This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
#Uji Normalitas semua data
str(data_penelitian_untuk_uji_di_R)
## tibble [34 × 12] (S3: tbl_df/tbl/data.frame)
## $ Siswa...1 : chr [1:34] "E_01" "E_02" "E_03" "E_04" ...
## $ eks_pretest : num [1:34] 16.6 70.8 54.2 45.8 91.7 58.3 16.6 45.8 58.3 33.3 ...
## $ eks_posttest : num [1:34] 91.7 83.3 87.5 70.8 95.8 83.3 87.5 91.7 100 75 ...
## $ ...4 : logi [1:34] NA NA NA NA NA NA ...
## $ Siswa...5 : chr [1:34] "K_01" "K_02" "K_03" "K_04" ...
## $ kontrol_pretest : num [1:34] 58.3 62.5 50 16.6 83.3 58.3 33.3 58.3 54.2 66.7 ...
## $ kontrol_posttest : num [1:34] 87.5 91.7 70.8 62.5 95.8 79.2 75 66.7 79.2 87.5 ...
## $ ...8 : logi [1:34] NA NA NA NA NA NA ...
## $ ...9 : logi [1:34] NA NA NA NA NA NA ...
## $ No. : num [1:34] 1 2 3 4 5 6 7 8 9 10 ...
## $ N-Gain_Eksperimen: num [1:34] 0.9 0.43 0.73 0.46 0.49 0.6 0.85 0.85 1 0.63 ...
## $ N-Gain_Kontrol : num [1:34] 0.7 0.78 0.42 0.55 0.75 0.5 0.63 0.2 0.55 0.62 ...
data_penelitian_untuk_uji_di_R$eks_pretest <-
as.numeric(as.character(data_penelitian_untuk_uji_di_R$eks_pretest))
shapiro.test(data_penelitian_untuk_uji_di_R$eks_pretest)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$eks_pretest
## W = 0.93968, p-value = 0.0603
shapiro.test(data_penelitian_untuk_uji_di_R$eks_posttest)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$eks_posttest
## W = 0.93921, p-value = 0.05839
shapiro.test(data_penelitian_untuk_uji_di_R$kontrol_pretest)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$kontrol_pretest
## W = 0.94363, p-value = 0.07911
shapiro.test(data_penelitian_untuk_uji_di_R$kontrol_posttest)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$kontrol_posttest
## W = 0.96055, p-value = 0.2523
#1. Uji Ketuntasan Rata-rata
#Uji Normalitas
shapiro.test(data_penelitian_untuk_uji_di_R$eks_posttest)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$eks_posttest
## W = 0.93921, p-value = 0.05839
#Uji t satu sampel
t.test(data_penelitian_untuk_uji_di_R$eks_posttest,y = NULL,
alternative = "greater",
mu = 80, paired = FALSE, var.equal = FALSE,
conf.level = 0.95)
##
## One Sample t-test
##
## data: data_penelitian_untuk_uji_di_R$eks_posttest
## t = 6.0703, df = 33, p-value = 3.923e-07
## alternative hypothesis: true mean is greater than 80
## 95 percent confidence interval:
## 85.75691 Inf
## sample estimates:
## mean of x
## 87.98235
#2. Uji Proporsi Ketuntasan
KKTP <- 80 #Menentukan KKTP
tuntas_eks <- data_penelitian_untuk_uji_di_R$eks_posttest >= KKTP #Status ketuntasan kelas eksperimen (posttest)
n_eks <- length(data_penelitian_untuk_uji_di_R$eks_posttest) #Jumlah siswa
x_eks <- sum(tuntas_eks, na.rm = TRUE) #Jumlah siswa tuntas
# Uji proporsi ketuntasan
prop.test(
x = x_eks, # jumlah siswa tuntas
n = n_eks, # jumlah siswa
p = 0.75, # proporsi target
alternative = "greater",
correct = FALSE
)
##
## 1-sample proportions test without continuity correction
##
## data: x_eks out of n_eks, null probability 0.75
## X-squared = 3.1765, df = 1, p-value = 0.03735
## alternative hypothesis: true p is greater than 0.75
## 95 percent confidence interval:
## 0.762269 1.000000
## sample estimates:
## p
## 0.8823529
#3. Uji Perbedaan Rata-rata
#Uji Normalitas
shapiro.test(data_penelitian_untuk_uji_di_R$eks_pretest)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$eks_pretest
## W = 0.93968, p-value = 0.0603
shapiro.test(data_penelitian_untuk_uji_di_R$eks_posttest)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$eks_posttest
## W = 0.93921, p-value = 0.05839
# Menghitung selisih posttest - pretest
selisih <- data_penelitian_untuk_uji_di_R$eks_posttest -
data_penelitian_untuk_uji_di_R$eks_pretest
# Uji normalitas selisih
shapiro.test(selisih)
##
## Shapiro-Wilk normality test
##
## data: selisih
## W = 0.95638, p-value = 0.1903
#Uji t berpasangan
t.test(data_penelitian_untuk_uji_di_R$eks_posttest,
data_penelitian_untuk_uji_di_R$eks_pretest,
paired = TRUE,
alternative = "greater",
conf.level = 0.95)
##
## Paired t-test
##
## data: data_penelitian_untuk_uji_di_R$eks_posttest and data_penelitian_untuk_uji_di_R$eks_pretest
## t = 10.629, df = 33, p-value = 1.72e-12
## alternative hypothesis: true mean difference is greater than 0
## 95 percent confidence interval:
## 31.63786 Inf
## sample estimates:
## mean difference
## 37.62941
#4. Uji Perbandingan Ketuntasan Rata-Rata
#Uji Normalitas
shapiro.test(data_penelitian_untuk_uji_di_R$eks_posttest)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$eks_posttest
## W = 0.93921, p-value = 0.05839
shapiro.test(data_penelitian_untuk_uji_di_R$kontrol_posttest)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$kontrol_posttest
## W = 0.96055, p-value = 0.2523
#Uji Homogenitas
library(car)
leveneTest(
data_penelitian_untuk_uji_di_R$eks_posttest,
data_penelitian_untuk_uji_di_R$kontrol_posttest)
## Warning in leveneTest.default(data_penelitian_untuk_uji_di_R$eks_posttest, :
## data_penelitian_untuk_uji_di_R$kontrol_posttest coerced to factor.
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 8 1.5216 0.1999
## 25
#Uji t independen
t.test(
data_penelitian_untuk_uji_di_R$eks_posttest,
data_penelitian_untuk_uji_di_R$kontrol_posttest,
alternative = "greater",
var.equal = TRUE,
conf.level = 0.95)
##
## Two Sample t-test
##
## data: data_penelitian_untuk_uji_di_R$eks_posttest and data_penelitian_untuk_uji_di_R$kontrol_posttest
## t = 3.0535, df = 66, p-value = 0.00163
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 2.775235 Inf
## sample estimates:
## mean of x mean of y
## 87.98235 81.86471
#5. Uji Perbandingan Proporsi Ketuntasan
# Menentukan KKTP
KKTP <- 80
# Status ketuntasan
tuntas_eks <- data_penelitian_untuk_uji_di_R$eks_posttest >= KKTP
tuntas_kon <- data_penelitian_untuk_uji_di_R$kontrol_posttest >= KKTP
# Jumlah siswa
n1 <- length(tuntas_eks)
n2 <- length(tuntas_kon)
# Jumlah siswa tuntas
x1 <- sum(tuntas_eks, na.rm = TRUE)
x2 <- sum(tuntas_kon, na.rm = TRUE)
# Proporsi ketuntasan
p1 <- x1 / n1
p2 <- x2 / n2
n1; x1; p1
## [1] 34
## [1] 30
## [1] 0.8823529
n2; x2; p2
## [1] 34
## [1] 18
## [1] 0.5294118
#Uji Z satu sampel
prop.test(x = c(x1, x2),
n = c(n1, n2),
alternative = "greater",
correct = FALSE
)
##
## 2-sample test for equality of proportions without continuity correction
##
## data: c(x1, x2) out of c(n1, n2)
## X-squared = 10.2, df = 1, p-value = 0.0007022
## alternative hypothesis: greater
## 95 percent confidence interval:
## 0.1853547 1.0000000
## sample estimates:
## prop 1 prop 2
## 0.8823529 0.5294118
#6. UJI PERBANDINGAN PENINGKATAN KEMAMPUAN BERPIKIR KREATIF KELOMPOK EKSPERIMEN DAN KONTROL
#Uji Normalitas
shapiro.test(data_penelitian_untuk_uji_di_R$`N-Gain_Eksperimen`)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$`N-Gain_Eksperimen`
## W = 0.93985, p-value = 0.06101
shapiro.test(data_penelitian_untuk_uji_di_R$`N-Gain_Kontrol`)
##
## Shapiro-Wilk normality test
##
## data: data_penelitian_untuk_uji_di_R$`N-Gain_Kontrol`
## W = 0.95578, p-value = 0.1827
#Uji Homogenitas
library(car)
leveneTest(
data_penelitian_untuk_uji_di_R$`N-Gain_Eksperimen`,
data_penelitian_untuk_uji_di_R$`N-Gain_Kontrol`)
## Warning in
## leveneTest.default(data_penelitian_untuk_uji_di_R$`N-Gain_Eksperimen`, :
## data_penelitian_untuk_uji_di_R$`N-Gain_Kontrol` coerced to factor.
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 21 0.5493 0.8893
## 12
#Uji t Independen
t.test(
data_penelitian_untuk_uji_di_R$`N-Gain_Eksperimen`,
data_penelitian_untuk_uji_di_R$`N-Gain_Kontrol`,
alternative = "greater",
var.equal = TRUE,
conf.level = 0.95)
##
## Two Sample t-test
##
## data: data_penelitian_untuk_uji_di_R$`N-Gain_Eksperimen` and data_penelitian_untuk_uji_di_R$`N-Gain_Kontrol`
## t = 3.0557, df = 66, p-value = 0.001619
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.06583716 Inf
## sample estimates:
## mean of x mean of y
## 0.7264706 0.5814706