ob = read.csv(file.choose())
head(ob,10)
## id gender height weight bmi age bmc bmd fat lean pcfat
## 1 1 F 150 49 21.8 53 1312 0.88 17802 28600 37.3
## 2 2 M 165 52 19.1 65 1309 0.84 8381 40229 16.8
## 3 3 F 157 57 23.1 64 1230 0.84 19221 36057 34.0
## 4 4 F 156 53 21.8 56 1171 0.80 17472 33094 33.8
## 5 5 M 160 51 19.9 54 1681 0.98 7336 40621 14.8
## 6 6 F 153 47 20.1 52 1358 0.91 14904 30068 32.2
## 7 7 F 155 58 24.1 66 1546 0.96 20233 35599 35.3
## 8 8 M 167 65 23.3 50 2276 1.11 17749 43301 28.0
## 9 9 M 165 54 19.8 61 1778 0.96 10795 38613 21.1
## 10 10 F 158 60 24.0 58 1404 0.86 21365 35534 36.6
##Việc 2. So sánh tỉ trọng mỡ giữa nam và nữ 2.1 Vẽ biểu đồ histogram đánh giá phân bố mật độ xương
library(lessR)
##
## lessR 4.5 feedback: gerbing@pdx.edu
## --------------------------------------------------------------
## > d <- Read("") Read data file, many formats available, e.g., Excel
## d is the default data frame, data= in analysis routines optional
##
## Many examples of reading, writing, and manipulating data, graphics,
## testing means and proportions, regression, factor analysis,
## customization, forecasting, and aggregation to pivot tables.
## Enter: browseVignettes("lessR")
##
## View lessR updates, now including modern time series forecasting
## and many, new Plotly interactive visualizations output. Most
## visualization functions are now reorganized to three functions:
## Chart(): type="bar", "pie", "radar", "bubble", "treemap", "icicle"
## X(): type="histogram", "density", "vbs" and more
## XY(): type="scatter" for a scatterplot, or "contour", "smooth"
## Most previous function calls still work, such as:
## BarChart(), Histogram, and Plot().
## Enter: news(package="lessR"), or ?Chart, ?X, or ?XY
## There is also Flows() for Sankey flow diagrams, see ?Flows
##
## Interactive data analysis for constructing visualizations.
## Enter: interact()
Histogram(pcfat,
data = ob,
fill = "blue",
xlab = "Tỉ trọng mỡ (%)",
ylab = "Số người",
main = "Phân bố tỉ trọng mỡ")
## lessR visualizations are now unified over just three core functions:
## - Chart() for pivot tables, such as bar charts. More info: ?Chart
## - X() for a single variable x, such as histograms. More info: ?X
## - XY() for scatterplots of two variables, x and y. More info: ?XY
##
## Histogram() is deprecated, though still working for now.
## Please use X(..., type = "histogram") going forward.
## [Interactive plot from the Plotly R package (Sievert, 2020)]
## >>> Suggestions
## bin_width: set the width of each bin
## bin_start: set the start of the first bin
## bin_end: set the end of the last bin
## X(pcfat, type="density") # smoothed curve + histogram
## X(pcfat, type="vbs") # Violin/Box/Scatterplot (VBS) plot
##
## --- pcfat ---
##
## n miss mean sd min mdn max
## 1217 0 31.604786 7.182862 9.200000 32.400000 48.400000
##
##
##
## --- Outliers --- from the box plot: 10
##
## Small Large
## ----- -----
## 9.2
## 9.7
## 9.8
## 10.3
## 10.3
## 10.7
## 11.0
## 11.4
## 11.7
## 11.9
##
##
## Bin Width: 5
## Number of Bins: 9
##
## Bin Midpnt Count Prop Cumul.c Cumul.p
## -------------------------------------------------
## 5 > 10 7.5 3 0.00 3 0.00
## 10 > 15 12.5 26 0.02 29 0.02
## 15 > 20 17.5 61 0.05 90 0.07
## 20 > 25 22.5 128 0.11 218 0.18
## 25 > 30 27.5 244 0.20 462 0.38
## 30 > 35 32.5 338 0.28 800 0.66
## 35 > 40 37.5 294 0.24 1094 0.90
## 40 > 45 42.5 107 0.09 1201 0.99
## 45 > 50 47.5 16 0.01 1217 1.00
##
2.2 So sánh tỉ trọng mỡ giữa nam và nữ bằng t-test
library(table1)
##
## Attaching package: 'table1'
## The following object is masked from 'package:lessR':
##
## label
## The following objects are masked from 'package:base':
##
## units, units<-
table1(~ pcfat | gender, data = ob)
| F (N=862) |
M (N=355) |
Overall (N=1217) |
|
|---|---|---|---|
| pcfat | |||
| Mean (SD) | 34.7 (5.19) | 24.2 (5.76) | 31.6 (7.18) |
| Median [Min, Max] | 34.7 [14.6, 48.4] | 24.6 [9.20, 39.0] | 32.4 [9.20, 48.4] |
ttest(pcfat ~ gender, data = ob)
##
## Compare pcfat across gender with levels F and M
## Grouping Variable: gender
## Response Variable: pcfat
##
##
## ------ Describe ------
##
## pcfat for gender F: n.miss = 0, n = 862, mean = 34.672, sd = 5.187
## pcfat for gender M: n.miss = 0, n = 355, mean = 24.156, sd = 5.764
##
## Mean Difference of pcfat: 10.516
##
## Weighted Average Standard Deviation: 5.362
##
##
## ------ Assumptions ------
##
## Note: These hypothesis tests can perform poorly, and the
## t-test is typically robust to violations of assumptions.
## Use as heuristic guides instead of interpreting literally.
##
## Null hypothesis, for each group, is a normal distribution of pcfat.
## Group F: Sample mean assumed normal because n > 30, so no test needed.
## Group M: Sample mean assumed normal because n > 30, so no test needed.
##
## Null hypothesis is equal variances of pcfat, homogeneous.
## Variance Ratio test: F = 33.223/26.909 = 1.235, df = 354;861, p-value = 0.016
## Levene's test, Brown-Forsythe: t = -2.232, df = 1215, p-value = 0.026
##
##
## ------ Infer ------
##
## --- Assume equal population variances of pcfat for each gender
##
## t-cutoff for 95% range of variation: tcut = 1.962
## Standard Error of Mean Difference: SE = 0.338
##
## Hypothesis Test of 0 Mean Diff: t-value = 31.101, df = 1215, p-value = 0.000
##
## Margin of Error for 95% Confidence Level: 0.663
## 95% Confidence Interval for Mean Difference: 9.853 to 11.180
##
##
## --- Do not assume equal population variances of pcfat for each gender
##
## t-cutoff: tcut = 1.964
## Standard Error of Mean Difference: SE = 0.353
##
## Hypothesis Test of 0 Mean Diff: t = 29.768, df = 602.015, p-value = 0.000
##
## Margin of Error for 95% Confidence Level: 0.694
## 95% Confidence Interval for Mean Difference: 9.823 to 11.210
##
##
## ------ Effect Size ------
##
## --- Assume equal population variances of pcfat for each gender
##
## Standardized Mean Difference of pcfat, Cohen's d: 1.961
##
##
## ------ Practical Importance ------
##
## Minimum Mean Difference of practical importance: mmd
## Minimum Standardized Mean Difference of practical importance: msmd
## Neither value specified, so no analysis
##
##
## ------ Graphics Smoothing Parameter ------
##
## Density bandwidth for gender F: 1.475
## Density bandwidth for gender M: 1.867
2.3 So sánh tỉ trọng mỡ giữa nam và nữ bằng hồi qui tuyến tính
model <- lm(pcfat ~ gender, data = ob)
summary(model)
##
## Call:
## lm(formula = pcfat ~ gender, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.0724 -3.2724 0.1484 3.6276 14.8439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.6724 0.1826 189.9 <2e-16 ***
## genderM -10.5163 0.3381 -31.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.362 on 1215 degrees of freedom
## Multiple R-squared: 0.4432, Adjusted R-squared: 0.4428
## F-statistic: 967.3 on 1 and 1215 DF, p-value: < 2.2e-16
#cách 2
Regression(pcfat ~ gender, data = ob, graphics = TRUE)
##
## >>> gender is not numeric. Converted to indicator variables.
## >>> Suggestion
## # Create an R markdown file for interpretative output with Rmd = "file_name"
## Regression(my_formula=pcfat ~ gender, data=ob, graphics=TRUE, Rmd="eg")
##
##
## BACKGROUND
##
## Data Frame: ob
##
## Response Variable: pcfat
## Predictor Variable: genderM
##
## Number of cases (rows) of data: 1217
## Number of cases retained for analysis: 1217
##
##
## BASIC ANALYSIS
##
## Estimate Std Err t-value p-value Lower 95% Upper 95%
## (Intercept) 34.672413 0.182622 189.859 0.000 34.314123 35.030703
## genderM -10.516344 0.338131 -31.101 0.000 -11.179729 -9.852959
##
## Standard deviation of pcfat: 7.182861
##
## Standard deviation of residuals: 5.361759 for df=1215
## 95% range of residuals: 21.038669 = 2 * (1.962 * 5.361759)
##
## R-squared: 0.443 Adjusted R-squared: 0.443 PRESS R-squared: 0.441
##
## Null hypothesis of all 0 population slope coefficients:
## F-statistic: 967.297 df: 1 and 1215 p-value: 0.000
##
## -- Analysis of Variance
##
## df Sum Sq Mean Sq F-value p-value
## Model 1 27808.311497 27808.311497 967.297285 0.000
## Residuals 1215 34929.384159 28.748464
## pcfat 1216 62737.695656 51.593500
##
##
## K-FOLD CROSS-VALIDATION
##
##
## RELATIONS AMONG THE VARIABLES
##
## pcfat genderM
## pcfat 1.00 -0.67
## genderM -0.67 1.00
##
##
## RESIDUALS AND INFLUENCE
##
## -- Data, Fitted, Residual, Studentized Residual, Dffits, Cook's Distance
## [sorted by Cook's Distance]
## [n_res_rows = 20, out of 1217 rows of data, or do n_res_rows="all"]
## ---------------------------------------------------------------------------
## genderM pcfat fitted resid rstdnt dffits cooks
## 210 1 9.200000 24.156069 -14.956069 -2.801192 -0.148882 0.011020
## 509 1 39.000000 24.156069 14.843931 2.780055 0.147758 0.010860
## 179 1 38.700000 24.156069 14.543931 2.723523 0.144754 0.010420
## 518 1 9.700000 24.156069 -14.456069 -2.706970 -0.143874 0.010300
## 200 1 9.800000 24.156069 -14.356069 -2.688132 -0.142873 0.010150
## 563 1 38.300000 24.156069 14.143931 2.648179 0.140749 0.009860
## 318 1 10.300000 24.156069 -13.856069 -2.593980 -0.137869 0.009460
## 972 1 10.300000 24.156069 -13.856069 -2.593980 -0.137869 0.009460
## 388 1 10.700000 24.156069 -13.456069 -2.518700 -0.133867 0.008920
## 203 1 11.000000 24.156069 -13.156069 -2.462262 -0.130868 0.008530
## 1137 0 14.600000 34.672413 -20.072413 -3.766065 -0.128347 0.008150
## 893 0 14.700000 34.672413 -19.972413 -3.747085 -0.127700 0.008070
## 688 1 11.400000 24.156069 -12.756069 -2.387042 -0.126870 0.008020
## 403 1 11.700000 24.156069 -12.456069 -2.330649 -0.123873 0.007640
## 858 1 11.900000 24.156069 -12.256069 -2.293064 -0.121875 0.007400
## 158 1 36.300000 24.156069 12.143931 2.271993 0.120755 0.007270
## 1106 1 36.300000 24.156069 12.143931 2.271993 0.120755 0.007270
## 827 1 36.000000 24.156069 11.843931 2.215637 0.117760 0.006910
## 756 1 12.400000 24.156069 -11.756069 -2.199135 -0.116883 0.006810
## 196 1 12.500000 24.156069 -11.656069 -2.180355 -0.115885 0.006690
##
##
## PREDICTION ERROR
##
## -- Data, Predicted, Standard Error of Prediction, 95% Prediction Intervals
## [sorted by lower bound of prediction interval]
## [to see all intervals add n_pred_rows="all"]
## ----------------------------------------------
##
## genderM pcfat pred s_pred pi.lwr pi.upr width
## 2 1 16.800000 24.156069 5.369306 13.621929 34.690209 21.068280
## 5 1 14.800000 24.156069 5.369306 13.621929 34.690209 21.068280
## ...
## 1209 1 26.400000 24.156069 5.369306 13.621929 34.690209 21.068280
## 1 0 37.300000 34.672413 5.364869 24.146979 45.197847 21.050869
## 3 0 34.000000 34.672413 5.364869 24.146979 45.197847 21.050869
## ...
## 1215 0 34.400000 34.672413 5.364869 24.146979 45.197847 21.050869
## 1216 0 41.300000 34.672413 5.364869 24.146979 45.197847 21.050869
## 1217 0 33.200000 34.672413 5.364869 24.146979 45.197847 21.050869
##
## ----------------------------------
## Plot 1: Distribution of Residuals
## Plot 2: Residuals vs Fitted Values
## ----------------------------------