Làm việc với dữ liệu Economics và trực quan biển tỷ lệ thu nhập cá nhân psavert của người dân Mỹ. Chúng ta cần trực quan dữ liệu theo chuỗi thời gian để xem xét tỷ lệ thu nhập của người dân Mỹ tăng hay giảm từ năm 1965 đến 2015 ## Tiền xử lý dữ liệu ### Tải thư viện
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(ggplot2)
library(dplyr)
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
##
## first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(scales)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
Hiển thị 6 dữ liệu đầu tiên
data("economics")
head(economics)
## # A tibble: 6 × 6
## date pce pop psavert uempmed unemploy
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1967-07-01 507. 198712 12.6 4.5 2944
## 2 1967-08-01 510. 198911 12.6 4.7 2945
## 3 1967-09-01 516. 199113 11.9 4.6 2958
## 4 1967-10-01 512. 199311 12.9 4.9 3143
## 5 1967-11-01 517. 199498 12.8 4.7 3066
## 6 1967-12-01 525. 199657 11.8 4.8 3018
Hiển thị 6 dữ liệu cuối cùng
tail(economics)
## # A tibble: 6 × 6
## date pce pop psavert uempmed unemploy
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2014-11-01 12051. 319564. 7.3 13 9090
## 2 2014-12-01 12062 319746. 7.6 12.9 8717
## 3 2015-01-01 12046 319929. 7.7 13.2 8903
## 4 2015-02-01 12082. 320075. 7.9 12.9 8610
## 5 2015-03-01 12158. 320231. 7.4 12 8504
## 6 2015-04-01 12194. 320402. 7.6 11.5 8526
Hiển thị 36 dữ liệu cuối cùng
tail(economics, n = 36)
## # A tibble: 36 × 6
## date pce pop psavert uempmed unemploy
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2012-05-01 10969. 313831. 8.8 19.9 12660
## 2 2012-06-01 10946. 314018. 9.1 20.4 12692
## 3 2012-07-01 10977. 314211. 8.2 17.5 12656
## 4 2012-08-01 11004. 314422. 8 18.4 12471
## 5 2012-09-01 11062. 314647. 8.2 18.8 12115
## 6 2012-10-01 11100. 314854. 8.8 19.9 12124
## 7 2012-11-01 11137. 315054. 9.7 18.6 12005
## 8 2012-12-01 11140. 315233. 12 17.7 12298
## 9 2013-01-01 11203. 315390. 6.3 15.8 12471
## 10 2013-02-01 11240. 315520. 5.8 17.2 11950
## # ℹ 26 more rows
ggplot(data = economics, mapping = aes(x = date, y = psavert)) +
geom_line(color = "#038387", size = 0.6) +
geom_smooth() +
scale_x_date(date_breaks = "5 years", label = date_format(("%y"))) +
labs(title = "Personal Saving Rate in USA from 1967 to 2015",
subtitle = "5 years",
x = "Time",
y = "Personal Saving Rate") +
theme_minimal() -> obj
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
ggplotly(obj)
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
apple <- getSymbols("AAPL", return.class = "data.frame",
from = "2021-05-05", to = "2026-05-05")
tail(AAPL, n=4)
## AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
## 2025-12-31 273.06 273.68 271.75 271.86 27293600 271.86
## 2026-01-02 272.26 277.84 269.00 271.01 37838100 271.01
## 2026-01-05 270.64 271.51 266.14 267.26 45647200 267.26
## 2026-01-06 267.00 267.55 262.12 262.36 52282100 262.36
apple <- AAPL %>%
mutate(Date = as.Date(row.names(.))) %>%
select(Date, AAPL.Close) %>%
rename(Close = AAPL.Close) %>%
mutate(Company = "Apple")
# Take data for Facebook
facebook <- getSymbols("META", return.class = "data.frame",
from = "2021-05-05", to = "2026-05-05")
facebook <- META %>%
mutate(Date = as.Date(row.names(.))) %>%
select(Date, META.Close) %>%
rename(Close = META.Close) %>%
mutate(Company = "Facebook")
vinfast <- getSymbols("VFS", return.class = "data.frame",
from = "2023-05-05", to = "2026-05-05")
vinfast <- VFS %>%
mutate(Date = as.Date(row.names(.))) %>%
select(Date, VFS.Close) %>%
rename(Close = VFS.Close) %>%
mutate(Company = "Vinfast")
# Combine data
data_series <- rbind(apple, facebook, vinfast)
# Visualization
# National Association of Securities Dealers Automated Quotation System
ggplot(data = data_series, mapping = aes(x = Date, y = Close,
color = Company)) +
geom_line(size = 1) +
scale_x_date(date_breaks = "6 months",
labels = date_format("%b-%Y")) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_y_continuous(limits = c(0, 450), breaks = seq(100,400,50),
labels = dollar) +
labs(title = "NASDAQ Closing Prices",
subtitle = "From May 2021 to February 2022",
caption = "source: Yahoo Finance",
x = "",
y = "Closing Price") +
scale_color_brewer(palette = "Set1")
## Warning: Removed 420 rows containing missing values or values outside the scale range
## (`geom_line()`).