#install.packages(c("lessR", "table1", "simpleboot", "boot", "gapminder", "ggfortify", "DescTools", "epiDisplay", "BMA", "ggplot2", "gridExtra", "metafor", "MatchIt", "cobalt"), dependencies = T)
file.choose() [1] “/Users/nguyenminhha/Desktop/Du Lieu Thuc Hanh /Stroke Data.csv” P=file.choose()
df = read.csv("/Users/nguyenminhha/Desktop/Du Lieu Thuc Hanh /Stroke Data.csv")
dim(df)
## [1] 5110 12
head(df, 10)
tail(df)
summary(df)
## id gender age hypertension
## Min. : 67 Length:5110 Min. : 0.08 Min. :0.00000
## 1st Qu.:17741 Class :character 1st Qu.:25.00 1st Qu.:0.00000
## Median :36932 Mode :character Median :45.00 Median :0.00000
## Mean :36518 Mean :43.23 Mean :0.09746
## 3rd Qu.:54682 3rd Qu.:61.00 3rd Qu.:0.00000
## Max. :72940 Max. :82.00 Max. :1.00000
##
## heart_disease ever_married work_type Residence_type
## Min. :0.00000 Length:5110 Length:5110 Length:5110
## 1st Qu.:0.00000 Class :character Class :character Class :character
## Median :0.00000 Mode :character Mode :character Mode :character
## Mean :0.05401
## 3rd Qu.:0.00000
## Max. :1.00000
##
## avg_glucose_level bmi smoking_status stroke
## Min. : 55.12 Min. :10.30 Length:5110 Min. :0.00000
## 1st Qu.: 77.25 1st Qu.:23.50 Class :character 1st Qu.:0.00000
## Median : 91.89 Median :28.10 Mode :character Median :0.00000
## Mean :106.15 Mean :28.89 Mean :0.04873
## 3rd Qu.:114.09 3rd Qu.:33.10 3rd Qu.:0.00000
## Max. :271.74 Max. :97.60 Max. :1.00000
## NA's :201
df$sex[df$gender == "Female"] = 0
df$sex[df$gender == "Male"] = 1
df$sex[df$gender == "Other"] = 2
head(df)
df$bmi_cat[df$bmi< 18.5] = "Underweight"
df$bmi_cat[df$bmi>= 18.5 & df$bmi< 25.0] = "Normal"
df$bmi_cat[df$bmi>= 25.0 & df$bmi< 30] = "Overweight"
df$bmi_cat[df$bmi>= 30] = "Obese"
table(df$bmi_cat)
##
## Normal Obese Overweight Underweight
## 1243 1920 1409 337
head(df)
df$stroke1 = as.factor(df$stroke)
table(df$stroke1, df$stroke)
##
## 0 1
## 0 4861 0
## 1 0 249
head(df)
summary(df)
## id gender age hypertension
## Min. : 67 Length:5110 Min. : 0.08 Min. :0.00000
## 1st Qu.:17741 Class :character 1st Qu.:25.00 1st Qu.:0.00000
## Median :36932 Mode :character Median :45.00 Median :0.00000
## Mean :36518 Mean :43.23 Mean :0.09746
## 3rd Qu.:54682 3rd Qu.:61.00 3rd Qu.:0.00000
## Max. :72940 Max. :82.00 Max. :1.00000
##
## heart_disease ever_married work_type Residence_type
## Min. :0.00000 Length:5110 Length:5110 Length:5110
## 1st Qu.:0.00000 Class :character Class :character Class :character
## Median :0.00000 Mode :character Mode :character Mode :character
## Mean :0.05401
## 3rd Qu.:0.00000
## Max. :1.00000
##
## avg_glucose_level bmi smoking_status stroke
## Min. : 55.12 Min. :10.30 Length:5110 Min. :0.00000
## 1st Qu.: 77.25 1st Qu.:23.50 Class :character 1st Qu.:0.00000
## Median : 91.89 Median :28.10 Mode :character Median :0.00000
## Mean :106.15 Mean :28.89 Mean :0.04873
## 3rd Qu.:114.09 3rd Qu.:33.10 3rd Qu.:0.00000
## Max. :271.74 Max. :97.60 Max. :1.00000
## NA's :201
## sex bmi_cat stroke1
## Min. :0.0000 Length:5110 0:4861
## 1st Qu.:0.0000 Class :character 1: 249
## Median :0.0000 Mode :character
## Mean :0.4143
## 3rd Qu.:1.0000
## Max. :2.0000
##
Mô tả đặc điểm tuổi, CHA, tim …
library(table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
table1(~ age + gender + hypertension + heart_disease + ever_married + work_type | stroke, data=df)
## Warning in table1.formula(~age + gender + hypertension + heart_disease + :
## Terms to the right of '|' in formula 'x' define table columns and are expected
## to be factors with meaningful labels.
| 0 (N=4861) |
1 (N=249) |
Overall (N=5110) |
|
|---|---|---|---|
| age | |||
| Mean (SD) | 42.0 (22.3) | 67.7 (12.7) | 43.2 (22.6) |
| Median [Min, Max] | 43.0 [0.0800, 82.0] | 71.0 [1.32, 82.0] | 45.0 [0.0800, 82.0] |
| gender | |||
| Female | 2853 (58.7%) | 141 (56.6%) | 2994 (58.6%) |
| Male | 2007 (41.3%) | 108 (43.4%) | 2115 (41.4%) |
| Other | 1 (0.0%) | 0 (0%) | 1 (0.0%) |
| hypertension | |||
| Mean (SD) | 0.0889 (0.285) | 0.265 (0.442) | 0.0975 (0.297) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| heart_disease | |||
| Mean (SD) | 0.0471 (0.212) | 0.189 (0.392) | 0.0540 (0.226) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| ever_married | |||
| No | 1728 (35.5%) | 29 (11.6%) | 1757 (34.4%) |
| Yes | 3133 (64.5%) | 220 (88.4%) | 3353 (65.6%) |
| work_type | |||
| children | 685 (14.1%) | 2 (0.8%) | 687 (13.4%) |
| Govt_job | 624 (12.8%) | 33 (13.3%) | 657 (12.9%) |
| Never_worked | 22 (0.5%) | 0 (0%) | 22 (0.4%) |
| Private | 2776 (57.1%) | 149 (59.8%) | 2925 (57.2%) |
| Self-employed | 754 (15.5%) | 65 (26.1%) | 819 (16.0%) |
table1(~ hypertension + as.factor(hypertension) + heart_disease + ever_married + work_type | stroke, data=df)
## Warning in table1.formula(~hypertension + as.factor(hypertension) +
## heart_disease + : Terms to the right of '|' in formula 'x' define table columns
## and are expected to be factors with meaningful labels.
| 0 (N=4861) |
1 (N=249) |
Overall (N=5110) |
|
|---|---|---|---|
| hypertension | |||
| Mean (SD) | 0.0889 (0.285) | 0.265 (0.442) | 0.0975 (0.297) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| as.factor(hypertension) | |||
| 0 | 4429 (91.1%) | 183 (73.5%) | 4612 (90.3%) |
| 1 | 432 (8.9%) | 66 (26.5%) | 498 (9.7%) |
| heart_disease | |||
| Mean (SD) | 0.0471 (0.212) | 0.189 (0.392) | 0.0540 (0.226) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| ever_married | |||
| No | 1728 (35.5%) | 29 (11.6%) | 1757 (34.4%) |
| Yes | 3133 (64.5%) | 220 (88.4%) | 3353 (65.6%) |
| work_type | |||
| children | 685 (14.1%) | 2 (0.8%) | 687 (13.4%) |
| Govt_job | 624 (12.8%) | 33 (13.3%) | 657 (12.9%) |
| Never_worked | 22 (0.5%) | 0 (0%) | 22 (0.4%) |
| Private | 2776 (57.1%) | 149 (59.8%) | 2925 (57.2%) |
| Self-employed | 754 (15.5%) | 65 (26.1%) | 819 (16.0%) |