min. : 241.2
## 1st Qu.:2.794e+06 1st Qu.: 1202.1
## Median :7.024e+06 Median : 3531.8
## Mean :2.960e+07 Mean : 7215.3
## 3rd Qu.:1.959e+07 3rd Qu.: 9325.5
## Max. :1.319e+09 Max. :113523.1
##
summary(gapminder_tr$yasam_beklentisi)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 23.60 48.20 60.71 59.47 70.85 82.60
table(gapminder_tr$kita)
##
## Africa Americas Asia Europe Oceania
## 624 300 396 360 24
prop.table(table(gapminder_tr$kita))*100
##
## Africa Americas Asia Europe Oceania
## 36.619718 17.605634 23.239437 21.126761 1.408451
gapminder_tr<-gapminder_tr|>
select(yasam_beklentisi,kisi_basi_gelir)|>
na.omit()
ggplot(gapminder_tr,aes(x=yasam_beklentisi,y=kisi_basi_gelir))+
geom_point()+
labs(x="Yasam Beklentisi",
y="Kisi Basına Düsen Gelir")
gap_mod<-lm(kisi_basi_gelir ~yasam_beklentisi , data=gapminder_tr)
summary(gap_mod)
##
## Call:
## lm(formula = kisi_basi_gelir ~ yasam_beklentisi, data = gapminder_tr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11483 -4539 -1223 2482 106950
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -19277.25 914.09 -21.09 <2e-16 ***
## yasam_beklentisi 445.44 15.02 29.66 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8006 on 1702 degrees of freedom
## Multiple R-squared: 0.3407, Adjusted R-squared: 0.3403
## F-statistic: 879.6 on 1 and 1702 DF, p-value: < 2.2e-16
coef(gap_mod)
## (Intercept) yasam_beklentisi
## -19277.2490 445.4447
#ggplot(gapminder_tr,aes(x)=kisi_basi_gelir , y=yasam_beklentisi)
#geom_point()
#geom_smooth(method ("lm =,se=FALSE,color="red" )+ #klavyem bozuldu
eğim (β₁)
kesişim (β₀)
R-kare (R²)
geom_jitter fonksiyonunun kullanım amacı
nedir?jitter geom, kullanışlı bir kısayoldur geom_point(position=jitter) her noktanın konumuna küçük bir miktar rastgele varyasyon ekler ve daha küçük veri kümelerindeki süreksizlikten kaynaklanan üst üste binmeyi ele almanın faydalı bir yoludur. geom_point,R/ggplot2 paketinde kullanılan ve özellikle üst üste gelen binen (overlopping)veri noktaları görünür hale getirmek için tasarlanmış bir geometridir