library (gapminder)
## Warning: package 'gapminder' was built under R version 4.5.2
library (dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library (ggplot2)
head(gapminder)
## # A tibble: 6 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
names(gapminder)
## [1] "country" "continent" "year" "lifeExp" "pop" "gdpPercap"
ulke (country)
yil (year)
yasam_beklentisi (lifeExp)
kisi_basi_gelir (gdpPercap)
kita (continent)
gapminder_tr <- gapminder %>%
dplyr:: select(country ,year,lifeExp,gdpPercap,continent)
gapminder <- gapminder_tr %>%
rename (ulke = country ,
yil = year ,
yasam_beklentisi = lifeExp ,
kisi_basi_gelir = gdpPercap ,
kita = continent)
summary(gapminder_tr)
## country year lifeExp gdpPercap
## Afghanistan: 12 Min. :1952 Min. :23.60 Min. : 241.2
## Albania : 12 1st Qu.:1966 1st Qu.:48.20 1st Qu.: 1202.1
## Algeria : 12 Median :1980 Median :60.71 Median : 3531.8
## Angola : 12 Mean :1980 Mean :59.47 Mean : 7215.3
## Argentina : 12 3rd Qu.:1993 3rd Qu.:70.85 3rd Qu.: 9325.5
## Australia : 12 Max. :2007 Max. :82.60 Max. :113523.1
## (Other) :1632
## continent
## Africa :624
## Americas:300
## Asia :396
## Europe :360
## Oceania : 24
##
##
**medyan = 60.71 ortalama = 59.47 ranj =
table(gapminder_tr$continent)
##
## Africa Americas Asia Europe Oceania
## 624 300 396 360 24
prop.table(table(gapminder_tr$continent))*100
##
## Africa Americas Asia Europe Oceania
## 36.619718 17.605634 23.239437 21.126761 1.408451
gapminder_tr %>%
count(continent) %>%
mutate(yuzde = round((n / sum(n))* 100,2))
## # A tibble: 5 × 3
## continent n yuzde
## <fct> <int> <dbl>
## 1 Africa 624 36.6
## 2 Americas 300 17.6
## 3 Asia 396 23.2
## 4 Europe 360 21.1
## 5 Oceania 24 1.41
gapminder_tr <- gapminder_tr |>
select(gdpPercap,lifeExp) |>
na.omit()
ggplot(gapminder_tr,aes(x = gdpPercap, y = lifeExp)) +
geom_point() +
labs(x = "Kişi Başına Düşen Gelir",
y = "Yaşam Beklentisi",
title = "Kişi Başına Düşen Gelir ile Yaşam Beklentisi İlişkisi" )
eğim (β₁)
kesişim (β₀)
R-kare (R²)
geom_jitter fonksiyonunun kullanım amacı
nedir?