df = read.csv('/Users/lecat/Downloads/AI_R_NVT/Stroke Data.csv')
Can be observed in the environment panel or with this line
dim (df)
## [1] 5110 12
head (df,10)
tail(df)
summary(df)
## id gender age hypertension
## Min. : 67 Length:5110 Min. : 0.08 Min. :0.00000
## 1st Qu.:17741 Class :character 1st Qu.:25.00 1st Qu.:0.00000
## Median :36932 Mode :character Median :45.00 Median :0.00000
## Mean :36518 Mean :43.23 Mean :0.09746
## 3rd Qu.:54682 3rd Qu.:61.00 3rd Qu.:0.00000
## Max. :72940 Max. :82.00 Max. :1.00000
##
## heart_disease ever_married work_type Residence_type
## Min. :0.00000 Length:5110 Length:5110 Length:5110
## 1st Qu.:0.00000 Class :character Class :character Class :character
## Median :0.00000 Mode :character Mode :character Mode :character
## Mean :0.05401
## 3rd Qu.:0.00000
## Max. :1.00000
##
## avg_glucose_level bmi smoking_status stroke
## Min. : 55.12 Min. :10.30 Length:5110 Min. :0.00000
## 1st Qu.: 77.25 1st Qu.:23.50 Class :character 1st Qu.:0.00000
## Median : 91.89 Median :28.10 Mode :character Median :0.00000
## Mean :106.15 Mean :28.89 Mean :0.04873
## 3rd Qu.:114.09 3rd Qu.:33.10 3rd Qu.:0.00000
## Max. :271.74 Max. :97.60 Max. :1.00000
## NA's :201
NA represent blank value
We need to determine our strategy BEFORE the data analysis
There are 2 main methods: complete-case approach and multiple imputations.
Min of age is 0.08 –> Not logic –> Reconsider the experiment designs and the cleaning data process
Encrypt ‘gender’ (Female/Male/Other) into ‘sex’ with 0/1/2 (0= Male; 1= Female; 2= Other)
df$sex = factor (df$gender, levels= c('Male','Female','Other'), labels = c('0','1','2'))
Re-check the edition
head (df)
table (df$gender,df$sex)
##
## 0 1 2
## Female 0 2994 0
## Male 2115 0 0
## Other 0 0 1
Encrypt ‘bmi’ into ‘bmi_cat’ with 4 groups
df$bmi_cat [df$bmi < 18.5] ='Underweight'
df$bmi_cat [df$bmi >= 18.5 & df$bmi<25] ='Normal'
df$bmi_cat [df$bmi >= 25 & df$bmi<30] ='Overweight'
df$bmi_cat [df$bmi >= 30] ='Obese'
Re-check the edition
head (df)
Encrypt ‘stroke’
df$stroke1 = as.factor (df$stroke)
table (df$stroke, df$stroke1)
##
## 0 1
## 0 4861 0
## 1 0 249
head (df)
stroke1 is now consider a variable with character values
summary (df)
## id gender age hypertension
## Min. : 67 Length:5110 Min. : 0.08 Min. :0.00000
## 1st Qu.:17741 Class :character 1st Qu.:25.00 1st Qu.:0.00000
## Median :36932 Mode :character Median :45.00 Median :0.00000
## Mean :36518 Mean :43.23 Mean :0.09746
## 3rd Qu.:54682 3rd Qu.:61.00 3rd Qu.:0.00000
## Max. :72940 Max. :82.00 Max. :1.00000
##
## heart_disease ever_married work_type Residence_type
## Min. :0.00000 Length:5110 Length:5110 Length:5110
## 1st Qu.:0.00000 Class :character Class :character Class :character
## Median :0.00000 Mode :character Mode :character Mode :character
## Mean :0.05401
## 3rd Qu.:0.00000
## Max. :1.00000
##
## avg_glucose_level bmi smoking_status stroke
## Min. : 55.12 Min. :10.30 Length:5110 Min. :0.00000
## 1st Qu.: 77.25 1st Qu.:23.50 Class :character 1st Qu.:0.00000
## Median : 91.89 Median :28.10 Mode :character Median :0.00000
## Mean :106.15 Mean :28.89 Mean :0.04873
## 3rd Qu.:114.09 3rd Qu.:33.10 3rd Qu.:0.00000
## Max. :271.74 Max. :97.60 Max. :1.00000
## NA's :201
## sex bmi_cat stroke1
## 0:2115 Length:5110 0:4861
## 1:2994 Class :character 1: 249
## 2: 1 Mode :character
##
##
##
##
Describe all the variables mentioned in the ‘Stroke data.csv’ file
library (table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
table1 (~ age + gender + hypertension + heart_disease + ever_married + work_type + Residence_type + avg_glucose_level + bmi + smoking_status| stroke, data = df )
## Warning in table1.formula(~age + gender + hypertension + heart_disease + :
## Terms to the right of '|' in formula 'x' define table columns and are expected
## to be factors with meaningful labels.
| 0 (N=4861) |
1 (N=249) |
Overall (N=5110) |
|
|---|---|---|---|
| age | |||
| Mean (SD) | 42.0 (22.3) | 67.7 (12.7) | 43.2 (22.6) |
| Median [Min, Max] | 43.0 [0.0800, 82.0] | 71.0 [1.32, 82.0] | 45.0 [0.0800, 82.0] |
| gender | |||
| Female | 2853 (58.7%) | 141 (56.6%) | 2994 (58.6%) |
| Male | 2007 (41.3%) | 108 (43.4%) | 2115 (41.4%) |
| Other | 1 (0.0%) | 0 (0%) | 1 (0.0%) |
| hypertension | |||
| Mean (SD) | 0.0889 (0.285) | 0.265 (0.442) | 0.0975 (0.297) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| heart_disease | |||
| Mean (SD) | 0.0471 (0.212) | 0.189 (0.392) | 0.0540 (0.226) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| ever_married | |||
| No | 1728 (35.5%) | 29 (11.6%) | 1757 (34.4%) |
| Yes | 3133 (64.5%) | 220 (88.4%) | 3353 (65.6%) |
| work_type | |||
| children | 685 (14.1%) | 2 (0.8%) | 687 (13.4%) |
| Govt_job | 624 (12.8%) | 33 (13.3%) | 657 (12.9%) |
| Never_worked | 22 (0.5%) | 0 (0%) | 22 (0.4%) |
| Private | 2776 (57.1%) | 149 (59.8%) | 2925 (57.2%) |
| Self-employed | 754 (15.5%) | 65 (26.1%) | 819 (16.0%) |
| Residence_type | |||
| Rural | 2400 (49.4%) | 114 (45.8%) | 2514 (49.2%) |
| Urban | 2461 (50.6%) | 135 (54.2%) | 2596 (50.8%) |
| avg_glucose_level | |||
| Mean (SD) | 105 (43.8) | 133 (61.9) | 106 (45.3) |
| Median [Min, Max] | 91.5 [55.1, 268] | 105 [56.1, 272] | 91.9 [55.1, 272] |
| bmi | |||
| Mean (SD) | 28.8 (7.91) | 30.5 (6.33) | 28.9 (7.85) |
| Median [Min, Max] | 28.0 [10.3, 97.6] | 29.7 [16.9, 56.6] | 28.1 [10.3, 97.6] |
| Missing | 161 (3.3%) | 40 (16.1%) | 201 (3.9%) |
| smoking_status | |||
| formerly smoked | 815 (16.8%) | 70 (28.1%) | 885 (17.3%) |
| never smoked | 1802 (37.1%) | 90 (36.1%) | 1892 (37.0%) |
| smokes | 747 (15.4%) | 42 (16.9%) | 789 (15.4%) |
| Unknown | 1497 (30.8%) | 47 (18.9%) | 1544 (30.2%) |
table1 (~hypertension + as.factor(hypertension) + heart_disease + as.factor(heart_disease)| stroke, data = df)
## Warning in table1.formula(~hypertension + as.factor(hypertension) +
## heart_disease + : Terms to the right of '|' in formula 'x' define table columns
## and are expected to be factors with meaningful labels.
| 0 (N=4861) |
1 (N=249) |
Overall (N=5110) |
|
|---|---|---|---|
| hypertension | |||
| Mean (SD) | 0.0889 (0.285) | 0.265 (0.442) | 0.0975 (0.297) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| as.factor(hypertension) | |||
| 0 | 4429 (91.1%) | 183 (73.5%) | 4612 (90.3%) |
| 1 | 432 (8.9%) | 66 (26.5%) | 498 (9.7%) |
| heart_disease | |||
| Mean (SD) | 0.0471 (0.212) | 0.189 (0.392) | 0.0540 (0.226) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| as.factor(heart_disease) | |||
| 0 | 4632 (95.3%) | 202 (81.1%) | 4834 (94.6%) |
| 1 | 229 (4.7%) | 47 (18.9%) | 276 (5.4%) |
df$hyper.f = as.factor (df$hypertension)
table1 (~hyper.f, data = df)
| Overall (N=5110) |
|
|---|---|
| hyper.f | |
| 0 | 4612 (90.3%) |
| 1 | 498 (9.7%) |