Tables

options(warn = -1)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
library(lmerTest)
Loading required package: lme4
Loading required package: Matrix

Attaching package: 'lmerTest'
The following object is masked from 'package:lme4':

    lmer
The following object is masked from 'package:stats':

    step
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ forcats   1.0.0     ✔ readr     2.1.5
✔ ggplot2   3.5.1     ✔ stringr   1.5.1
✔ lubridate 1.9.3     ✔ tibble    3.2.1
✔ purrr     1.0.2     ✔ tidyr     1.3.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ tidyr::expand() masks Matrix::expand()
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
✖ tidyr::pack()   masks Matrix::pack()
✖ tidyr::unpack() masks Matrix::unpack()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(modelr)
library(purrr)
library(emmeans)
Welcome to emmeans.
Caution: You lose important information if you filter this package's results.
See '? untidy'
library(gridExtra)

Attaching package: 'gridExtra'

The following object is masked from 'package:dplyr':

    combine
library(writexl)
library(gt)
library(webshot2)
library(broom.mixed)
library(ggplot2)

load("Z:/Isaac/Visual Features/1-5/step2.RData")
# model with mean value
aug_res_10
# A tibble: 117,623 × 19
   feature sow   time_group_10 datetime            hour    ttf mean_value
   <fct>   <fct> <fct>         <dttm>              <fct> <dbl>      <dbl>
 1 Area    1     1             2025-04-01 09:13:30 9     -18.2     63367.
 2 Area    1     2             2025-04-01 09:20:00 9     -18.1     57510.
 3 Area    1     3             2025-04-01 09:30:01 9     -17.9     57500.
 4 Area    1     4             2025-04-01 09:40:02 9     -17.8     57232.
 5 Area    1     5             2025-04-01 09:50:00 9     -17.6     56487.
 6 Area    1     6             2025-04-01 10:00:01 10    -17.4     57331.
 7 Area    1     7             2025-04-01 10:10:02 10    -17.3     55908.
 8 Area    1     8             2025-04-01 10:20:00 10    -17.1     59313.
 9 Area    1     9             2025-04-01 10:30:00 10    -16.9     54803.
10 Area    1     10            2025-04-01 10:40:01 10    -16.8     57151.
# ℹ 117,613 more rows
# ℹ 12 more variables: sd_value <dbl>, var_value <dbl>, n_obs <int>,
#   .fitted <dbl>, .fixed <dbl>, .mu <dbl>, .offset <dbl>, .sqrtXwt <dbl>,
#   .sqrtrwt <dbl>, .weights <dbl>, .wtres <dbl>, .resid <dbl>
aug_res_20
# A tibble: 58,973 × 19
   feature sow   time_group_20 datetime            hour    ttf mean_value
   <fct>   <fct> <fct>         <dttm>              <fct> <dbl>      <dbl>
 1 Area    1     1             2025-04-01 09:13:30 9     -18.2     63367.
 2 Area    1     2             2025-04-01 09:20:00 9     -18.0     57505.
 3 Area    1     3             2025-04-01 09:40:02 9     -17.7     56858.
 4 Area    1     4             2025-04-01 10:00:01 10    -17.4     56622.
 5 Area    1     5             2025-04-01 10:20:00 10    -17.0     57058.
 6 Area    1     6             2025-04-01 10:40:01 10    -16.7     57006.
 7 Area    1     7             2025-04-01 11:00:00 11    -16.4     59473.
 8 Area    1     8             2025-04-01 11:20:02 11    -16.0     58641.
 9 Area    1     9             2025-04-01 11:40:01 11    -15.7     56930.
10 Area    1     10            2025-04-01 12:00:00 12    -15.4     51047.
# ℹ 58,963 more rows
# ℹ 12 more variables: sd_value <dbl>, var_value <dbl>, n_obs <int>,
#   .fitted <dbl>, .fixed <dbl>, .mu <dbl>, .offset <dbl>, .sqrtXwt <dbl>,
#   .sqrtrwt <dbl>, .weights <dbl>, .wtres <dbl>, .resid <dbl>
aug_res_30
# A tibble: 39,423 × 19
   feature sow   time_group_30 datetime            hour    ttf mean_value
   <fct>   <fct> <fct>         <dttm>              <fct> <dbl>      <dbl>
 1 Area    1     1             2025-04-01 09:13:30 9     -18.2     59814.
 2 Area    1     2             2025-04-01 09:30:01 9     -17.8     57073.
 3 Area    1     3             2025-04-01 10:00:01 10    -17.3     57520.
 4 Area    1     4             2025-04-01 10:30:00 10    -16.8     56271.
 5 Area    1     5             2025-04-01 11:00:00 11    -16.3     58836.
 6 Area    1     6             2025-04-01 11:30:00 11    -15.8     57861.
 7 Area    1     7             2025-04-01 12:00:00 12    -15.3     51257.
 8 Area    1     8             2025-04-01 12:30:00 12    -14.8     48846.
 9 Area    1     9             2025-04-01 13:00:02 13    -14.3     47773.
10 Area    1     10            2025-04-01 13:30:02 13    -13.8     47942.
# ℹ 39,413 more rows
# ℹ 12 more variables: sd_value <dbl>, var_value <dbl>, n_obs <int>,
#   .fitted <dbl>, .fixed <dbl>, .mu <dbl>, .offset <dbl>, .sqrtXwt <dbl>,
#   .sqrtrwt <dbl>, .weights <dbl>, .wtres <dbl>, .resid <dbl>
aug_res_60
# A tibble: 19,890 × 19
   feature sow   time_group_60 datetime            hour     ttf mean_value
   <fct>   <fct> <fct>         <dttm>              <fct>  <dbl>      <dbl>
 1 Area    1     1             2025-04-01 09:13:30 9     -17.9      58046.
 2 Area    1     2             2025-04-01 10:00:01 10    -17.0      56895.
 3 Area    1     3             2025-04-01 11:00:00 11    -16.0      58349.
 4 Area    1     4             2025-04-01 12:00:00 12    -15.0      50050.
 5 Area    1     5             2025-04-01 13:00:02 13    -14.0      47858.
 6 Area    1     6             2025-04-01 14:00:02 14    -13.0      50943.
 7 Area    1     7             2025-04-01 15:00:01 15    -12.0      50301.
 8 Area    1     8             2025-04-01 16:00:01 16    -11.0      53684.
 9 Area    1     9             2025-04-01 17:00:01 17    -10.0      47713.
10 Area    1     10            2025-04-01 18:00:00 18     -9.03     54449.
# ℹ 19,880 more rows
# ℹ 12 more variables: sd_value <dbl>, var_value <dbl>, n_obs <int>,
#   .fitted <dbl>, .fixed <dbl>, .mu <dbl>, .offset <dbl>, .sqrtXwt <dbl>,
#   .sqrtrwt <dbl>, .weights <dbl>, .wtres <dbl>, .resid <dbl>
# model with var value
aug_res_10_var
# A tibble: 117,623 × 19
   feature sow   time_group_10 datetime            hour    ttf mean_value
   <fct>   <fct> <fct>         <dttm>              <fct> <dbl>      <dbl>
 1 Area    1     1             2025-04-01 09:13:30 9     -18.2     63367.
 2 Area    1     2             2025-04-01 09:20:00 9     -18.1     57510.
 3 Area    1     3             2025-04-01 09:30:01 9     -17.9     57500.
 4 Area    1     4             2025-04-01 09:40:02 9     -17.8     57232.
 5 Area    1     5             2025-04-01 09:50:00 9     -17.6     56487.
 6 Area    1     6             2025-04-01 10:00:01 10    -17.4     57331.
 7 Area    1     7             2025-04-01 10:10:02 10    -17.3     55908.
 8 Area    1     8             2025-04-01 10:20:00 10    -17.1     59313.
 9 Area    1     9             2025-04-01 10:30:00 10    -16.9     54803.
10 Area    1     10            2025-04-01 10:40:01 10    -16.8     57151.
# ℹ 117,613 more rows
# ℹ 12 more variables: sd_value <dbl>, var_value <dbl>, n_obs <int>,
#   .fitted <dbl>, .fixed <dbl>, .mu <dbl>, .offset <dbl>, .sqrtXwt <dbl>,
#   .sqrtrwt <dbl>, .weights <dbl>, .wtres <dbl>, .resid <dbl>
aug_res_20_var
# A tibble: 58,973 × 19
   feature sow   time_group_20 datetime            hour    ttf mean_value
   <fct>   <fct> <fct>         <dttm>              <fct> <dbl>      <dbl>
 1 Area    1     1             2025-04-01 09:13:30 9     -18.2     63367.
 2 Area    1     2             2025-04-01 09:20:00 9     -18.0     57505.
 3 Area    1     3             2025-04-01 09:40:02 9     -17.7     56858.
 4 Area    1     4             2025-04-01 10:00:01 10    -17.4     56622.
 5 Area    1     5             2025-04-01 10:20:00 10    -17.0     57058.
 6 Area    1     6             2025-04-01 10:40:01 10    -16.7     57006.
 7 Area    1     7             2025-04-01 11:00:00 11    -16.4     59473.
 8 Area    1     8             2025-04-01 11:20:02 11    -16.0     58641.
 9 Area    1     9             2025-04-01 11:40:01 11    -15.7     56930.
10 Area    1     10            2025-04-01 12:00:00 12    -15.4     51047.
# ℹ 58,963 more rows
# ℹ 12 more variables: sd_value <dbl>, var_value <dbl>, n_obs <int>,
#   .fitted <dbl>, .fixed <dbl>, .mu <dbl>, .offset <dbl>, .sqrtXwt <dbl>,
#   .sqrtrwt <dbl>, .weights <dbl>, .wtres <dbl>, .resid <dbl>
aug_res_30_var
# A tibble: 39,423 × 19
   feature sow   time_group_30 datetime            hour    ttf mean_value
   <fct>   <fct> <fct>         <dttm>              <fct> <dbl>      <dbl>
 1 Area    1     1             2025-04-01 09:13:30 9     -18.2     59814.
 2 Area    1     2             2025-04-01 09:30:01 9     -17.8     57073.
 3 Area    1     3             2025-04-01 10:00:01 10    -17.3     57520.
 4 Area    1     4             2025-04-01 10:30:00 10    -16.8     56271.
 5 Area    1     5             2025-04-01 11:00:00 11    -16.3     58836.
 6 Area    1     6             2025-04-01 11:30:00 11    -15.8     57861.
 7 Area    1     7             2025-04-01 12:00:00 12    -15.3     51257.
 8 Area    1     8             2025-04-01 12:30:00 12    -14.8     48846.
 9 Area    1     9             2025-04-01 13:00:02 13    -14.3     47773.
10 Area    1     10            2025-04-01 13:30:02 13    -13.8     47942.
# ℹ 39,413 more rows
# ℹ 12 more variables: sd_value <dbl>, var_value <dbl>, n_obs <int>,
#   .fitted <dbl>, .fixed <dbl>, .mu <dbl>, .offset <dbl>, .sqrtXwt <dbl>,
#   .sqrtrwt <dbl>, .weights <dbl>, .wtres <dbl>, .resid <dbl>
aug_res_60_var
# A tibble: 19,890 × 19
   feature sow   time_group_60 datetime            hour     ttf mean_value
   <fct>   <fct> <fct>         <dttm>              <fct>  <dbl>      <dbl>
 1 Area    1     1             2025-04-01 09:13:30 9     -17.9      58046.
 2 Area    1     2             2025-04-01 10:00:01 10    -17.0      56895.
 3 Area    1     3             2025-04-01 11:00:00 11    -16.0      58349.
 4 Area    1     4             2025-04-01 12:00:00 12    -15.0      50050.
 5 Area    1     5             2025-04-01 13:00:02 13    -14.0      47858.
 6 Area    1     6             2025-04-01 14:00:02 14    -13.0      50943.
 7 Area    1     7             2025-04-01 15:00:01 15    -12.0      50301.
 8 Area    1     8             2025-04-01 16:00:01 16    -11.0      53684.
 9 Area    1     9             2025-04-01 17:00:01 17    -10.0      47713.
10 Area    1     10            2025-04-01 18:00:00 18     -9.03     54449.
# ℹ 19,880 more rows
# ℹ 12 more variables: sd_value <dbl>, var_value <dbl>, n_obs <int>,
#   .fitted <dbl>, .fixed <dbl>, .mu <dbl>, .offset <dbl>, .sqrtXwt <dbl>,
#   .sqrtrwt <dbl>, .weights <dbl>, .wtres <dbl>, .resid <dbl>
df_10min_random_vars
# A tibble: 17 × 4
   feature                  sow  Residual repeatability
   <fct>                  <dbl>     <dbl>         <dbl>
 1 Area              10653.     5575.             0.656
 2 Centroid.X           23.3      21.1            0.525
 3 Centroid.Y           16.7      11.2            0.597
 4 Concavity             0.0310    0.0484         0.390
 5 Convex.Area       12243.     8730.             0.584
 6 Convex.Perimeter     90.1      53.8            0.626
 7 Eccentricity          0.0266    0.0506         0.345
 8 Elasticity            0.159     0.143          0.526
 9 Elongation            0.144     0.239          0.376
10 Height               22.0      27.0            0.450
11 Major.Axis.Length    34.0      22.2            0.605
12 Minor.Axis.Length    22.1      27.0            0.450
13 Perimeter           173.      197.             0.467
14 Rightmost.X          27.4      14.7            0.650
15 Rightmost.Y          23.6      46.0            0.339
16 Roundness             0.0956    0.0871         0.523
17 Width                34.0      22.2            0.605
df_20min_random_vars
# A tibble: 17 × 4
   feature                  sow  Residual repeatability
   <fct>                  <dbl>     <dbl>         <dbl>
 1 Area              10606.     5288.             0.667
 2 Centroid.X           23.3      19.8            0.541
 3 Centroid.Y           16.6      10.5            0.614
 4 Concavity             0.0302    0.0448         0.403
 5 Convex.Area       12142.     8179.             0.598
 6 Convex.Perimeter     89.8      50.0            0.642
 7 Eccentricity          0.0266    0.0479         0.357
 8 Elasticity            0.159     0.134          0.542
 9 Elongation            0.143     0.224          0.390
10 Height               21.6      25.3            0.461
11 Major.Axis.Length    34.1      20.8            0.621
12 Minor.Axis.Length    21.6      25.2            0.461
13 Perimeter           170.      184.             0.480
14 Rightmost.X          27.2      13.6            0.667
15 Rightmost.Y          23.4      42.0            0.358
16 Roundness             0.0952    0.0806         0.541
17 Width                34.1      20.8            0.621
df_30min_random_vars
# A tibble: 17 × 4
   feature                  sow  Residual repeatability
   <fct>                  <dbl>     <dbl>         <dbl>
 1 Area              10549.     5096.             0.674
 2 Centroid.X           23.2      19.0            0.550
 3 Centroid.Y           16.4       9.87           0.624
 4 Concavity             0.0302    0.0425         0.415
 5 Convex.Area       12109.     7788.             0.609
 6 Convex.Perimeter     89.0      47.6            0.651
 7 Eccentricity          0.0266    0.0462         0.365
 8 Elasticity            0.159     0.130          0.550
 9 Elongation            0.144     0.215          0.402
10 Height               21.7      24.0            0.475
11 Major.Axis.Length    33.6      20.0            0.627
12 Minor.Axis.Length    21.8      24.0            0.475
13 Perimeter           169.      177.             0.489
14 Rightmost.X          26.7      12.9            0.675
15 Rightmost.Y          23.1      39.6            0.369
16 Roundness             0.0950    0.0770         0.552
17 Width                33.7      20.0            0.627
df_60min_random_vars
# A tibble: 17 × 4
   feature                  sow  Residual repeatability
   <fct>                  <dbl>     <dbl>         <dbl>
 1 Area              10465.     4669.             0.691
 2 Centroid.X           23.2      17.8            0.567
 3 Centroid.Y           16.5       8.48           0.660
 4 Concavity             0.0292    0.0384         0.432
 5 Convex.Area       11981.     7002.             0.631
 6 Convex.Perimeter     89.7      42.9            0.677
 7 Eccentricity          0.0261    0.0425         0.381
 8 Elasticity            0.159     0.119          0.573
 9 Elongation            0.141     0.195          0.419
10 Height               20.8      21.7            0.490
11 Major.Axis.Length    34.4      18.4            0.651
12 Minor.Axis.Length    20.8      21.7            0.490
13 Perimeter           168.      161.             0.511
14 Rightmost.X          27.5      11.7            0.701
15 Rightmost.Y          23.0      34.1            0.402
16 Roundness             0.0954    0.0701         0.576
17 Width                34.5      18.4            0.651
# model with mean value
df_10_min_vars
$fixed
# A tibble: 408 × 11
   feature data     model_fit  effect group term  estimate std.error statistic
   <fct>   <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour0   65405.     2535.      25.8
 2 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour1   66019.     2535.      26.0
 3 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour2   65846.     2535.      26.0
 4 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour3   66139.     2535.      26.1
 5 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour4   65748.     2536.      25.9
 6 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour5   64887.     2536.      25.6
 7 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour6   65198.     2535.      25.7
 8 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour7   65832.     2535.      26.0
 9 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour8   65243.     2535.      25.7
10 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour9   65294.     2533.      25.8
# ℹ 398 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$random
# A tibble: 34 × 11
   feature   data     model_fit  effect group term  estimate std.error statistic
   <fct>     <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area      <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.07e+4        NA        NA
 2 Area      <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.58e+3        NA        NA
 3 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  2.33e+1        NA        NA
 4 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  2.11e+1        NA        NA
 5 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.67e+1        NA        NA
 6 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  1.12e+1        NA        NA
 7 Concavity <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.10e-2        NA        NA
 8 Concavity <tibble> <lmrMdLmT> ran_p… Resi… sd__…  4.84e-2        NA        NA
 9 Convex.A… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.22e+4        NA        NA
10 Convex.A… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  8.73e+3        NA        NA
# ℹ 24 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$model_summaries
# A tibble: 17 × 10
   feature    data     model_fit   nobs   sigma  logLik     AIC     BIC REMLcrit
   <fct>      <list>   <list>     <int>   <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
 1 Area       <tibble> <lmrMdLmT>  6919 5.58e+3 -6.94e4  1.39e5 139002. 138772. 
 2 Centroid.X <tibble> <lmrMdLmT>  6919 2.11e+1 -3.09e4  6.19e4  62053.  61823. 
 3 Centroid.Y <tibble> <lmrMdLmT>  6919 1.12e+1 -2.66e4  5.32e4  53416.  53186. 
 4 Concavity  <tibble> <lmrMdLmT>  6919 4.84e-2  1.10e4 -2.19e4 -21746. -21976. 
 5 Convex.Ar… <tibble> <lmrMdLmT>  6919 8.73e+3 -7.25e4  1.45e5 145175. 144945. 
 6 Convex.Pe… <tibble> <lmrMdLmT>  6919 5.38e+1 -3.74e4  7.48e4  75006.  74776. 
 7 Eccentric… <tibble> <lmrMdLmT>  6919 5.06e-2  1.07e4 -2.13e4 -21144. -21374. 
 8 Elasticity <tibble> <lmrMdLmT>  6919 1.43e-1  3.49e3 -6.93e3  -6751.  -6980. 
 9 Elongation <tibble> <lmrMdLmT>  6919 2.39e-1 -2.03e1  9.26e1    271.     40.6
10 Height     <tibble> <lmrMdLmT>  6919 2.70e+1 -3.26e4  6.53e4  65450.  65220. 
11 Major.Axi… <tibble> <lmrMdLmT>  6919 2.22e+1 -3.13e4  6.26e4  62802.  62572. 
12 Minor.Axi… <tibble> <lmrMdLmT>  6919 2.70e+1 -3.26e4  6.53e4  65450.  65220. 
13 Perimeter  <tibble> <lmrMdLmT>  6919 1.97e+2 -4.63e4  9.27e4  92904.  92674. 
14 Rightmost… <tibble> <lmrMdLmT>  6919 1.47e+1 -2.84e4  5.69e4  57120.  56890. 
15 Rightmost… <tibble> <lmrMdLmT>  6919 4.60e+1 -3.63e4  7.26e4  72790.  72560. 
16 Roundness  <tibble> <lmrMdLmT>  6919 8.71e-2  6.93e3 -1.38e4 -13633. -13863. 
17 Width      <tibble> <lmrMdLmT>  6919 2.22e+1 -3.13e4  6.26e4  62804.  62574. 
# ℹ 1 more variable: df.residual <int>

$augment
# A tibble: 17 × 2
   feature           aug                  
   <fct>             <list>               
 1 Area              <tibble [6,919 × 17]>
 2 Centroid.X        <tibble [6,919 × 17]>
 3 Centroid.Y        <tibble [6,919 × 17]>
 4 Concavity         <tibble [6,919 × 17]>
 5 Convex.Area       <tibble [6,919 × 17]>
 6 Convex.Perimeter  <tibble [6,919 × 17]>
 7 Eccentricity      <tibble [6,919 × 17]>
 8 Elasticity        <tibble [6,919 × 17]>
 9 Elongation        <tibble [6,919 × 17]>
10 Height            <tibble [6,919 × 17]>
11 Major.Axis.Length <tibble [6,919 × 17]>
12 Minor.Axis.Length <tibble [6,919 × 17]>
13 Perimeter         <tibble [6,919 × 17]>
14 Rightmost.X       <tibble [6,919 × 17]>
15 Rightmost.Y       <tibble [6,919 × 17]>
16 Roundness         <tibble [6,919 × 17]>
17 Width             <tibble [6,919 × 17]>
df_20_min_vars
$fixed
# A tibble: 408 × 11
   feature data     model_fit  effect group term  estimate std.error statistic
   <fct>   <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour0   65422.     2544.      25.7
 2 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour1   66033.     2543.      26.0
 3 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour2   65864.     2543.      25.9
 4 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour3   66156.     2543.      26.0
 5 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour4   65768.     2544.      25.9
 6 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour5   64903.     2544.      25.5
 7 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour6   65212.     2543.      25.6
 8 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour7   65857.     2542.      25.9
 9 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour8   65232.     2542.      25.7
10 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour9   65321.     2539.      25.7
# ℹ 398 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$random
# A tibble: 34 × 11
   feature   data     model_fit  effect group term  estimate std.error statistic
   <fct>     <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area      <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.06e+4        NA        NA
 2 Area      <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.29e+3        NA        NA
 3 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  2.33e+1        NA        NA
 4 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  1.98e+1        NA        NA
 5 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.66e+1        NA        NA
 6 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  1.05e+1        NA        NA
 7 Concavity <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.02e-2        NA        NA
 8 Concavity <tibble> <lmrMdLmT> ran_p… Resi… sd__…  4.48e-2        NA        NA
 9 Convex.A… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.21e+4        NA        NA
10 Convex.A… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  8.18e+3        NA        NA
# ℹ 24 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$model_summaries
# A tibble: 17 × 10
   feature    data     model_fit   nobs   sigma  logLik     AIC     BIC REMLcrit
   <fct>      <list>   <list>     <int>   <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
 1 Area       <tibble> <lmrMdLmT>  3469 5.29e+3 -34535.  69122.  69282.   69070.
 2 Centroid.X <tibble> <lmrMdLmT>  3469 1.98e+1 -15271.  30594.  30754.   30542.
 3 Centroid.Y <tibble> <lmrMdLmT>  3469 1.05e+1 -13081.  26214.  26374.   26162.
 4 Concavity  <tibble> <lmrMdLmT>  3469 4.48e-2   5715. -11378. -11218.  -11430.
 5 Convex.Ar… <tibble> <lmrMdLmT>  3469 8.18e+3 -36032.  72116.  72276.   72064.
 6 Convex.Pe… <tibble> <lmrMdLmT>  3469 5.00e+1 -18477.  37007.  37167.   36955.
 7 Eccentric… <tibble> <lmrMdLmT>  3469 4.79e-2   5486. -10920. -10760.  -10972.
 8 Elasticity <tibble> <lmrMdLmT>  3469 1.34e-1   1925.  -3798.  -3638.   -3850.
 9 Elongation <tibble> <lmrMdLmT>  3469 2.24e-1    168.   -285.   -125.    -337.
10 Height     <tibble> <lmrMdLmT>  3469 2.53e+1 -16109.  32270.  32430.   32218.
11 Major.Axi… <tibble> <lmrMdLmT>  3469 2.08e+1 -15451.  30954.  31114.   30902.
12 Minor.Axi… <tibble> <lmrMdLmT>  3469 2.52e+1 -16109.  32270.  32430.   32218.
13 Perimeter  <tibble> <lmrMdLmT>  3469 1.84e+2 -22957.  45966.  46126.   45914.
14 Rightmost… <tibble> <lmrMdLmT>  3469 1.36e+1 -13987.  28026.  28186.   27974.
15 Rightmost… <tibble> <lmrMdLmT>  3469 4.20e+1 -17851.  35754.  35914.   35702.
16 Roundness  <tibble> <lmrMdLmT>  3469 8.06e-2   3683.  -7315.  -7155.   -7367.
17 Width      <tibble> <lmrMdLmT>  3469 2.08e+1 -15451.  30955.  31115.   30903.
# ℹ 1 more variable: df.residual <int>

$augment
# A tibble: 17 × 2
   feature           aug                  
   <fct>             <list>               
 1 Area              <tibble [3,469 × 17]>
 2 Centroid.X        <tibble [3,469 × 17]>
 3 Centroid.Y        <tibble [3,469 × 17]>
 4 Concavity         <tibble [3,469 × 17]>
 5 Convex.Area       <tibble [3,469 × 17]>
 6 Convex.Perimeter  <tibble [3,469 × 17]>
 7 Eccentricity      <tibble [3,469 × 17]>
 8 Elasticity        <tibble [3,469 × 17]>
 9 Elongation        <tibble [3,469 × 17]>
10 Height            <tibble [3,469 × 17]>
11 Major.Axis.Length <tibble [3,469 × 17]>
12 Minor.Axis.Length <tibble [3,469 × 17]>
13 Perimeter         <tibble [3,469 × 17]>
14 Rightmost.X       <tibble [3,469 × 17]>
15 Rightmost.Y       <tibble [3,469 × 17]>
16 Roundness         <tibble [3,469 × 17]>
17 Width             <tibble [3,469 × 17]>
df_30_min_vars
$fixed
# A tibble: 408 × 11
   feature data     model_fit  effect group term  estimate std.error statistic
   <fct>   <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour0   65444.     2547.      25.7
 2 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour1   66035.     2546.      25.9
 3 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour2   65885.     2546.      25.9
 4 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour3   66166.     2546.      26.0
 5 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour4   65789.     2547.      25.8
 6 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour5   64921.     2547.      25.5
 7 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour6   65227.     2546.      25.6
 8 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour7   65883.     2545.      25.9
 9 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour8   65307.     2545.      25.7
10 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour9   65299.     2541.      25.7
# ℹ 398 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$random
# A tibble: 34 × 11
   feature   data     model_fit  effect group term  estimate std.error statistic
   <fct>     <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area      <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.05e+4        NA        NA
 2 Area      <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.10e+3        NA        NA
 3 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  2.32e+1        NA        NA
 4 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  1.90e+1        NA        NA
 5 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.64e+1        NA        NA
 6 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  9.87e+0        NA        NA
 7 Concavity <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.02e-2        NA        NA
 8 Concavity <tibble> <lmrMdLmT> ran_p… Resi… sd__…  4.25e-2        NA        NA
 9 Convex.A… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.21e+4        NA        NA
10 Convex.A… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  7.79e+3        NA        NA
# ℹ 24 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$model_summaries
# A tibble: 17 × 10
   feature      data     model_fit   nobs   sigma  logLik    AIC    BIC REMLcrit
   <fct>        <list>   <list>     <int>   <dbl>   <dbl>  <dbl>  <dbl>    <dbl>
 1 Area         <tibble> <lmrMdLmT>  2319 5.10e+3 -22951. 45955. 46104.   45903.
 2 Centroid.X   <tibble> <lmrMdLmT>  2319 1.90e+1 -10107. 20265. 20415.   20213.
 3 Centroid.Y   <tibble> <lmrMdLmT>  2319 9.87e+0  -8611. 17273. 17423.   17221.
 4 Concavity    <tibble> <lmrMdLmT>  2319 4.25e-2   3904. -7755. -7606.   -7807.
 5 Convex.Area  <tibble> <lmrMdLmT>  2319 7.79e+3 -23920. 47892. 48041.   47840.
 6 Convex.Peri… <tibble> <lmrMdLmT>  2319 4.76e+1 -12225. 24501. 24651.   24449.
 7 Eccentricity <tibble> <lmrMdLmT>  2319 4.62e-2   3717. -7381. -7232.   -7433.
 8 Elasticity   <tibble> <lmrMdLmT>  2319 1.30e-1   1332. -2612. -2463.   -2664.
 9 Elongation   <tibble> <lmrMdLmT>  2319 2.15e-1    185.  -318.  -168.    -370.
10 Height       <tibble> <lmrMdLmT>  2319 2.40e+1 -10645. 21342. 21492.   21290.
11 Major.Axis.… <tibble> <lmrMdLmT>  2319 2.00e+1 -10230. 20513. 20662.   20461.
12 Minor.Axis.… <tibble> <lmrMdLmT>  2319 2.40e+1 -10645. 21342. 21492.   21290.
13 Perimeter    <tibble> <lmrMdLmT>  2319 1.77e+2 -15232. 30516. 30666.   30464.
14 Rightmost.X  <tibble> <lmrMdLmT>  2319 1.29e+1  -9222. 18497. 18646.   18445.
15 Rightmost.Y  <tibble> <lmrMdLmT>  2319 3.96e+1 -11784. 23620. 23769.   23568.
16 Roundness    <tibble> <lmrMdLmT>  2319 7.70e-2   2532. -5011. -4862.   -5063.
17 Width        <tibble> <lmrMdLmT>  2319 2.00e+1 -10230. 20513. 20662.   20461.
# ℹ 1 more variable: df.residual <int>

$augment
# A tibble: 17 × 2
   feature           aug                  
   <fct>             <list>               
 1 Area              <tibble [2,319 × 17]>
 2 Centroid.X        <tibble [2,319 × 17]>
 3 Centroid.Y        <tibble [2,319 × 17]>
 4 Concavity         <tibble [2,319 × 17]>
 5 Convex.Area       <tibble [2,319 × 17]>
 6 Convex.Perimeter  <tibble [2,319 × 17]>
 7 Eccentricity      <tibble [2,319 × 17]>
 8 Elasticity        <tibble [2,319 × 17]>
 9 Elongation        <tibble [2,319 × 17]>
10 Height            <tibble [2,319 × 17]>
11 Major.Axis.Length <tibble [2,319 × 17]>
12 Minor.Axis.Length <tibble [2,319 × 17]>
13 Perimeter         <tibble [2,319 × 17]>
14 Rightmost.X       <tibble [2,319 × 17]>
15 Rightmost.Y       <tibble [2,319 × 17]>
16 Roundness         <tibble [2,319 × 17]>
17 Width             <tibble [2,319 × 17]>
df_60_min_vars
$fixed
# A tibble: 408 × 11
   feature data     model_fit  effect group term  estimate std.error statistic
   <fct>   <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour0   65463.     2567.      25.5
 2 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour1   66084.     2565.      25.8
 3 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour2   65903.     2565.      25.7
 4 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour3   66152.     2565.      25.8
 5 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour4   65806.     2568.      25.6
 6 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour5   64931.     2566.      25.3
 7 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour6   65227.     2564.      25.4
 8 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour7   65901.     2564.      25.7
 9 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour8   65195.     2559.      25.5
10 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour9   65254.     2556.      25.5
# ℹ 398 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$random
# A tibble: 34 × 11
   feature   data     model_fit  effect group term  estimate std.error statistic
   <fct>     <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area      <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.05e+4        NA        NA
 2 Area      <tibble> <lmrMdLmT> ran_p… Resi… sd__…  4.67e+3        NA        NA
 3 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  2.32e+1        NA        NA
 4 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  1.78e+1        NA        NA
 5 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.65e+1        NA        NA
 6 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  8.48e+0        NA        NA
 7 Concavity <tibble> <lmrMdLmT> ran_p… sow   sd__…  2.92e-2        NA        NA
 8 Concavity <tibble> <lmrMdLmT> ran_p… Resi… sd__…  3.84e-2        NA        NA
 9 Convex.A… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.20e+4        NA        NA
10 Convex.A… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  7.00e+3        NA        NA
# ℹ 24 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$model_summaries
# A tibble: 17 × 10
   feature      data     model_fit   nobs   sigma  logLik    AIC    BIC REMLcrit
   <fct>        <list>   <list>     <int>   <dbl>   <dbl>  <dbl>  <dbl>    <dbl>
 1 Area         <tibble> <lmrMdLmT>  1170 4.67e+3 -11400. 22853. 22984.   22801.
 2 Centroid.X   <tibble> <lmrMdLmT>  1170 1.78e+1  -5006. 10064. 10196.   10012.
 3 Centroid.Y   <tibble> <lmrMdLmT>  1170 8.48e+0  -4166.  8384.  8516.    8332.
 4 Concavity    <tibble> <lmrMdLmT>  1170 3.84e-2   2035. -4017. -3886.   -4069.
 5 Convex.Area  <tibble> <lmrMdLmT>  1170 7.00e+3 -11860. 23772. 23904.   23720.
 6 Convex.Peri… <tibble> <lmrMdLmT>  1170 4.29e+1  -6023. 12098. 12230.   12046.
 7 Eccentricity <tibble> <lmrMdLmT>  1170 4.25e-2   1923. -3795. -3663.   -3847.
 8 Elasticity   <tibble> <lmrMdLmT>  1170 1.19e-1    733. -1414. -1283.   -1466.
 9 Elongation   <tibble> <lmrMdLmT>  1170 1.95e-1    172.  -292.  -160.    -344.
10 Height       <tibble> <lmrMdLmT>  1170 2.17e+1  -5228. 10508. 10640.   10456.
11 Major.Axis.… <tibble> <lmrMdLmT>  1170 1.84e+1  -5055. 10162. 10294.   10110.
12 Minor.Axis.… <tibble> <lmrMdLmT>  1170 2.17e+1  -5228. 10508. 10640.   10456.
13 Perimeter    <tibble> <lmrMdLmT>  1170 1.61e+2  -7528. 15107. 15239.   15055.
14 Rightmost.X  <tibble> <lmrMdLmT>  1170 1.17e+1  -4539.  9130.  9261.    9078.
15 Rightmost.Y  <tibble> <lmrMdLmT>  1170 3.41e+1  -5744. 11540. 11672.   11488.
16 Roundness    <tibble> <lmrMdLmT>  1170 7.01e-2   1336. -2620. -2488.   -2672.
17 Width        <tibble> <lmrMdLmT>  1170 1.84e+1  -5055. 10162. 10294.   10110.
# ℹ 1 more variable: df.residual <int>

$augment
# A tibble: 17 × 2
   feature           aug                  
   <fct>             <list>               
 1 Area              <tibble [1,170 × 17]>
 2 Centroid.X        <tibble [1,170 × 17]>
 3 Centroid.Y        <tibble [1,170 × 17]>
 4 Concavity         <tibble [1,170 × 17]>
 5 Convex.Area       <tibble [1,170 × 17]>
 6 Convex.Perimeter  <tibble [1,170 × 17]>
 7 Eccentricity      <tibble [1,170 × 17]>
 8 Elasticity        <tibble [1,170 × 17]>
 9 Elongation        <tibble [1,170 × 17]>
10 Height            <tibble [1,170 × 17]>
11 Major.Axis.Length <tibble [1,170 × 17]>
12 Minor.Axis.Length <tibble [1,170 × 17]>
13 Perimeter         <tibble [1,170 × 17]>
14 Rightmost.X       <tibble [1,170 × 17]>
15 Rightmost.Y       <tibble [1,170 × 17]>
16 Roundness         <tibble [1,170 × 17]>
17 Width             <tibble [1,170 × 17]>
# model with var value
df_10_min_vars_var
$fixed
# A tibble: 408 × 11
   feature data     model_fit  effect group term   estimate std.error statistic
   <fct>   <list>   <list>     <chr>  <chr> <chr>     <dbl>     <dbl>     <dbl>
 1 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour0 15045670.  4251959.      3.54
 2 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour1 18889841.  4248734.      4.45
 3 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour2 19688705.  4247170.      4.64
 4 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour3 20313839.  4249100.      4.78
 5 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour4 22066486.  4253208.      5.19
 6 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour5 22613153.  4252304.      5.32
 7 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour6 21000999.  4247091.      4.94
 8 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour7 19612317.  4243761.      4.62
 9 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour8 25603955.  4243057.      6.03
10 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour9 26846034.  4227631.      6.35
# ℹ 398 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$random
# A tibble: 34 × 11
   feature   data     model_fit  effect group term  estimate std.error statistic
   <fct>     <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area      <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.69e+7        NA        NA
 2 Area      <tibble> <lmrMdLmT> ran_p… Resi… sd__…  2.39e+7        NA        NA
 3 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.14e+2        NA        NA
 4 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.78e+2        NA        NA
 5 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.10e+1        NA        NA
 6 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  6.56e+1        NA        NA
 7 Concavity <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.33e-3        NA        NA
 8 Concavity <tibble> <lmrMdLmT> ran_p… Resi… sd__…  1.49e-3        NA        NA
 9 Convex.A… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.54e+7        NA        NA
10 Convex.A… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.00e+7        NA        NA
# ℹ 24 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$model_summaries
# A tibble: 17 × 10
   feature    data     model_fit   nobs   sigma  logLik     AIC     BIC REMLcrit
   <fct>      <list>   <list>     <int>   <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
 1 Area       <tibble> <lmrMdLmT>  6919 2.39e+7 -1.27e5 254117. 254295.  254065.
 2 Centroid.X <tibble> <lmrMdLmT>  6919 5.78e+2 -5.37e4 107522. 107700.  107470.
 3 Centroid.Y <tibble> <lmrMdLmT>  6919 6.56e+1 -3.87e4  77510.  77688.   77458.
 4 Concavity  <tibble> <lmrMdLmT>  6919 1.49e-3  3.50e4 -69910. -69732.  -69962.
 5 Convex.Ar… <tibble> <lmrMdLmT>  6919 5.00e+7 -1.32e5 264278. 264456.  264226.
 6 Convex.Pe… <tibble> <lmrMdLmT>  6919 3.25e+3 -6.56e4 131337. 131514.  131285.
 7 Eccentric… <tibble> <lmrMdLmT>  6919 1.68e-3  3.41e4 -68245. -68067.  -68297.
 8 Elasticity <tibble> <lmrMdLmT>  6919 1.91e-2  1.74e4 -34774. -34596.  -34826.
 9 Elongation <tibble> <lmrMdLmT>  6919 3.20e-2  1.39e4 -27649. -27471.  -27701.
10 Height     <tibble> <lmrMdLmT>  6919 3.89e+2 -5.10e4 102023. 102201.  101971.
11 Major.Axi… <tibble> <lmrMdLmT>  6919 7.48e+2 -5.55e4 111094. 111272.  111042.
12 Minor.Axi… <tibble> <lmrMdLmT>  6919 3.89e+2 -5.10e4 102023. 102200.  101971.
13 Perimeter  <tibble> <lmrMdLmT>  6919 3.60e+4 -8.22e4 164510. 164688.  164458.
14 Rightmost… <tibble> <lmrMdLmT>  6919 5.53e+2 -5.34e4 106935. 107113.  106883.
15 Rightmost… <tibble> <lmrMdLmT>  6919 1.74e+3 -6.13e4 122737. 122915.  122685.
16 Roundness  <tibble> <lmrMdLmT>  6919 6.64e-3  2.47e4 -49333. -49155.  -49385.
17 Width      <tibble> <lmrMdLmT>  6919 7.50e+2 -5.55e4 111126. 111304.  111074.
# ℹ 1 more variable: df.residual <int>

$augment
# A tibble: 17 × 2
   feature           aug                  
   <fct>             <list>               
 1 Area              <tibble [6,919 × 17]>
 2 Centroid.X        <tibble [6,919 × 17]>
 3 Centroid.Y        <tibble [6,919 × 17]>
 4 Concavity         <tibble [6,919 × 17]>
 5 Convex.Area       <tibble [6,919 × 17]>
 6 Convex.Perimeter  <tibble [6,919 × 17]>
 7 Eccentricity      <tibble [6,919 × 17]>
 8 Elasticity        <tibble [6,919 × 17]>
 9 Elongation        <tibble [6,919 × 17]>
10 Height            <tibble [6,919 × 17]>
11 Major.Axis.Length <tibble [6,919 × 17]>
12 Minor.Axis.Length <tibble [6,919 × 17]>
13 Perimeter         <tibble [6,919 × 17]>
14 Rightmost.X       <tibble [6,919 × 17]>
15 Rightmost.Y       <tibble [6,919 × 17]>
16 Roundness         <tibble [6,919 × 17]>
17 Width             <tibble [6,919 × 17]>
df_20_min_vars_var
$fixed
# A tibble: 408 × 11
   feature data     model_fit  effect group term   estimate std.error statistic
   <fct>   <list>   <list>     <chr>  <chr> <chr>     <dbl>     <dbl>     <dbl>
 1 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour0 18030944.  4841684.      3.72
 2 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour1 22787806.  4835368.      4.71
 3 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour2 24080677.  4832302.      4.98
 4 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour3 24114989.  4836076.      4.99
 5 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour4 25864423.  4844098.      5.34
 6 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour5 28754669.  4840584.      5.94
 7 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour6 24357682.  4830408.      5.04
 8 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour7 23201033.  4823844.      4.81
 9 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour8 29576149.  4818136.      6.14
10 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour9 30668516.  4789157.      6.40
# ℹ 398 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$random
# A tibble: 34 × 11
   feature   data     model_fit  effect group term  estimate std.error statistic
   <fct>     <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area      <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.82e+7        NA        NA
 2 Area      <tibble> <lmrMdLmT> ran_p… Resi… sd__…  2.52e+7        NA        NA
 3 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.10e+2        NA        NA
 4 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.62e+2        NA        NA
 5 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.40e+1        NA        NA
 6 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  7.69e+1        NA        NA
 7 Concavity <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.34e-3        NA        NA
 8 Concavity <tibble> <lmrMdLmT> ran_p… Resi… sd__…  1.58e-3        NA        NA
 9 Convex.A… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.29e+7        NA        NA
10 Convex.A… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.26e+7        NA        NA
# ℹ 24 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$model_summaries
# A tibble: 17 × 10
   feature    data     model_fit   nobs   sigma  logLik     AIC     BIC REMLcrit
   <fct>      <list>   <list>     <int>   <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
 1 Area       <tibble> <lmrMdLmT>  3469 2.52e+7 -63698. 127448. 127608.  127396.
 2 Centroid.X <tibble> <lmrMdLmT>  3469 5.62e+2 -26788.  53629.  53788.   53577.
 3 Centroid.Y <tibble> <lmrMdLmT>  3469 7.69e+1 -19937.  39926.  40086.   39874.
 4 Concavity  <tibble> <lmrMdLmT>  3469 1.58e-3  17228. -34404. -34244.  -34456.
 5 Convex.Ar… <tibble> <lmrMdLmT>  3469 5.26e+7 -66211. 132474. 132634.  132422.
 6 Convex.Pe… <tibble> <lmrMdLmT>  3469 3.26e+3 -32856.  65763.  65923.   65711.
 7 Eccentric… <tibble> <lmrMdLmT>  3469 1.85e-3  16692. -33333. -33173.  -33385.
 8 Elasticity <tibble> <lmrMdLmT>  3469 1.98e-2   8522. -16993. -16833.  -17045.
 9 Elongation <tibble> <lmrMdLmT>  3469 3.43e-2   6649. -13246. -13086.  -13298.
10 Height     <tibble> <lmrMdLmT>  3469 4.21e+2 -25778.  51608.  51768.   51556.
11 Major.Axi… <tibble> <lmrMdLmT>  3469 7.23e+2 -27670.  55393.  55553.   55341.
12 Minor.Axi… <tibble> <lmrMdLmT>  3469 4.21e+2 -25778.  51607.  51767.   51555.
13 Perimeter  <tibble> <lmrMdLmT>  3469 3.81e+4 -41314.  82680.  82840.   82628.
14 Rightmost… <tibble> <lmrMdLmT>  3469 5.35e+2 -26630.  53312.  53472.   53260.
15 Rightmost… <tibble> <lmrMdLmT>  3469 1.74e+3 -30675.  61402.  61562.   61350.
16 Roundness  <tibble> <lmrMdLmT>  3469 6.75e-3  12244. -24436. -24276.  -24488.
17 Width      <tibble> <lmrMdLmT>  3469 7.25e+2 -27677.  55407.  55567.   55355.
# ℹ 1 more variable: df.residual <int>

$augment
# A tibble: 17 × 2
   feature           aug                  
   <fct>             <list>               
 1 Area              <tibble [3,469 × 17]>
 2 Centroid.X        <tibble [3,469 × 17]>
 3 Centroid.Y        <tibble [3,469 × 17]>
 4 Concavity         <tibble [3,469 × 17]>
 5 Convex.Area       <tibble [3,469 × 17]>
 6 Convex.Perimeter  <tibble [3,469 × 17]>
 7 Eccentricity      <tibble [3,469 × 17]>
 8 Elasticity        <tibble [3,469 × 17]>
 9 Elongation        <tibble [3,469 × 17]>
10 Height            <tibble [3,469 × 17]>
11 Major.Axis.Length <tibble [3,469 × 17]>
12 Minor.Axis.Length <tibble [3,469 × 17]>
13 Perimeter         <tibble [3,469 × 17]>
14 Rightmost.X       <tibble [3,469 × 17]>
15 Rightmost.Y       <tibble [3,469 × 17]>
16 Roundness         <tibble [3,469 × 17]>
17 Width             <tibble [3,469 × 17]>
df_30_min_vars_var
$fixed
# A tibble: 408 × 11
   feature data     model_fit  effect group term   estimate std.error statistic
   <fct>   <list>   <list>     <chr>  <chr> <chr>     <dbl>     <dbl>     <dbl>
 1 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour0 18824955.  4709510.      4.00
 2 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour1 25823286.  4694009.      5.50
 3 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour2 27398840.  4694009.      5.84
 4 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour3 25959099.  4694009.      5.53
 5 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour4 28553864.  4713359.      6.06
 6 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour5 31403593.  4704725.      6.67
 7 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour6 26551568.  4687975.      5.66
 8 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour7 24201810.  4679895.      5.17
 9 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour8 31185796.  4674749.      6.67
10 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour9 31583112.  4621211.      6.83
# ℹ 398 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$random
# A tibble: 34 × 11
   feature   data     model_fit  effect group term  estimate std.error statistic
   <fct>     <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area      <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.61e+7        NA        NA
 2 Area      <tibble> <lmrMdLmT> ran_p… Resi… sd__…  2.61e+7        NA        NA
 3 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.69e+2        NA        NA
 4 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.50e+2        NA        NA
 5 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.04e+1        NA        NA
 6 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  8.18e+1        NA        NA
 7 Concavity <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.37e-3        NA        NA
 8 Concavity <tibble> <lmrMdLmT> ran_p… Resi… sd__…  1.60e-3        NA        NA
 9 Convex.A… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.21e+7        NA        NA
10 Convex.A… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.42e+7        NA        NA
# ℹ 24 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$model_summaries
# A tibble: 17 × 10
   feature    data     model_fit   nobs   sigma  logLik     AIC     BIC REMLcrit
   <fct>      <list>   <list>     <int>   <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
 1 Area       <tibble> <lmrMdLmT>  2319 2.61e+7 -42534.  85120.  85269.   85068.
 2 Centroid.X <tibble> <lmrMdLmT>  2319 5.50e+2 -17823.  35698.  35847.   35646.
 3 Centroid.Y <tibble> <lmrMdLmT>  2319 8.18e+1 -13441.  26934.  27084.   26882.
 4 Concavity  <tibble> <lmrMdLmT>  2319 1.60e-3  11430. -22808. -22658.  -22860.
 5 Convex.Ar… <tibble> <lmrMdLmT>  2319 5.42e+7 -44197.  88446.  88596.   88394.
 6 Convex.Pe… <tibble> <lmrMdLmT>  2319 3.28e+3 -21923.  43898.  44048.   43846.
 7 Eccentric… <tibble> <lmrMdLmT>  2319 1.92e-3  11009. -21966. -21816.  -22018.
 8 Elasticity <tibble> <lmrMdLmT>  2319 1.90e-2   5749. -11447. -11297.  -11499.
 9 Elongation <tibble> <lmrMdLmT>  2319 3.48e-2   4370.  -8688.  -8538.   -8740.
10 Height     <tibble> <lmrMdLmT>  2319 4.31e+2 -17250.  34551.  34701.   34499.
11 Major.Axi… <tibble> <lmrMdLmT>  2319 7.08e+2 -18411.  36874.  37024.   36822.
12 Minor.Axi… <tibble> <lmrMdLmT>  2319 4.31e+2 -17250.  34551.  34701.   34499.
13 Perimeter  <tibble> <lmrMdLmT>  2319 3.71e+4 -27489.  55031.  55180.   54979.
14 Rightmost… <tibble> <lmrMdLmT>  2319 5.44e+2 -17805.  35663.  35812.   35611.
15 Rightmost… <tibble> <lmrMdLmT>  2319 1.68e+3 -20381.  40815.  40964.   40763.
16 Roundness  <tibble> <lmrMdLmT>  2319 6.52e-3   8214. -16376. -16226.  -16428.
17 Width      <tibble> <lmrMdLmT>  2319 7.10e+2 -18418.  36887.  37037.   36835.
# ℹ 1 more variable: df.residual <int>

$augment
# A tibble: 17 × 2
   feature           aug                  
   <fct>             <list>               
 1 Area              <tibble [2,319 × 17]>
 2 Centroid.X        <tibble [2,319 × 17]>
 3 Centroid.Y        <tibble [2,319 × 17]>
 4 Concavity         <tibble [2,319 × 17]>
 5 Convex.Area       <tibble [2,319 × 17]>
 6 Convex.Perimeter  <tibble [2,319 × 17]>
 7 Eccentricity      <tibble [2,319 × 17]>
 8 Elasticity        <tibble [2,319 × 17]>
 9 Elongation        <tibble [2,319 × 17]>
10 Height            <tibble [2,319 × 17]>
11 Major.Axis.Length <tibble [2,319 × 17]>
12 Minor.Axis.Length <tibble [2,319 × 17]>
13 Perimeter         <tibble [2,319 × 17]>
14 Rightmost.X       <tibble [2,319 × 17]>
15 Rightmost.Y       <tibble [2,319 × 17]>
16 Roundness         <tibble [2,319 × 17]>
17 Width             <tibble [2,319 × 17]>
df_60_min_vars_var
$fixed
# A tibble: 408 × 11
   feature data     model_fit  effect group term   estimate std.error statistic
   <fct>   <list>   <list>     <chr>  <chr> <chr>     <dbl>     <dbl>     <dbl>
 1 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour0 22944641.  5630244.      4.08
 2 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour1 29783917.  5600802.      5.32
 3 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour2 33990628.  5600802.      6.07
 4 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour3 32458138.  5600802.      5.80
 5 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour4 35137151.  5637189.      6.23
 6 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour5 41245301.  5605144.      7.36
 7 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour6 28685729.  5573720.      5.15
 8 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour7 29070947.  5573720.      5.22
 9 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour8 33589645.  5502916.      6.10
10 Area    <tibble> <lmrMdLmT> fixed  <NA>  hour9 36801718.  5452247.      6.75
# ℹ 398 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$random
# A tibble: 34 × 11
   feature   data     model_fit  effect group term  estimate std.error statistic
   <fct>     <list>   <list>     <chr>  <chr> <chr>    <dbl>     <dbl>     <dbl>
 1 Area      <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.60e+7        NA        NA
 2 Area      <tibble> <lmrMdLmT> ran_p… Resi… sd__…  2.78e+7        NA        NA
 3 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  3.79e+2        NA        NA
 4 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.10e+2        NA        NA
 5 Centroid… <tibble> <lmrMdLmT> ran_p… sow   sd__…  4.15e+1        NA        NA
 6 Centroid… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  8.91e+1        NA        NA
 7 Concavity <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.15e-3        NA        NA
 8 Concavity <tibble> <lmrMdLmT> ran_p… Resi… sd__…  1.53e-3        NA        NA
 9 Convex.A… <tibble> <lmrMdLmT> ran_p… sow   sd__…  1.49e+7        NA        NA
10 Convex.A… <tibble> <lmrMdLmT> ran_p… Resi… sd__…  5.59e+7        NA        NA
# ℹ 24 more rows
# ℹ 2 more variables: df <dbl>, p.value <dbl>

$model_summaries
# A tibble: 17 × 10
   feature    data     model_fit   nobs   sigma  logLik     AIC     BIC REMLcrit
   <fct>      <list>   <list>     <int>   <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
 1 Area       <tibble> <lmrMdLmT>  1170 2.78e+7 -21339.  42730.  42862.   42678.
 2 Centroid.X <tibble> <lmrMdLmT>  1170 5.10e+2  -8844.  17740.  17872.   17688.
 3 Centroid.Y <tibble> <lmrMdLmT>  1170 8.91e+1  -6838.  13729.  13860.   13677.
 4 Concavity  <tibble> <lmrMdLmT>  1170 1.53e-3   5726. -11399. -11267.  -11451.
 5 Convex.Ar… <tibble> <lmrMdLmT>  1170 5.59e+7 -22128.  44308.  44440.   44256.
 6 Convex.Pe… <tibble> <lmrMdLmT>  1170 3.26e+3 -10971.  21995.  22127.   21943.
 7 Eccentric… <tibble> <lmrMdLmT>  1170 2.06e-3   5389. -10727. -10595.  -10779.
 8 Elasticity <tibble> <lmrMdLmT>  1170 1.92e-2   2825.  -5599.  -5467.   -5651.
 9 Elongation <tibble> <lmrMdLmT>  1170 3.46e-2   2162.  -4271.  -4140.   -4323.
10 Height     <tibble> <lmrMdLmT>  1170 4.32e+2  -8642.  17336.  17468.   17284.
11 Major.Axi… <tibble> <lmrMdLmT>  1170 6.61e+2  -9150.  18352.  18484.   18300.
12 Minor.Axi… <tibble> <lmrMdLmT>  1170 4.32e+2  -8642.  17336.  17468.   17284.
13 Perimeter  <tibble> <lmrMdLmT>  1170 3.82e+4 -13791.  27633.  27765.   27581.
14 Rightmost… <tibble> <lmrMdLmT>  1170 5.13e+2  -8860.  17771.  17903.   17719.
15 Rightmost… <tibble> <lmrMdLmT>  1170 1.63e+3 -10177.  20406.  20537.   20354.
16 Roundness  <tibble> <lmrMdLmT>  1170 6.06e-3   4159.  -8267.  -8135.   -8319.
17 Width      <tibble> <lmrMdLmT>  1170 6.63e+2  -9154.  18360.  18491.   18308.
# ℹ 1 more variable: df.residual <int>

$augment
# A tibble: 17 × 2
   feature           aug                  
   <fct>             <list>               
 1 Area              <tibble [1,170 × 17]>
 2 Centroid.X        <tibble [1,170 × 17]>
 3 Centroid.Y        <tibble [1,170 × 17]>
 4 Concavity         <tibble [1,170 × 17]>
 5 Convex.Area       <tibble [1,170 × 17]>
 6 Convex.Perimeter  <tibble [1,170 × 17]>
 7 Eccentricity      <tibble [1,170 × 17]>
 8 Elasticity        <tibble [1,170 × 17]>
 9 Elongation        <tibble [1,170 × 17]>
10 Height            <tibble [1,170 × 17]>
11 Major.Axis.Length <tibble [1,170 × 17]>
12 Minor.Axis.Length <tibble [1,170 × 17]>
13 Perimeter         <tibble [1,170 × 17]>
14 Rightmost.X       <tibble [1,170 × 17]>
15 Rightmost.Y       <tibble [1,170 × 17]>
16 Roundness         <tibble [1,170 × 17]>
17 Width             <tibble [1,170 × 17]>