Install necessary packages and import appropriate data
pacman::p_load(tidyverse, readxl, raster, vegan, tigris, sf, sjPlot, sp, spOccupancy, ggrepel, lme4, lmerTest, MuMIn, brms, MCMCvis)
set.seed(97)
# Tree PCQ Data
tree_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Tree_PCQ")
# CWD Data
cwd_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "CWD")
# Soil Data
fuel_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Fuel_Sampling")
# Veg Data
Veg_Cover <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Veg_Cover")
# Shrub Cover Data
shrub_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Shrub_Cover")
# Site Data
CameraData <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraData.xlsx")
CameraLoc <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraLoc.xlsx",
sheet = "CameraLocations")
# Add effort data
effort_matrix <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraLoc.xlsx",
sheet = "Effort_Matrix_Full") %>%
pivot_longer(cols = matches("^202[4-5]-"), names_to = "week", values_to = "days") %>%
filter(days == "7") %>%
dplyr::select(Plot, week)
coords_sf <- CameraLoc %>%
dplyr::select(Plot, Long, Lat) %>%
st_as_sf(coords = c("Long", "Lat"), crs = 4326) %>%
st_transform(crs = 32616) # UTM zone 16N (matches your data)
coords <- st_coordinates(coords_sf)
rownames(coords) <- CameraLoc$Plot
I moved this from a later section because the filtering process removed quadrats that did not capture any species. Rows labeled as “None” were removed, suggesting that the number of quadrats sampled per plot is not consistent across all plots.
# Count the total number of quadrats per plot
quadrat_count <- Veg_Cover %>%
group_by(Plot) %>%
summarize(total_quadrats = n_distinct(Quadrat), .groups = "drop")
#Filter tree data to only include trees with "tree" in the growth column
tree_data <- dplyr::filter(tree_data, Growth == "Tree")
#Filter Veg Cover to exclude Shrubs and Trees
Veg_Cover <- dplyr::filter(Veg_Cover, Growth != "Shrub" & Growth != "Tree")
#Filter Shrub Cover to only include Shrubs and Trees
shrub_data <- dplyr::filter(shrub_data, Growth == "Shrub" | Growth == "Tree")
This is not needed for non-ordination analysis. Moving the threshold down to 0% to keep the option, but to ensure it has no effect for now.
# Calculate the total number of sites
total_sites <- nrow(CameraLoc)
# Function to filter data by frequency
filter_by_frequency <- function(df) {
# Group data by species and calculate the frequency
freq <- df %>%
group_by(Species) %>%
summarise(Frequency = n_distinct(Plot) / nrow(CameraLoc) * 100) %>%
filter(Frequency >= 0)
# Filter the original data to include only species with frequency >= 3%
filtered_df <- df %>%
filter(Species %in% freq$Species)
return(filtered_df)
}
# Filter tree data by frequency
tree_data <- filter_by_frequency(tree_data)
# Filter Veg Cover data by frequency
Veg_Cover <- filter_by_frequency(Veg_Cover)
# Filter Shrub Cover data by frequency
shrub_data <- filter_by_frequency(shrub_data)
# Total length of Shrub cover at a site
shrub_cover <- shrub_data %>%
mutate(Cover = Line_End - Line_Start) %>%
group_by(Species_Name, Plot) %>%
summarise(Shrub_Total_Cover = sum(Cover, na.rm = TRUE), .groups = "drop") %>%
mutate(Shrub_Percent_Cover = Shrub_Total_Cover / 3000 * 100)
# Summed length of shrub over at a site
shrub_cover_summed <- shrub_cover %>%
group_by(Plot) %>%
summarize(total_shrub_cover = sum(Shrub_Total_Cover, na.rm = TRUE), .groups = "drop")
# Combine Plot and Quadrat columns
Veg_Cover <- Veg_Cover %>%
mutate(Plot_Quadrat = paste(Plot, Quadrat, sep = '_'))
# Join with CogonSites to get site information
Veg_Cover <- Veg_Cover %>%
left_join(CameraLoc, by = "Plot")
# Sum species cover across quadrats for each species at each plot
veg_cover_summed <- Veg_Cover %>%
group_by(Plot, Species_Name) %>%
summarize(total_cover = sum(Cover_Per, na.rm = TRUE), .groups = "drop")
# Calculate average herbaceous species cover
avg_species_cover <- veg_cover_summed %>%
left_join(quadrat_count, by = "Plot") %>%
mutate(avg_cover = total_cover / total_quadrats)
This species matrix includes herbaceous and shrub species
# Merge shrub cover with herbaceous average cover
combined_cover <- avg_species_cover %>%
full_join(
shrub_cover %>%
dplyr::select(Plot, Species_Name, Shrub_Percent_Cover),
by = c("Plot", "Species_Name")
) %>%
mutate(
overlap_flag = ifelse(!is.na(avg_cover) & !is.na(Shrub_Percent_Cover), TRUE, FALSE), # Flag overlaps
final_cover = case_when(
!is.na(avg_cover) & is.na(Shrub_Percent_Cover) ~ avg_cover, # Use herbaceous cover if no shrub data
is.na(avg_cover) & !is.na(Shrub_Percent_Cover) ~ Shrub_Percent_Cover, # Use shrub cover if no herbaceous data
TRUE ~ NA_real_ # Leave as NA where overlaps exist
)
)
# Species Matrix
species_matrix <- combined_cover %>%
dplyr::select(Plot, Species_Name, final_cover) %>%
pivot_wider(
names_from = Species_Name,
values_from = final_cover,
values_fill = 0
)
avg_cogongrass_cover <- species_matrix %>%
group_by(Plot) %>%
summarize(Avg_Cogongrass_Cover = sum(Imperata_cylindrica, na.rm = TRUE) / n(), .groups = "drop")
# Summarize species cover by site
site_species_cover <- Veg_Cover %>%
group_by(Plot, Species_Name) %>%
summarize(total_cover = sum(Cover_Per, na.rm = TRUE)) %>%
ungroup()
## `summarise()` has grouped output by 'Plot'. You can override using the
## `.groups` argument.
## Remove all Imperata_cylindrica_Live and Imperata_cylindrica from species
site_species_cover <- site_species_cover %>%
filter(Species_Name != "Imperata_cylindrica_Live" & Species_Name != "Imperata_cylindrica")
# Calculate Shannon diversity per site
Veg_shannon_diversity <- site_species_cover %>%
group_by(Plot) %>%
mutate(proportion = total_cover / sum(total_cover)) %>%
summarize(Veg_shannon_index = -sum(proportion * log(proportion), na.rm = TRUE))
print(Veg_shannon_diversity)
## # A tibble: 206 × 2
## Plot Veg_shannon_index
## <chr> <dbl>
## 1 BI200 2.75
## 2 BI201 2.70
## 3 BI202 2.59
## 4 BI97 1.61
## 5 BI99 2.97
## 6 BN210 2.97
## 7 BN211 2.43
## 8 BN212 2.22
## 9 BN96 3.05
## 10 BN98 2.79
## # ℹ 196 more rows
if (!is.numeric(fuel_data$Height)) {
fuel_data$Height <- as.numeric(as.character(fuel_data$Height))
}
## Warning: NAs introduced by coercion
# Calculate average vegetation height per plot
veg_height <- fuel_data %>%
group_by(Plot) %>%
summarize(avg_veg_height = mean(Height, na.rm = TRUE), .groups = "drop")
# Tree density from point-centered quarter data
if (!is.numeric(tree_data$Distance)) {
tree_data$Distance <- as.numeric(as.character(tree_data$Distance))
}
tree_density_data <- tree_data %>%
group_by(Plot) %>%
summarize(Average_Distance = mean(Distance) / 100, # Convert to meters
Tree_Density = 10000 / (Average_Distance^2)) # Convert to trees per hectare
# Average canopy cover from vegetation quadrats
tree_canopy_data <- Veg_Cover %>%
distinct(Plot, Quadrat, .keep_all = TRUE) %>% # Ensure each quadrat counts once per plot
group_by(Plot) %>%
summarize(Avg_Canopy_Cover = mean(Canopy_Cover, na.rm = TRUE), .groups = "drop") # Calculate the average canopy cover per plot
cor(tree_density_data$Tree_Density, tree_canopy_data$Avg_Canopy_Cover)
## [1] 0.2742307
cwd_pa <- cwd_data %>%
group_by(Plot) %>%
summarise(
CWD_presence = as.integer(any(Line_Start > 0 & Line_End > 0)),
.groups = "drop"
)
CameraLoc <- CameraLoc %>%
left_join(cwd_pa, by = "Plot") %>%
left_join(Veg_shannon_diversity, by = "Plot") %>%
left_join(avg_cogongrass_cover, by = "Plot") %>%
left_join(shrub_cover_summed %>% dplyr::select(Plot, total_shrub_cover), by = "Plot") %>%
left_join(veg_height, by = "Plot") %>%
left_join(tree_density_data %>% dplyr::select(Plot, Tree_Density), by = "Plot") %>%
left_join(tree_canopy_data %>% dplyr::select(Plot, Avg_Canopy_Cover), by = "Plot") %>%
dplyr::select(-Authority)
# Group by Name and count the number of observations
species_counts <- CameraData %>%
filter((Class == "Mammalia" & Name != "Odocoileus_virginianus") | Name == "Meleagris_gallopavo") %>%
group_by(Name) %>%
summarize(count = n(), .groups = "drop")
# Filter for species with count greater than 10
species_subset <- species_counts %>%
filter(count > 10) %>%
pull(Name)
# Filter CameraData to only include species with count > 10
CameraData <- CameraData %>%
filter(Name %in% species_subset)
# Format Data Weekly
observations_weekly <- CameraData %>%
group_by(Plot, week = format(as.Date(Date), "%Y-%U"), Name) %>%
summarise(observations = n(), .groups = 'drop')
# Merge with Effort Matrix to include only valid weeks
observations_weekly <- effort_matrix %>%
left_join(observations_weekly, by = c("Plot" = "Plot", "week")) %>%
replace_na(list(observations = 0))
# Convert to wide format
observations_species <- observations_weekly %>%
pivot_wider(names_from = Name, values_from = observations, values_fill = list(observations = 0)) %>%
dplyr::select(-"NA")
# Create detection array
site_names <- sort(unique(observations_species$Plot))
species_names <- setdiff(colnames(observations_species), c("Plot", "week"))
num_sites <- length(site_names)
num_weeks <- length(unique(observations_species$week))
num_species <- length(species_names)
detection_array <- array(0, dim = c(num_sites, num_weeks, num_species))
dimnames(detection_array) <- list(site_names, unique(observations_species$week), species_names)
for (s in seq_along(species_names)) {
species_col <- species_names[s]
for (i in seq_along(site_names)) {
site <- site_names[i]
for (j in seq_along(unique(observations_species$week))) {
week <- unique(observations_species$week)[j]
detection_array[i, j, s] <- ifelse(
any(observations_species$Plot == site & observations_species$week == week & observations_species[[species_col]] > 0),
1, 0
)
}
}
}
dim(detection_array) # Should be num_sites x num_weeks x num_species
## [1] 32 36 8
# Duplicate CameraLoc to be used in Objective 2
CameraLoc_O2 <- CameraLoc
# Standardize the covariates
CameraLoc <- CameraLoc %>%
dplyr::select(-Plot, -Camera, -Lat, -Long, -Status, - Start_Date)
covariates_matrix <- as.matrix(CameraLoc)
rownames(covariates_matrix) <- site_names
# Standardizing covariates
covariates_matrix <- scale(covariates_matrix)
## Correlation
cor_mat <- cor(covariates_matrix)
# Create week matrix for covariate structure [site x week]
week_vals <- unique(observations_species$week)
week_matrix <- matrix(rep(week_vals, each = num_sites), nrow = num_sites, ncol = num_weeks, byrow = FALSE)
# Create detection covariate list
det.covs <- list(
shrub_cover = covariates_matrix[, "total_shrub_cover"],
veg_height = covariates_matrix[, "avg_veg_height"],
week = week_matrix
)
# Remove dash and convert to numeric
week_numeric <- as.numeric(gsub("-", "", det.covs$week))
## Scale and center week_numeric
week_numeric <- scale(week_numeric)
# Reshape into the original 32x36 matrix
det.covs$week <- matrix(week_numeric, nrow = 32, ncol = 36)
str(det.covs)
## List of 3
## $ shrub_cover: Named num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## $ veg_height : Named num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## $ week : num [1:32, 1:36] -0.613 -0.613 -0.613 -0.613 -0.613 ...
This requires combining the presence data and the site covariate data into a single list. This also means that the presence data is in a 3-d format.
# Combine into a named list
data_list <- list(
y = detection_array,
occ.covs = covariates_matrix,
det.covs = det.covs,
coords = coords
)
str(data_list)
## List of 4
## $ y : num [1:32, 1:36, 1:8] 0 0 0 0 0 0 0 0 0 0 ...
## ..- attr(*, "dimnames")=List of 3
## .. ..$ : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ : chr [1:36] "2024-29" "2024-30" "2024-31" "2024-32" ...
## .. ..$ : chr [1:8] "Canis_latrans" "Procyon_lotor" "Dasypus_novemcinctus" "Lynx_rufus" ...
## $ occ.covs: num [1:32, 1:12] -0.237 -0.446 -0.337 -0.308 0.039 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ : chr [1:12] "Cogon_Patch_Size" "VegetationDiversity" "PostTreatmentDensities" "Auth" ...
## ..- attr(*, "scaled:center")= Named num [1:12] 458.388 21.875 0.898 2.844 16.188 ...
## .. ..- attr(*, "names")= chr [1:12] "Cogon_Patch_Size" "VegetationDiversity" "PostTreatmentDensities" "Auth" ...
## ..- attr(*, "scaled:scale")= Named num [1:12] 1027.633 6.871 1.232 0.808 0.397 ...
## .. ..- attr(*, "names")= chr [1:12] "Cogon_Patch_Size" "VegetationDiversity" "PostTreatmentDensities" "Auth" ...
## $ det.covs:List of 3
## ..$ shrub_cover: Named num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ veg_height : Named num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ week : num [1:32, 1:36] -0.613 -0.613 -0.613 -0.613 -0.613 ...
## $ coords : num [1:32, 1:2] 513432 512936 494295 491358 494388 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ : chr [1:2] "X" "Y"
I am unsure why I only had an issue with total shrub cover, but this should fix the “cannot find” issue.
# Convert occupancy and detection covariates to a dataframe
data_list[["occ.covs"]] <- as.data.frame(data_list[["occ.covs"]])
data_list[["occ.covs"]]$total_shrub_cover <- as.numeric(data_list[["occ.covs"]]$total_shrub_cover)
#data_list[["det.covs"]] <- as.data.frame(data_list[["det.covs"]])
#data_list[["det.covs"]]$total_shrub_cover <- as.numeric(data_list[["det.covs"]]$total_shrub_cover)
# Make species the first dimension
data_list$y <- aperm(data_list$y, c(3, 1, 2))
dimnames(data_list$y) <- list(species = dimnames(data_list$y)[[1]],
site = dimnames(data_list$y)[[2]],
week = dimnames(data_list$y)[[3]])
str(data_list)
## List of 4
## $ y : num [1:8, 1:32, 1:36] 0 0 0 0 0 0 0 0 0 0 ...
## ..- attr(*, "dimnames")=List of 3
## .. ..$ species: chr [1:8] "Canis_latrans" "Procyon_lotor" "Dasypus_novemcinctus" "Lynx_rufus" ...
## .. ..$ site : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ week : chr [1:36] "2024-29" "2024-30" "2024-31" "2024-32" ...
## $ occ.covs:'data.frame': 32 obs. of 12 variables:
## ..$ Cogon_Patch_Size : num [1:32] -0.237 -0.446 -0.337 -0.308 0.039 ...
## ..$ VegetationDiversity : num [1:32] -0.273 0.455 1.619 -0.273 2.929 ...
## ..$ PostTreatmentDensities: num [1:32] 0.432 -0.729 0.432 2.169 1.13 ...
## ..$ Auth : num [1:32] -2.28 -2.28 -1.04 -1.04 -1.04 ...
## ..$ UTM_Zone : num [1:32] -0.473 -0.473 -0.473 -0.473 -0.473 ...
## ..$ CWD_presence : num [1:32] 1.86 -0.521 -0.521 -0.521 -0.521 ...
## ..$ Veg_shannon_index : num [1:32] 0.6829 0.0427 0.7279 -0.5991 1.1371 ...
## ..$ Avg_Cogongrass_Cover : num [1:32] -0.154 -0.708 0.308 2.045 1.121 ...
## ..$ total_shrub_cover : num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## ..$ avg_veg_height : num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## ..$ Tree_Density : num [1:32] -0.3629 -0.3564 -0.5111 3.5896 0.0958 ...
## ..$ Avg_Canopy_Cover : num [1:32] 0.1362 -0.0252 -0.9132 0.782 -1.9627 ...
## $ det.covs:List of 3
## ..$ shrub_cover: Named num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ veg_height : Named num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ week : num [1:32, 1:36] -0.613 -0.613 -0.613 -0.613 -0.613 ...
## $ coords : num [1:32, 1:2] 513432 512936 494295 491358 494388 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ : chr [1:2] "X" "Y"
# Define detection formulas
det.null <- ~ 1
det.full <- ~ shrub_cover + veg_height + week
det.cover <- ~ shrub_cover + veg_height
det.week <- ~ week
det.week.quad <- ~ week + I(week^2)
det.full.quad <- ~ shrub_cover + veg_height + week + I(week^2)
# Define occupancy formulas
occ.null <- ~ 1
occ.full <- ~ Cogon_Patch_Size + Veg_shannon_index + total_shrub_cover +
Avg_Cogongrass_Cover + Tree_Density + Avg_Canopy_Cover +
avg_veg_height + CWD_presence
occ.full.quad <- ~ Cogon_Patch_Size + Veg_shannon_index + total_shrub_cover +
Avg_Cogongrass_Cover + I(Avg_Cogongrass_Cover^2) +
Tree_Density + Avg_Canopy_Cover +
avg_veg_height + CWD_presence
occ.cover <- ~ Avg_Cogongrass_Cover + total_shrub_cover +
avg_veg_height + CWD_presence
occ.canopy <- ~ Tree_Density + Avg_Canopy_Cover
occ.move <- ~ Cogon_Patch_Size + Avg_Cogongrass_Cover + total_shrub_cover
occ.forage <- ~ Veg_shannon_index + Avg_Cogongrass_Cover
occ.cogon <- ~ Avg_Cogongrass_Cover
occ.cogon.quad <- ~ Avg_Cogongrass_Cover + I(Avg_Cogongrass_Cover^2)
priors <- list(
# Community-level effects
beta.comm.normal = list(mean = 0, var = 2.73),
alpha.comm.normal = list(mean = 0, var = 2.73),
# Species-level variance (hierarchical shrinkage)
tau.sq.beta.ig = list(0.1, 0.1),
tau.sq.alpha.ig = list(0.1, 0.1),
# Spatial variance
sigma.sq.ig = list(2, 1),
# Spatial decay
phi.unif = list(0.00001, 0.01)
)
ms_null_null <- spMsPGOcc(
occ.formula = occ.null,
det.formula = det.null,
data = data_list,
priors = priors,
cov.model = "exponential",
NNGP = FALSE,
n.batch = 1000,
batch.length = 10,
n.burn = 3000,
n.thin = 2,
n.chains = 4,
n.report = 100
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## phi is not specified in initial values.
## Setting initial value to random values from the prior distribution
## sigma.sq is not specified in initial values.
## Setting initial values to random values from the prior distribution
## w is not specified in initial values.
## Setting initial value to 0
## ----------------------------------------
## Model description
## ----------------------------------------
## Spatial Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per chain: 10000 (1000 batches of length 10)
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## Using the exponential spatial correlation model.
##
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## Adaptive Metropolis with target acceptance rate: 43.0
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.44773
## 2 phi 20.0 1.41907
## 3 phi 40.0 1.44773
## 4 phi 60.0 1.47698
## 5 phi 60.0 1.56831
## 6 phi 50.0 1.39097
## 7 phi 70.0 1.63232
## 8 phi 40.0 1.63232
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 2.07508
## 2 phi 10.0 1.69893
## 3 phi 50.0 1.56831
## 4 phi 60.0 1.63232
## 5 phi 50.0 1.66529
## 6 phi 50.0 1.73325
## 7 phi 30.0 1.91554
## 8 phi 50.0 1.66529
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 60.0 1.69893
## 3 phi 60.0 1.56831
## 4 phi 60.0 1.50682
## 5 phi 70.0 1.66529
## 6 phi 40.0 1.87761
## 7 phi 30.0 1.76827
## 8 phi 50.0 1.84043
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.73325
## 2 phi 50.0 1.66529
## 3 phi 50.0 1.69893
## 4 phi 40.0 1.44773
## 5 phi 40.0 1.91554
## 6 phi 50.0 1.95424
## 7 phi 20.0 1.80399
## 8 phi 30.0 2.03399
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 80.0 1.99372
## 3 phi 70.0 1.95424
## 4 phi 30.0 1.53726
## 5 phi 30.0 1.47698
## 6 phi 50.0 2.15977
## 7 phi 30.0 1.56831
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.91554
## 2 phi 60.0 1.80399
## 3 phi 30.0 1.91554
## 4 phi 60.0 1.56831
## 5 phi 70.0 1.56831
## 6 phi 80.0 1.91554
## 7 phi 30.0 1.59999
## 8 phi 60.0 1.80399
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 2.07508
## 2 phi 30.0 1.95424
## 3 phi 50.0 1.87761
## 4 phi 50.0 1.76827
## 5 phi 30.0 1.87761
## 6 phi 50.0 1.99372
## 7 phi 40.0 1.53726
## 8 phi 30.0 1.95424
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.91554
## 2 phi 60.0 1.66529
## 3 phi 20.0 1.91554
## 4 phi 40.0 1.56831
## 5 phi 50.0 1.76827
## 6 phi 50.0 1.84043
## 7 phi 10.0 1.76827
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.99372
## 2 phi 80.0 1.66529
## 3 phi 40.0 1.63232
## 4 phi 60.0 1.63232
## 5 phi 50.0 2.11700
## 6 phi 40.0 2.15977
## 7 phi 50.0 1.66529
## 8 phi 50.0 1.91554
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.80399
## 2 phi 20.0 1.73325
## 3 phi 40.0 1.59999
## 4 phi 20.0 1.59999
## 5 phi 60.0 2.11700
## 6 phi 30.0 1.95424
## 7 phi 60.0 1.66529
## 8 phi 50.0 1.73325
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.56831
## 2 phi 30.0 1.59999
## 3 phi 40.0 1.73325
## 4 phi 70.0 1.80399
## 5 phi 50.0 1.80399
## 6 phi 40.0 1.63232
## 7 phi 40.0 1.53726
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.66529
## 2 phi 40.0 1.66529
## 3 phi 70.0 1.91554
## 4 phi 60.0 1.53726
## 5 phi 50.0 1.76827
## 6 phi 20.0 1.50682
## 7 phi 50.0 1.30996
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.63232
## 2 phi 50.0 1.50682
## 3 phi 70.0 2.03399
## 4 phi 10.0 1.47698
## 5 phi 10.0 2.03399
## 6 phi 30.0 1.47698
## 7 phi 20.0 1.59999
## 8 phi 30.0 1.59999
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.80399
## 2 phi 50.0 1.73325
## 3 phi 30.0 1.73325
## 4 phi 30.0 1.80399
## 5 phi 80.0 1.80399
## 6 phi 40.0 1.76827
## 7 phi 10.0 1.66529
## 8 phi 50.0 1.73325
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.95424
## 2 phi 60.0 1.80399
## 3 phi 10.0 1.91554
## 4 phi 20.0 1.84043
## 5 phi 40.0 1.69893
## 6 phi 30.0 1.80399
## 7 phi 50.0 1.44773
## 8 phi 60.0 1.63232
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 40.0 1.84043
## 3 phi 30.0 1.95424
## 4 phi 70.0 1.66529
## 5 phi 60.0 1.80399
## 6 phi 50.0 1.76827
## 7 phi 0.0 1.30996
## 8 phi 50.0 1.63232
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.91554
## 2 phi 50.0 1.80399
## 3 phi 50.0 1.99372
## 4 phi 50.0 1.50682
## 5 phi 70.0 1.91554
## 6 phi 40.0 2.11700
## 7 phi 70.0 1.50682
## 8 phi 40.0 1.53726
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.80399
## 2 phi 40.0 1.84043
## 3 phi 20.0 2.03399
## 4 phi 40.0 1.44773
## 5 phi 50.0 1.80399
## 6 phi 40.0 1.91554
## 7 phi 40.0 1.59999
## 8 phi 50.0 1.84043
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.87761
## 2 phi 40.0 1.44773
## 3 phi 60.0 1.91554
## 4 phi 50.0 1.76827
## 5 phi 20.0 1.76827
## 6 phi 30.0 1.80399
## 7 phi 30.0 1.50682
## 8 phi 60.0 1.87761
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.63232
## 2 phi 30.0 1.99372
## 3 phi 20.0 1.95424
## 4 phi 40.0 1.80399
## 5 phi 50.0 1.84043
## 6 phi 50.0 1.76827
## 7 phi 50.0 1.69893
## 8 phi 50.0 1.95424
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.73325
## 2 phi 10.0 1.91554
## 3 phi 40.0 1.80399
## 4 phi 40.0 1.80399
## 5 phi 20.0 1.95424
## 6 phi 30.0 1.69893
## 7 phi 60.0 1.66529
## 8 phi 20.0 1.69893
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.66529
## 2 phi 50.0 1.91554
## 3 phi 50.0 2.24791
## 4 phi 50.0 1.66529
## 5 phi 20.0 2.03399
## 6 phi 60.0 1.73325
## 7 phi 40.0 1.73325
## 8 phi 70.0 1.73325
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.84043
## 2 phi 50.0 1.66529
## 3 phi 50.0 2.20340
## 4 phi 80.0 1.63232
## 5 phi 50.0 1.95424
## 6 phi 70.0 1.95424
## 7 phi 40.0 1.59999
## 8 phi 20.0 1.84043
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.73325
## 2 phi 0.0 1.69893
## 3 phi 60.0 1.99372
## 4 phi 10.0 1.50682
## 5 phi 80.0 1.69893
## 6 phi 50.0 1.91554
## 7 phi 10.0 1.63232
## 8 phi 40.0 1.80399
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 40.0 1.73325
## 3 phi 40.0 1.76827
## 4 phi 50.0 1.76827
## 5 phi 50.0 1.95424
## 6 phi 40.0 2.03399
## 7 phi 10.0 1.87761
## 8 phi 30.0 2.07508
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.91554
## 2 phi 50.0 1.73325
## 3 phi 20.0 1.91554
## 4 phi 50.0 2.03399
## 5 phi 40.0 1.80399
## 6 phi 80.0 1.91554
## 7 phi 0.0 1.41907
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.73325
## 2 phi 30.0 1.73325
## 3 phi 90.0 1.91554
## 4 phi 50.0 1.53726
## 5 phi 50.0 1.69893
## 6 phi 10.0 1.80399
## 7 phi 30.0 1.59999
## 8 phi 50.0 1.66529
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 2.03399
## 2 phi 30.0 1.59999
## 3 phi 60.0 1.99372
## 4 phi 50.0 1.47698
## 5 phi 80.0 1.66529
## 6 phi 60.0 1.91554
## 7 phi 50.0 1.69893
## 8 phi 20.0 1.63232
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.99372
## 2 phi 10.0 1.73325
## 3 phi 80.0 1.99372
## 4 phi 30.0 1.63232
## 5 phi 20.0 2.11700
## 6 phi 70.0 1.95424
## 7 phi 20.0 1.80399
## 8 phi 50.0 1.53726
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.99372
## 2 phi 10.0 1.91554
## 3 phi 10.0 1.99372
## 4 phi 30.0 1.73325
## 5 phi 40.0 2.03399
## 6 phi 0.0 1.87761
## 7 phi 40.0 1.50682
## 8 phi 70.0 1.47698
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.95424
## 2 phi 60.0 1.76827
## 3 phi 30.0 1.91554
## 4 phi 70.0 1.47698
## 5 phi 50.0 1.91554
## 6 phi 40.0 1.73325
## 7 phi 40.0 1.56831
## 8 phi 30.0 1.50682
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 40.0 1.50682
## 3 phi 50.0 1.84043
## 4 phi 30.0 1.41907
## 5 phi 60.0 2.15977
## 6 phi 20.0 1.95424
## 7 phi 60.0 1.69893
## 8 phi 60.0 1.66529
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.66529
## 2 phi 50.0 1.84043
## 3 phi 50.0 1.95424
## 4 phi 70.0 1.53726
## 5 phi 50.0 1.95424
## 6 phi 40.0 1.87761
## 7 phi 0.0 1.73325
## 8 phi 50.0 1.53726
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.80399
## 2 phi 40.0 2.03399
## 3 phi 40.0 1.95424
## 4 phi 50.0 1.76827
## 5 phi 0.0 1.95424
## 6 phi 50.0 1.84043
## 7 phi 60.0 1.66529
## 8 phi 70.0 1.66529
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.73325
## 2 phi 30.0 1.95424
## 3 phi 50.0 2.15977
## 4 phi 60.0 1.91554
## 5 phi 70.0 2.03399
## 6 phi 60.0 1.80399
## 7 phi 40.0 1.66529
## 8 phi 20.0 1.44773
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.99372
## 2 phi 40.0 1.99372
## 3 phi 40.0 2.29332
## 4 phi 60.0 1.53726
## 5 phi 50.0 1.87761
## 6 phi 20.0 1.84043
## 7 phi 60.0 1.50682
## 8 phi 50.0 1.56831
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
summary(ms_null_null)
##
## Call:
## spMsPGOcc(occ.formula = occ.null, det.formula = det.null, data = data_list,
## priors = priors, cov.model = "exponential", NNGP = FALSE,
## n.batch = 1000, batch.length = 10, n.report = 100, n.burn = 3000,
## n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 1.7282
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.4902 0.36 -1.1945 -0.4922 0.2391 1.0007 5748
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7622 0.7977 0.0912 0.5428 2.7664 1.0055 6357
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5536 0.2784 -3.0867 -2.5572 -1.9761 1.0003 9020
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.585 0.5038 0.1495 0.449 1.8465 1.0026 8499
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans 0.0598 0.4622 -0.8106 0.0459 1.0155 1.0007
## (Intercept)-Procyon_lotor 0.3659 0.4955 -0.5875 0.3591 1.3578 1.0065
## (Intercept)-Dasypus_novemcinctus -0.6618 0.3960 -1.4733 -0.6535 0.0739 1.0003
## (Intercept)-Lynx_rufus -0.2715 0.5689 -1.3032 -0.3110 0.9758 1.0071
## (Intercept)-Didelphis_virginiana -1.2326 0.4914 -2.2643 -1.2062 -0.3430 1.0038
## (Intercept)-Sylvilagus_floridanus -0.4700 0.4943 -1.4037 -0.4793 0.5604 1.0000
## (Intercept)-Meleagris_gallopavo -0.6273 0.5742 -1.7709 -0.6276 0.5337 1.0007
## (Intercept)-Sciurus_carolinensis -1.1906 0.4870 -2.2193 -1.1658 -0.3055 1.0031
## ESS
## (Intercept)-Canis_latrans 5469
## (Intercept)-Procyon_lotor 4487
## (Intercept)-Dasypus_novemcinctus 9528
## (Intercept)-Lynx_rufus 2811
## (Intercept)-Didelphis_virginiana 5429
## (Intercept)-Sylvilagus_floridanus 4595
## (Intercept)-Meleagris_gallopavo 3592
## (Intercept)-Sciurus_carolinensis 5601
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.5928 0.1645 -2.9269 -2.5875 -2.2860 1.0005
## (Intercept)-Procyon_lotor -2.2633 0.1272 -2.5180 -2.2619 -2.0182 1.0024
## (Intercept)-Dasypus_novemcinctus -1.6073 0.1359 -1.8790 -1.6064 -1.3467 1.0000
## (Intercept)-Lynx_rufus -3.3619 0.2940 -3.9557 -3.3550 -2.8180 1.0029
## (Intercept)-Didelphis_virginiana -2.3465 0.2459 -2.8618 -2.3363 -1.8922 1.0030
## (Intercept)-Sylvilagus_floridanus -3.0795 0.2767 -3.6522 -3.0637 -2.5794 1.0004
## (Intercept)-Meleagris_gallopavo -3.2358 0.3113 -3.8926 -3.2186 -2.6749 1.0025
## (Intercept)-Sciurus_carolinensis -2.4661 0.2577 -2.9947 -2.4573 -1.9876 1.0015
## ESS
## (Intercept)-Canis_latrans 5218
## (Intercept)-Procyon_lotor 7203
## (Intercept)-Dasypus_novemcinctus 11036
## (Intercept)-Lynx_rufus 1913
## (Intercept)-Didelphis_virginiana 6405
## (Intercept)-Sylvilagus_floridanus 2651
## (Intercept)-Meleagris_gallopavo 2282
## (Intercept)-Sciurus_carolinensis 5474
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 1.1211 1.8807 0.1829 0.6408 5.0596 1.0984 922
## sigma.sq-Procyon_lotor 1.2156 2.4269 0.1850 0.6616 5.4287 1.1295 858
## sigma.sq-Dasypus_novemcinctus 0.7731 0.9895 0.1668 0.5275 2.8210 1.0365 1194
## sigma.sq-Lynx_rufus 1.0158 1.2468 0.1894 0.6393 4.3519 1.0292 1142
## sigma.sq-Didelphis_virginiana 0.7853 0.8192 0.1729 0.5490 2.9324 1.0371 1609
## sigma.sq-Sylvilagus_floridanus 1.0487 1.3669 0.1896 0.6503 4.3486 1.0069 1019
## sigma.sq-Meleagris_gallopavo 2.4574 7.3097 0.2238 1.0203 12.4379 1.3310 681
## sigma.sq-Sciurus_carolinensis 0.8598 1.0037 0.1738 0.5760 3.2481 1.0213 1225
## phi-Canis_latrans 0.0052 0.0028 0.0003 0.0052 0.0097 1.0091 789
## phi-Procyon_lotor 0.0050 0.0028 0.0003 0.0050 0.0097 1.0083 845
## phi-Dasypus_novemcinctus 0.0053 0.0028 0.0005 0.0054 0.0098 1.0321 1050
## phi-Lynx_rufus 0.0045 0.0030 0.0001 0.0042 0.0097 1.0112 656
## phi-Didelphis_virginiana 0.0052 0.0028 0.0004 0.0053 0.0098 1.0122 892
## phi-Sylvilagus_floridanus 0.0053 0.0028 0.0003 0.0054 0.0097 1.0089 860
## phi-Meleagris_gallopavo 0.0046 0.0027 0.0004 0.0044 0.0096 1.0089 961
## phi-Sciurus_carolinensis 0.0049 0.0028 0.0003 0.0048 0.0097 1.0360 797
# Includes all covariates of detection and occupancy
ms_full_full <- spMsPGOcc(
occ.formula = occ.full,
det.formula = det.full,
data = data_list,
priors = priors,
cov.model = "exponential",
NNGP = FALSE,
n.batch = 1000,
batch.length = 10,
n.burn = 3000,
n.thin = 2,
n.chains = 4,
n.report = 100
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## phi is not specified in initial values.
## Setting initial value to random values from the prior distribution
## sigma.sq is not specified in initial values.
## Setting initial values to random values from the prior distribution
## w is not specified in initial values.
## Setting initial value to 0
## ----------------------------------------
## Model description
## ----------------------------------------
## Spatial Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per chain: 10000 (1000 batches of length 10)
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## Using the exponential spatial correlation model.
##
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## Adaptive Metropolis with target acceptance rate: 43.0
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.39097
## 2 phi 90.0 1.47698
## 3 phi 40.0 1.63232
## 4 phi 60.0 1.30996
## 5 phi 10.0 1.53726
## 6 phi 50.0 1.50682
## 7 phi 30.0 1.47698
## 8 phi 40.0 1.63232
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.59999
## 2 phi 50.0 1.76827
## 3 phi 40.0 1.73325
## 4 phi 80.0 1.28403
## 5 phi 50.0 1.76827
## 6 phi 50.0 1.69893
## 7 phi 20.0 1.87761
## 8 phi 50.0 1.76827
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.63232
## 2 phi 60.0 1.91554
## 3 phi 90.0 1.95424
## 4 phi 40.0 1.44773
## 5 phi 50.0 1.95424
## 6 phi 30.0 1.87761
## 7 phi 30.0 2.07508
## 8 phi 40.0 2.03399
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 10.0 1.73325
## 3 phi 40.0 1.59999
## 4 phi 70.0 1.63232
## 5 phi 30.0 1.76827
## 6 phi 40.0 2.03399
## 7 phi 50.0 1.87761
## 8 phi 10.0 1.69893
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.63232
## 2 phi 30.0 1.50682
## 3 phi 50.0 2.03399
## 4 phi 50.0 2.07508
## 5 phi 30.0 2.11700
## 6 phi 30.0 1.99372
## 7 phi 80.0 1.66529
## 8 phi 60.0 1.63232
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 30.0 1.73325
## 3 phi 50.0 2.03399
## 4 phi 50.0 1.69893
## 5 phi 70.0 1.99372
## 6 phi 0.0 1.76827
## 7 phi 40.0 1.73325
## 8 phi 70.0 2.11700
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.95424
## 2 phi 70.0 1.76827
## 3 phi 20.0 1.95424
## 4 phi 60.0 1.33643
## 5 phi 20.0 1.87761
## 6 phi 40.0 1.99372
## 7 phi 30.0 1.95424
## 8 phi 40.0 2.07508
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.76827
## 2 phi 50.0 1.80399
## 3 phi 70.0 1.87761
## 4 phi 10.0 1.76827
## 5 phi 100.0 1.95424
## 6 phi 70.0 1.91554
## 7 phi 10.0 1.80399
## 8 phi 50.0 1.80399
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 60.0 1.87761
## 3 phi 40.0 1.50682
## 4 phi 60.0 1.50682
## 5 phi 70.0 1.76827
## 6 phi 50.0 1.99372
## 7 phi 10.0 1.50682
## 8 phi 60.0 1.80399
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.87761
## 2 phi 30.0 1.76827
## 3 phi 60.0 1.87761
## 4 phi 70.0 1.80399
## 5 phi 70.0 1.59999
## 6 phi 20.0 1.69893
## 7 phi 40.0 1.56831
## 8 phi 70.0 1.76827
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 2.03399
## 2 phi 20.0 1.80399
## 3 phi 10.0 1.69893
## 4 phi 40.0 1.73325
## 5 phi 20.0 1.87761
## 6 phi 60.0 1.69893
## 7 phi 30.0 1.56831
## 8 phi 20.0 1.76827
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.73325
## 2 phi 90.0 1.69893
## 3 phi 30.0 1.53726
## 4 phi 50.0 2.03399
## 5 phi 40.0 1.59999
## 6 phi 40.0 1.84043
## 7 phi 50.0 1.41907
## 8 phi 30.0 1.69893
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.63232
## 2 phi 50.0 1.76827
## 3 phi 50.0 1.76827
## 4 phi 60.0 2.03399
## 5 phi 50.0 1.87761
## 6 phi 40.0 1.84043
## 7 phi 70.0 1.69893
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.99372
## 2 phi 70.0 1.87761
## 3 phi 40.0 1.84043
## 4 phi 50.0 1.80399
## 5 phi 40.0 1.69893
## 6 phi 50.0 1.99372
## 7 phi 70.0 1.76827
## 8 phi 80.0 1.56831
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 2.07508
## 2 phi 60.0 1.76827
## 3 phi 30.0 1.99372
## 4 phi 30.0 1.76827
## 5 phi 40.0 1.69893
## 6 phi 50.0 2.15977
## 7 phi 40.0 1.95424
## 8 phi 20.0 1.73325
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.69893
## 2 phi 70.0 1.84043
## 3 phi 60.0 1.87761
## 4 phi 30.0 1.76827
## 5 phi 70.0 1.76827
## 6 phi 30.0 1.69893
## 7 phi 0.0 1.53726
## 8 phi 50.0 1.99372
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.76827
## 2 phi 50.0 1.76827
## 3 phi 30.0 2.03399
## 4 phi 50.0 1.99372
## 5 phi 80.0 1.80399
## 6 phi 40.0 1.73325
## 7 phi 30.0 1.47698
## 8 phi 40.0 1.80399
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.66529
## 2 phi 50.0 1.87761
## 3 phi 40.0 1.99372
## 4 phi 50.0 2.03399
## 5 phi 60.0 1.84043
## 6 phi 60.0 1.87761
## 7 phi 60.0 1.87761
## 8 phi 70.0 2.03399
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.50682
## 2 phi 60.0 1.53726
## 3 phi 60.0 1.95424
## 4 phi 10.0 1.63232
## 5 phi 50.0 1.80399
## 6 phi 80.0 1.76827
## 7 phi 80.0 1.73325
## 8 phi 30.0 1.66529
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.47698
## 2 phi 20.0 1.59999
## 3 phi 70.0 1.76827
## 4 phi 30.0 1.80399
## 5 phi 30.0 1.69893
## 6 phi 40.0 1.91554
## 7 phi 80.0 1.63232
## 8 phi 30.0 1.50682
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.73325
## 2 phi 70.0 1.59999
## 3 phi 40.0 1.95424
## 4 phi 40.0 1.50682
## 5 phi 30.0 1.87761
## 6 phi 10.0 1.91554
## 7 phi 30.0 1.63232
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 90.0 1.59999
## 2 phi 70.0 1.80399
## 3 phi 10.0 1.50682
## 4 phi 80.0 1.76827
## 5 phi 80.0 1.80399
## 6 phi 70.0 1.76827
## 7 phi 70.0 1.87761
## 8 phi 40.0 1.80399
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.87761
## 2 phi 30.0 1.59999
## 3 phi 60.0 1.84043
## 4 phi 0.0 1.59999
## 5 phi 60.0 1.84043
## 6 phi 40.0 1.84043
## 7 phi 50.0 2.20340
## 8 phi 70.0 2.03399
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 50.0 1.73325
## 3 phi 50.0 1.66529
## 4 phi 20.0 1.50682
## 5 phi 20.0 1.91554
## 6 phi 10.0 1.87761
## 7 phi 30.0 1.63232
## 8 phi 50.0 1.76827
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.76827
## 2 phi 10.0 2.03399
## 3 phi 70.0 2.11700
## 4 phi 20.0 1.63232
## 5 phi 80.0 1.87761
## 6 phi 20.0 1.73325
## 7 phi 50.0 1.53726
## 8 phi 40.0 1.87761
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.76827
## 2 phi 70.0 1.87761
## 3 phi 20.0 1.87761
## 4 phi 50.0 1.59999
## 5 phi 30.0 1.99372
## 6 phi 50.0 1.95424
## 7 phi 30.0 1.47698
## 8 phi 40.0 1.87761
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.41907
## 2 phi 40.0 1.84043
## 3 phi 50.0 1.91554
## 4 phi 20.0 1.73325
## 5 phi 60.0 2.03399
## 6 phi 40.0 1.80399
## 7 phi 70.0 1.53726
## 8 phi 20.0 1.76827
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.56831
## 2 phi 0.0 1.44773
## 3 phi 70.0 1.95424
## 4 phi 30.0 1.63232
## 5 phi 20.0 1.84043
## 6 phi 50.0 1.91554
## 7 phi 30.0 1.63232
## 8 phi 70.0 1.41907
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.87761
## 2 phi 10.0 1.33643
## 3 phi 20.0 2.03399
## 4 phi 40.0 1.69893
## 5 phi 40.0 1.66529
## 6 phi 20.0 1.95424
## 7 phi 60.0 1.73325
## 8 phi 40.0 1.66529
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.99372
## 2 phi 50.0 1.50682
## 3 phi 60.0 1.91554
## 4 phi 30.0 1.73325
## 5 phi 50.0 1.76827
## 6 phi 70.0 1.69893
## 7 phi 70.0 1.91554
## 8 phi 60.0 1.63232
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.84043
## 2 phi 20.0 1.59999
## 3 phi 60.0 1.44773
## 4 phi 40.0 1.76827
## 5 phi 60.0 2.11700
## 6 phi 50.0 1.84043
## 7 phi 40.0 1.63232
## 8 phi 30.0 1.76827
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.73325
## 2 phi 30.0 1.84043
## 3 phi 60.0 1.80399
## 4 phi 40.0 1.80399
## 5 phi 10.0 1.80399
## 6 phi 40.0 1.95424
## 7 phi 20.0 1.66529
## 8 phi 40.0 1.69893
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.84043
## 2 phi 40.0 1.73325
## 3 phi 40.0 1.76827
## 4 phi 40.0 1.76827
## 5 phi 20.0 1.63232
## 6 phi 60.0 1.91554
## 7 phi 60.0 1.76827
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.87761
## 2 phi 40.0 1.80399
## 3 phi 50.0 1.69893
## 4 phi 50.0 1.87761
## 5 phi 80.0 1.91554
## 6 phi 30.0 1.73325
## 7 phi 20.0 1.84043
## 8 phi 50.0 1.84043
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.73325
## 2 phi 50.0 1.95424
## 3 phi 20.0 1.73325
## 4 phi 40.0 1.95424
## 5 phi 30.0 2.20340
## 6 phi 70.0 1.69893
## 7 phi 60.0 1.80399
## 8 phi 40.0 1.87761
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.91554
## 2 phi 60.0 1.99372
## 3 phi 40.0 1.69893
## 4 phi 60.0 1.76827
## 5 phi 30.0 1.76827
## 6 phi 40.0 1.69893
## 7 phi 10.0 1.84043
## 8 phi 30.0 1.69893
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
summary(ms_full_full)
##
## Call:
## spMsPGOcc(occ.formula = occ.full, det.formula = det.full, data = data_list,
## priors = priors, cov.model = "exponential", NNGP = FALSE,
## n.batch = 1000, batch.length = 10, n.report = 100, n.burn = 3000,
## n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 2.3942
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.4234 0.7409 -1.8513 -0.4439 1.1491 1.0075 2692
## Cogon_Patch_Size -0.1328 0.6385 -1.4136 -0.1310 1.1332 1.0135 1762
## Veg_shannon_index 0.8314 0.4626 -0.0864 0.8317 1.7489 1.0049 2189
## total_shrub_cover -0.9625 0.6220 -2.2938 -0.9269 0.1981 1.0101 1327
## Avg_Cogongrass_Cover 1.7701 0.7387 0.3151 1.7750 3.2086 1.0115 940
## Tree_Density -1.9033 0.7565 -3.4254 -1.9042 -0.4115 1.0015 1857
## Avg_Canopy_Cover 1.8420 0.6886 0.4706 1.8271 3.2469 1.0008 2877
## avg_veg_height -0.4369 0.5499 -1.5274 -0.4369 0.6501 1.0076 1267
## CWD_presence -0.1131 0.4137 -0.8997 -0.1172 0.7231 1.0050 2377
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.1522 4.8046 0.4249 2.7718 16.1646 1.0090 1221
## Cogon_Patch_Size 1.7217 2.9206 0.0646 0.8155 9.0094 1.0233 1022
## Veg_shannon_index 0.7486 1.3223 0.0495 0.3812 3.6304 1.0315 2934
## total_shrub_cover 1.7393 3.1911 0.0735 0.8754 8.2663 1.0387 1629
## Avg_Cogongrass_Cover 1.1401 2.0140 0.0510 0.4900 6.2799 1.0144 1681
## Tree_Density 2.7007 5.2525 0.0668 1.0808 14.9050 1.0203 1351
## Avg_Canopy_Cover 3.1623 4.7844 0.1267 1.7618 15.0311 1.0107 1393
## avg_veg_height 0.6249 1.1344 0.0431 0.3058 3.1254 1.0209 2703
## CWD_presence 0.5170 0.7901 0.0428 0.2740 2.4756 1.0104 2996
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.7749 0.3177 -3.3913 -2.7785 -2.1317 1.0008 7137
## shrub_cover 0.3783 0.3200 -0.2686 0.3798 1.0234 1.0030 3240
## veg_height 0.0931 0.2086 -0.3270 0.0963 0.5054 1.0019 4213
## week -0.1002 0.1404 -0.3933 -0.0974 0.1686 1.0013 6352
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7373 0.6646 0.1703 0.5605 2.3377 1.0035 4700
## shrub_cover 0.6948 0.6478 0.1246 0.5180 2.2862 1.0013 3746
## veg_height 0.2748 0.2557 0.0598 0.2043 0.8980 1.0034 6801
## week 0.1086 0.1057 0.0248 0.0800 0.3620 1.0052 7604
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.7598 0.8518 -0.7356 0.6963
## (Intercept)-Procyon_lotor 1.2065 0.8217 -0.2431 1.1496
## (Intercept)-Dasypus_novemcinctus -1.0729 0.7520 -2.6411 -1.0556
## (Intercept)-Lynx_rufus 1.2000 1.6703 -1.3030 0.9409
## (Intercept)-Didelphis_virginiana -2.3232 1.0725 -4.5463 -2.2774
## (Intercept)-Sylvilagus_floridanus -0.7968 1.0360 -2.7893 -0.8201
## (Intercept)-Meleagris_gallopavo -0.7819 1.4024 -3.3533 -0.8556
## (Intercept)-Sciurus_carolinensis -2.1465 1.0823 -4.3292 -2.1268
## Cogon_Patch_Size-Canis_latrans 0.7357 1.1042 -0.8962 0.5532
## Cogon_Patch_Size-Procyon_lotor -0.3881 0.7026 -1.7608 -0.3968
## Cogon_Patch_Size-Dasypus_novemcinctus -0.1435 0.7759 -1.5966 -0.1811
## Cogon_Patch_Size-Lynx_rufus -0.2098 1.1841 -2.4791 -0.2179
## Cogon_Patch_Size-Didelphis_virginiana 0.7101 0.8440 -0.7001 0.6217
## Cogon_Patch_Size-Sylvilagus_floridanus -0.9919 1.2856 -4.0584 -0.8080
## Cogon_Patch_Size-Meleagris_gallopavo -0.0444 1.1012 -2.0009 -0.1117
## Cogon_Patch_Size-Sciurus_carolinensis -0.8372 1.1212 -3.4979 -0.7078
## Veg_shannon_index-Canis_latrans 1.1377 0.6330 0.0166 1.0894
## Veg_shannon_index-Procyon_lotor 1.0526 0.5833 -0.0166 1.0211
## Veg_shannon_index-Dasypus_novemcinctus 0.5489 0.5551 -0.6027 0.5729
## Veg_shannon_index-Lynx_rufus 0.6483 0.8399 -1.2214 0.6964
## Veg_shannon_index-Didelphis_virginiana 1.0893 0.6792 -0.1215 1.0434
## Veg_shannon_index-Sylvilagus_floridanus 0.9786 0.6692 -0.2604 0.9494
## Veg_shannon_index-Meleagris_gallopavo 1.2566 0.8096 -0.0984 1.1683
## Veg_shannon_index-Sciurus_carolinensis 0.1772 0.7751 -1.6212 0.2733
## total_shrub_cover-Canis_latrans 0.1244 0.8635 -1.3619 0.0455
## total_shrub_cover-Procyon_lotor -1.3613 0.7460 -3.0492 -1.2854
## total_shrub_cover-Dasypus_novemcinctus -0.5685 0.7739 -2.2453 -0.5373
## total_shrub_cover-Lynx_rufus -1.3947 1.2979 -4.5088 -1.2406
## total_shrub_cover-Didelphis_virginiana -1.1537 0.9843 -3.5296 -1.0302
## total_shrub_cover-Sylvilagus_floridanus -1.0454 1.0790 -3.5747 -0.9477
## total_shrub_cover-Meleagris_gallopavo -2.0071 1.2888 -5.0439 -1.8102
## total_shrub_cover-Sciurus_carolinensis -0.9827 1.0209 -3.3630 -0.8874
## Avg_Cogongrass_Cover-Canis_latrans 2.1951 0.9686 0.5094 2.1285
## Avg_Cogongrass_Cover-Procyon_lotor 1.8714 0.8831 0.1744 1.8585
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 2.2789 0.9652 0.5685 2.2178
## Avg_Cogongrass_Cover-Lynx_rufus 2.1544 0.9704 0.4189 2.1070
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.8556 0.9055 0.1177 1.8435
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.1860 1.0450 -1.0412 1.2563
## Avg_Cogongrass_Cover-Meleagris_gallopavo 1.2758 1.3025 -1.7653 1.4234
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.0167 0.9353 0.2725 1.9915
## Tree_Density-Canis_latrans -2.5594 1.2134 -5.4654 -2.3768
## Tree_Density-Procyon_lotor -1.5618 0.8026 -3.0904 -1.5810
## Tree_Density-Dasypus_novemcinctus -3.2438 1.5908 -7.2861 -2.8767
## Tree_Density-Lynx_rufus -0.7211 1.3945 -2.8196 -0.9302
## Tree_Density-Didelphis_virginiana -2.0290 1.1686 -4.5744 -1.9684
## Tree_Density-Sylvilagus_floridanus -2.3811 1.3467 -5.6023 -2.2057
## Tree_Density-Meleagris_gallopavo -2.3157 1.3055 -5.3849 -2.1830
## Tree_Density-Sciurus_carolinensis -2.1608 1.2963 -5.1312 -2.0636
## Avg_Canopy_Cover-Canis_latrans 0.3585 0.7545 -1.0813 0.3439
## Avg_Canopy_Cover-Procyon_lotor 1.6490 0.8117 0.1720 1.6000
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.2066 0.8005 0.9001 2.1161
## Avg_Canopy_Cover-Lynx_rufus 1.0713 1.3629 -1.5652 1.0791
## Avg_Canopy_Cover-Didelphis_virginiana 2.9144 1.2074 1.1929 2.7099
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.5511 1.6559 1.2425 3.2483
## Avg_Canopy_Cover-Meleagris_gallopavo 2.2792 1.2088 0.4188 2.1069
## Avg_Canopy_Cover-Sciurus_carolinensis 2.7249 1.1683 1.0384 2.5036
## avg_veg_height-Canis_latrans -0.4716 0.6751 -1.7874 -0.4861
## avg_veg_height-Procyon_lotor -0.4417 0.6391 -1.7231 -0.4432
## avg_veg_height-Dasypus_novemcinctus -0.1600 0.6522 -1.3829 -0.1914
## avg_veg_height-Lynx_rufus -0.6821 0.8872 -2.6144 -0.6348
## avg_veg_height-Didelphis_virginiana -0.6331 0.7338 -2.1995 -0.5966
## avg_veg_height-Sylvilagus_floridanus -0.6661 0.7583 -2.2857 -0.6326
## avg_veg_height-Meleagris_gallopavo -0.5282 0.9507 -2.4854 -0.5081
## avg_veg_height-Sciurus_carolinensis -0.0353 0.7627 -1.3438 -0.1002
## CWD_presence-Canis_latrans 0.3564 0.6687 -0.7223 0.2789
## CWD_presence-Procyon_lotor -0.3711 0.5348 -1.5051 -0.3518
## CWD_presence-Dasypus_novemcinctus -0.1671 0.5032 -1.1730 -0.1579
## CWD_presence-Lynx_rufus 0.0629 0.6532 -1.1202 0.0245
## CWD_presence-Didelphis_virginiana -0.1652 0.6219 -1.4627 -0.1553
## CWD_presence-Sylvilagus_floridanus -0.4275 0.6228 -1.8000 -0.3915
## CWD_presence-Meleagris_gallopavo -0.1816 0.6713 -1.4995 -0.1867
## CWD_presence-Sciurus_carolinensis -0.0056 0.5757 -1.1140 -0.0184
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 2.6326 1.0041 2216
## (Intercept)-Procyon_lotor 3.0003 1.0077 2196
## (Intercept)-Dasypus_novemcinctus 0.3477 1.0070 2694
## (Intercept)-Lynx_rufus 5.1773 1.0342 501
## (Intercept)-Didelphis_virginiana -0.3263 1.0084 1317
## (Intercept)-Sylvilagus_floridanus 1.3831 1.0041 1774
## (Intercept)-Meleagris_gallopavo 2.3596 1.0164 797
## (Intercept)-Sciurus_carolinensis -0.0812 1.0042 1185
## Cogon_Patch_Size-Canis_latrans 3.5050 1.0118 2110
## Cogon_Patch_Size-Procyon_lotor 1.0078 1.0110 2316
## Cogon_Patch_Size-Dasypus_novemcinctus 1.4764 1.0144 2007
## Cogon_Patch_Size-Lynx_rufus 2.2736 1.0136 1414
## Cogon_Patch_Size-Didelphis_virginiana 2.6258 1.0056 2797
## Cogon_Patch_Size-Sylvilagus_floridanus 1.0269 1.0011 1258
## Cogon_Patch_Size-Meleagris_gallopavo 2.4281 1.0041 1690
## Cogon_Patch_Size-Sciurus_carolinensis 0.9782 1.0035 1317
## Veg_shannon_index-Canis_latrans 2.5298 1.0098 2722
## Veg_shannon_index-Procyon_lotor 2.3035 1.0051 3065
## Veg_shannon_index-Dasypus_novemcinctus 1.5902 1.0079 3680
## Veg_shannon_index-Lynx_rufus 2.2521 1.0073 2144
## Veg_shannon_index-Didelphis_virginiana 2.6112 1.0047 3173
## Veg_shannon_index-Sylvilagus_floridanus 2.3844 1.0028 3685
## Veg_shannon_index-Meleagris_gallopavo 3.0970 1.0128 2095
## Veg_shannon_index-Sciurus_carolinensis 1.4273 1.0126 2437
## total_shrub_cover-Canis_latrans 2.1187 1.0054 1631
## total_shrub_cover-Procyon_lotor -0.0956 1.0055 1688
## total_shrub_cover-Dasypus_novemcinctus 0.8725 1.0115 2381
## total_shrub_cover-Lynx_rufus 0.8443 1.0134 771
## total_shrub_cover-Didelphis_virginiana 0.4155 1.0010 1659
## total_shrub_cover-Sylvilagus_floridanus 0.7937 1.0086 1287
## total_shrub_cover-Meleagris_gallopavo -0.0629 1.0163 919
## total_shrub_cover-Sciurus_carolinensis 0.7522 1.0082 1001
## Avg_Cogongrass_Cover-Canis_latrans 4.3196 1.0222 1177
## Avg_Cogongrass_Cover-Procyon_lotor 3.6404 1.0086 1443
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 4.3693 1.0147 1401
## Avg_Cogongrass_Cover-Lynx_rufus 4.2387 1.0129 1301
## Avg_Cogongrass_Cover-Didelphis_virginiana 3.6759 1.0116 1508
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 3.0605 1.0029 1245
## Avg_Cogongrass_Cover-Meleagris_gallopavo 3.4067 1.0027 975
## Avg_Cogongrass_Cover-Sciurus_carolinensis 3.9554 1.0110 1526
## Tree_Density-Canis_latrans -0.7303 1.0110 1631
## Tree_Density-Procyon_lotor 0.0756 1.0016 2493
## Tree_Density-Dasypus_novemcinctus -1.0952 1.0077 1079
## Tree_Density-Lynx_rufus 2.7483 1.0283 900
## Tree_Density-Didelphis_virginiana 0.2397 1.0080 1595
## Tree_Density-Sylvilagus_floridanus -0.0951 1.0198 1499
## Tree_Density-Meleagris_gallopavo 0.0407 1.0036 1879
## Tree_Density-Sciurus_carolinensis 0.2421 1.0089 1697
## Avg_Canopy_Cover-Canis_latrans 1.9214 1.0004 1984
## Avg_Canopy_Cover-Procyon_lotor 3.3636 1.0030 3311
## Avg_Canopy_Cover-Dasypus_novemcinctus 4.0471 1.0042 2394
## Avg_Canopy_Cover-Lynx_rufus 3.7728 1.0106 830
## Avg_Canopy_Cover-Didelphis_virginiana 5.9055 1.0017 1247
## Avg_Canopy_Cover-Sylvilagus_floridanus 7.7053 1.0093 1212
## Avg_Canopy_Cover-Meleagris_gallopavo 5.1754 1.0023 1563
## Avg_Canopy_Cover-Sciurus_carolinensis 5.6623 1.0075 1280
## avg_veg_height-Canis_latrans 0.8806 1.0023 1997
## avg_veg_height-Procyon_lotor 0.8132 1.0048 2132
## avg_veg_height-Dasypus_novemcinctus 1.2189 1.0063 2225
## avg_veg_height-Lynx_rufus 0.9366 1.0069 1459
## avg_veg_height-Didelphis_virginiana 0.7257 1.0048 2011
## avg_veg_height-Sylvilagus_floridanus 0.7557 1.0045 1882
## avg_veg_height-Meleagris_gallopavo 1.2586 1.0066 1449
## avg_veg_height-Sciurus_carolinensis 1.6729 1.0028 2139
## CWD_presence-Canis_latrans 1.9169 1.0017 2833
## CWD_presence-Procyon_lotor 0.6361 1.0057 4150
## CWD_presence-Dasypus_novemcinctus 0.8164 1.0009 4562
## CWD_presence-Lynx_rufus 1.4949 1.0012 2870
## CWD_presence-Didelphis_virginiana 1.0467 1.0016 3896
## CWD_presence-Sylvilagus_floridanus 0.7121 1.0047 3436
## CWD_presence-Meleagris_gallopavo 1.2145 1.0022 3076
## CWD_presence-Sciurus_carolinensis 1.1993 1.0044 3862
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.7459 0.1816 -3.1152 -2.7420 -2.4036 1.0017
## (Intercept)-Procyon_lotor -2.3117 0.1415 -2.6000 -2.3068 -2.0461 1.0015
## (Intercept)-Dasypus_novemcinctus -1.8182 0.1695 -2.1651 -1.8136 -1.5003 1.0023
## (Intercept)-Lynx_rufus -3.7052 0.3582 -4.4016 -3.7016 -3.0184 1.0205
## (Intercept)-Didelphis_virginiana -2.6747 0.2883 -3.2553 -2.6676 -2.1327 1.0009
## (Intercept)-Sylvilagus_floridanus -3.1766 0.2558 -3.7016 -3.1657 -2.6928 1.0050
## (Intercept)-Meleagris_gallopavo -3.7119 0.4856 -4.7100 -3.7048 -2.7847 1.0113
## (Intercept)-Sciurus_carolinensis -2.7771 0.3324 -3.4646 -2.7671 -2.1619 1.0044
## shrub_cover-Canis_latrans -0.3246 0.2178 -0.7485 -0.3239 0.1019 1.0008
## shrub_cover-Procyon_lotor 0.2876 0.1602 -0.0419 0.2921 0.5884 1.0009
## shrub_cover-Dasypus_novemcinctus 0.9866 0.3147 0.3785 0.9825 1.6086 1.0032
## shrub_cover-Lynx_rufus -0.0399 0.3850 -0.8037 -0.0374 0.7035 1.0123
## shrub_cover-Didelphis_virginiana 1.0722 0.3776 0.3808 1.0596 1.8610 1.0007
## shrub_cover-Sylvilagus_floridanus 0.5493 0.3928 -0.2374 0.5542 1.3097 1.0029
## shrub_cover-Meleagris_gallopavo -0.4249 0.4520 -1.3495 -0.4163 0.4404 1.0134
## shrub_cover-Sciurus_carolinensis 1.0194 0.4281 0.2016 1.0149 1.8632 1.0063
## veg_height-Canis_latrans -0.5933 0.1872 -0.9694 -0.5873 -0.2394 1.0003
## veg_height-Procyon_lotor 0.3623 0.1211 0.1232 0.3615 0.6021 1.0006
## veg_height-Dasypus_novemcinctus 0.2737 0.1381 0.0101 0.2725 0.5502 1.0009
## veg_height-Lynx_rufus 0.1070 0.2445 -0.3924 0.1127 0.5772 1.0048
## veg_height-Didelphis_virginiana 0.5009 0.2462 0.0347 0.4927 0.9999 1.0002
## veg_height-Sylvilagus_floridanus 0.1690 0.2456 -0.3207 0.1673 0.6510 1.0021
## veg_height-Meleagris_gallopavo -0.2014 0.4083 -1.0123 -0.1984 0.6193 1.0032
## veg_height-Sciurus_carolinensis 0.1305 0.2235 -0.3012 0.1267 0.5849 1.0053
## week-Canis_latrans 0.0585 0.1346 -0.2151 0.0605 0.3109 1.0012
## week-Procyon_lotor -0.0585 0.1192 -0.3039 -0.0553 0.1631 1.0006
## week-Dasypus_novemcinctus -0.1770 0.1387 -0.4654 -0.1723 0.0782 1.0018
## week-Lynx_rufus -0.0533 0.1917 -0.4588 -0.0463 0.3078 1.0004
## week-Didelphis_virginiana -0.2328 0.2168 -0.6955 -0.2204 0.1577 1.0022
## week-Sylvilagus_floridanus -0.1723 0.2084 -0.6223 -0.1597 0.2043 1.0024
## week-Meleagris_gallopavo -0.2858 0.2416 -0.8217 -0.2647 0.1315 1.0028
## week-Sciurus_carolinensis 0.1219 0.1831 -0.2403 0.1224 0.4765 1.0000
## ESS
## (Intercept)-Canis_latrans 3347
## (Intercept)-Procyon_lotor 5786
## (Intercept)-Dasypus_novemcinctus 4081
## (Intercept)-Lynx_rufus 779
## (Intercept)-Didelphis_virginiana 1660
## (Intercept)-Sylvilagus_floridanus 3070
## (Intercept)-Meleagris_gallopavo 920
## (Intercept)-Sciurus_carolinensis 1362
## shrub_cover-Canis_latrans 2870
## shrub_cover-Procyon_lotor 6627
## shrub_cover-Dasypus_novemcinctus 2491
## shrub_cover-Lynx_rufus 1002
## shrub_cover-Didelphis_virginiana 2075
## shrub_cover-Sylvilagus_floridanus 1979
## shrub_cover-Meleagris_gallopavo 1169
## shrub_cover-Sciurus_carolinensis 1480
## veg_height-Canis_latrans 3338
## veg_height-Procyon_lotor 6887
## veg_height-Dasypus_novemcinctus 7848
## veg_height-Lynx_rufus 2522
## veg_height-Didelphis_virginiana 4077
## veg_height-Sylvilagus_floridanus 3588
## veg_height-Meleagris_gallopavo 1355
## veg_height-Sciurus_carolinensis 3668
## week-Canis_latrans 7197
## week-Procyon_lotor 7994
## week-Dasypus_novemcinctus 9025
## week-Lynx_rufus 4171
## week-Didelphis_virginiana 5931
## week-Sylvilagus_floridanus 4403
## week-Meleagris_gallopavo 3244
## week-Sciurus_carolinensis 7316
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 2.0782 5.4347 0.1958 0.7834 12.9737 1.0579 530
## sigma.sq-Procyon_lotor 2.1500 4.6309 0.2010 0.8381 13.6317 1.0154 464
## sigma.sq-Dasypus_novemcinctus 1.0194 1.4201 0.1794 0.6121 4.3741 1.0442 1119
## sigma.sq-Lynx_rufus 1.6451 3.7320 0.1855 0.7156 8.9338 1.0478 672
## sigma.sq-Didelphis_virginiana 0.8175 0.8954 0.1745 0.5641 3.0211 1.0170 1447
## sigma.sq-Sylvilagus_floridanus 0.9036 1.0794 0.1777 0.5813 3.6152 1.0175 1157
## sigma.sq-Meleagris_gallopavo 1.1555 2.6514 0.1815 0.6459 4.6862 1.0930 706
## sigma.sq-Sciurus_carolinensis 1.0647 1.9452 0.1843 0.6203 4.4959 1.1373 943
## phi-Canis_latrans 0.0050 0.0029 0.0001 0.0049 0.0097 1.0071 648
## phi-Procyon_lotor 0.0050 0.0028 0.0004 0.0049 0.0097 1.0118 886
## phi-Dasypus_novemcinctus 0.0050 0.0028 0.0003 0.0050 0.0097 1.0100 862
## phi-Lynx_rufus 0.0048 0.0029 0.0002 0.0048 0.0098 1.0483 715
## phi-Didelphis_virginiana 0.0052 0.0029 0.0004 0.0053 0.0098 1.0037 981
## phi-Sylvilagus_floridanus 0.0051 0.0028 0.0005 0.0052 0.0098 1.0098 873
## phi-Meleagris_gallopavo 0.0046 0.0029 0.0002 0.0044 0.0097 1.0004 892
## phi-Sciurus_carolinensis 0.0050 0.0029 0.0002 0.0052 0.0097 1.0079 645
#Includes cover for detection and only foraging for occupancy
ms_cover_forage <- spMsPGOcc(
occ.formula = occ.forage,
det.formula = det.cover,
data = data_list,
priors = priors,
cov.model = "exponential",
NNGP = FALSE,
n.batch = 1000,
batch.length = 10,
n.burn = 3000,
n.thin = 2,
n.chains = 4,
n.report = 100
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## phi is not specified in initial values.
## Setting initial value to random values from the prior distribution
## sigma.sq is not specified in initial values.
## Setting initial values to random values from the prior distribution
## w is not specified in initial values.
## Setting initial value to 0
## ----------------------------------------
## Model description
## ----------------------------------------
## Spatial Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per chain: 10000 (1000 batches of length 10)
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## Using the exponential spatial correlation model.
##
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## Adaptive Metropolis with target acceptance rate: 43.0
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.44773
## 2 phi 50.0 1.53726
## 3 phi 50.0 1.73325
## 4 phi 70.0 1.56831
## 5 phi 20.0 1.33643
## 6 phi 50.0 1.56831
## 7 phi 50.0 1.50682
## 8 phi 70.0 1.80399
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.47698
## 2 phi 30.0 1.73325
## 3 phi 80.0 1.63232
## 4 phi 70.0 1.63232
## 5 phi 60.0 1.53726
## 6 phi 90.0 1.73325
## 7 phi 60.0 1.69893
## 8 phi 60.0 1.91554
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.53726
## 2 phi 50.0 1.84043
## 3 phi 10.0 2.07508
## 4 phi 20.0 1.66529
## 5 phi 40.0 1.87761
## 6 phi 40.0 1.84043
## 7 phi 50.0 1.80399
## 8 phi 50.0 1.59999
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.76827
## 2 phi 30.0 1.63232
## 3 phi 30.0 1.99372
## 4 phi 40.0 1.63232
## 5 phi 50.0 1.80399
## 6 phi 40.0 1.73325
## 7 phi 20.0 1.91554
## 8 phi 50.0 1.87761
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.76827
## 2 phi 50.0 2.03399
## 3 phi 50.0 1.84043
## 4 phi 30.0 1.66529
## 5 phi 90.0 1.84043
## 6 phi 50.0 1.87761
## 7 phi 70.0 1.66529
## 8 phi 60.0 1.69893
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 20.0 1.84043
## 3 phi 40.0 1.99372
## 4 phi 80.0 1.44773
## 5 phi 60.0 1.91554
## 6 phi 40.0 1.44773
## 7 phi 40.0 1.59999
## 8 phi 50.0 1.76827
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.87761
## 2 phi 50.0 1.87761
## 3 phi 20.0 1.91554
## 4 phi 40.0 1.63232
## 5 phi 70.0 1.91554
## 6 phi 50.0 1.63232
## 7 phi 30.0 1.63232
## 8 phi 20.0 1.87761
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.73325
## 2 phi 40.0 1.80399
## 3 phi 60.0 1.76827
## 4 phi 30.0 1.76827
## 5 phi 40.0 1.84043
## 6 phi 50.0 1.84043
## 7 phi 70.0 1.80399
## 8 phi 20.0 1.63232
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.69893
## 2 phi 60.0 1.63232
## 3 phi 50.0 1.99372
## 4 phi 20.0 1.53726
## 5 phi 60.0 1.95424
## 6 phi 20.0 1.80399
## 7 phi 40.0 1.47698
## 8 phi 80.0 1.66529
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.84043
## 2 phi 50.0 2.03399
## 3 phi 40.0 1.84043
## 4 phi 50.0 1.53726
## 5 phi 40.0 1.87761
## 6 phi 70.0 1.63232
## 7 phi 20.0 1.44773
## 8 phi 30.0 1.53726
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.76827
## 2 phi 30.0 2.11700
## 3 phi 50.0 1.95424
## 4 phi 60.0 1.87761
## 5 phi 70.0 1.84043
## 6 phi 20.0 1.95424
## 7 phi 40.0 1.50682
## 8 phi 20.0 1.69893
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.91554
## 2 phi 40.0 1.69893
## 3 phi 40.0 1.73325
## 4 phi 30.0 1.59999
## 5 phi 10.0 1.63232
## 6 phi 20.0 1.84043
## 7 phi 40.0 1.66529
## 8 phi 70.0 1.95424
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.99372
## 2 phi 70.0 1.69893
## 3 phi 50.0 1.95424
## 4 phi 70.0 1.66529
## 5 phi 40.0 1.69893
## 6 phi 40.0 1.91554
## 7 phi 30.0 1.80399
## 8 phi 70.0 1.95424
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.84043
## 2 phi 30.0 1.69893
## 3 phi 60.0 1.91554
## 4 phi 50.0 1.80399
## 5 phi 30.0 1.80399
## 6 phi 20.0 1.76827
## 7 phi 50.0 1.53726
## 8 phi 20.0 1.80399
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.76827
## 2 phi 20.0 1.95424
## 3 phi 50.0 1.76827
## 4 phi 40.0 1.69893
## 5 phi 80.0 1.95424
## 6 phi 50.0 1.91554
## 7 phi 30.0 1.76827
## 8 phi 30.0 1.91554
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.87761
## 2 phi 60.0 1.80399
## 3 phi 50.0 1.95424
## 4 phi 60.0 1.73325
## 5 phi 30.0 2.03399
## 6 phi 10.0 1.80399
## 7 phi 10.0 1.76827
## 8 phi 20.0 1.87761
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.80399
## 2 phi 60.0 1.91554
## 3 phi 50.0 1.91554
## 4 phi 40.0 1.33643
## 5 phi 50.0 1.91554
## 6 phi 40.0 2.03399
## 7 phi 50.0 1.99372
## 8 phi 30.0 1.69893
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.47698
## 2 phi 50.0 1.69893
## 3 phi 40.0 1.80399
## 4 phi 50.0 1.66529
## 5 phi 20.0 1.95424
## 6 phi 50.0 1.99372
## 7 phi 70.0 1.73325
## 8 phi 50.0 1.76827
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 90.0 1.50682
## 2 phi 40.0 1.66529
## 3 phi 60.0 1.80399
## 4 phi 30.0 1.59999
## 5 phi 40.0 1.76827
## 6 phi 30.0 2.07508
## 7 phi 10.0 1.53726
## 8 phi 80.0 1.76827
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.73325
## 2 phi 80.0 2.03399
## 3 phi 10.0 1.91554
## 4 phi 50.0 1.50682
## 5 phi 30.0 1.87761
## 6 phi 30.0 2.38691
## 7 phi 50.0 1.76827
## 8 phi 80.0 1.76827
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.91554
## 2 phi 50.0 2.03399
## 3 phi 50.0 1.95424
## 4 phi 40.0 1.56831
## 5 phi 60.0 1.84043
## 6 phi 80.0 1.73325
## 7 phi 40.0 1.87761
## 8 phi 40.0 1.76827
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.91554
## 2 phi 40.0 1.87761
## 3 phi 60.0 1.73325
## 4 phi 40.0 1.56831
## 5 phi 40.0 1.76827
## 6 phi 20.0 1.56831
## 7 phi 40.0 1.69893
## 8 phi 30.0 1.80399
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.91554
## 2 phi 50.0 1.63232
## 3 phi 20.0 2.03399
## 4 phi 80.0 1.73325
## 5 phi 60.0 1.99372
## 6 phi 60.0 1.73325
## 7 phi 50.0 1.63232
## 8 phi 60.0 1.76827
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.91554
## 2 phi 40.0 1.87761
## 3 phi 80.0 1.80399
## 4 phi 50.0 1.41907
## 5 phi 70.0 1.84043
## 6 phi 70.0 1.66529
## 7 phi 60.0 1.66529
## 8 phi 40.0 1.47698
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.47698
## 2 phi 40.0 1.80399
## 3 phi 50.0 1.99372
## 4 phi 60.0 1.87761
## 5 phi 50.0 1.84043
## 6 phi 70.0 1.99372
## 7 phi 60.0 1.50682
## 8 phi 40.0 1.36343
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.73325
## 2 phi 40.0 1.84043
## 3 phi 20.0 1.73325
## 4 phi 0.0 2.29332
## 5 phi 40.0 1.84043
## 6 phi 70.0 1.95424
## 7 phi 50.0 1.41907
## 8 phi 40.0 1.63232
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.87761
## 2 phi 70.0 1.73325
## 3 phi 80.0 1.87761
## 4 phi 50.0 1.95424
## 5 phi 60.0 1.73325
## 6 phi 60.0 2.20340
## 7 phi 50.0 1.33643
## 8 phi 70.0 1.66529
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.76827
## 2 phi 20.0 2.03399
## 3 phi 70.0 2.03399
## 4 phi 50.0 2.03399
## 5 phi 20.0 1.59999
## 6 phi 70.0 1.99372
## 7 phi 30.0 1.53726
## 8 phi 70.0 1.76827
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.76827
## 2 phi 60.0 1.91554
## 3 phi 60.0 2.15977
## 4 phi 30.0 1.99372
## 5 phi 30.0 1.69893
## 6 phi 40.0 1.76827
## 7 phi 70.0 1.76827
## 8 phi 40.0 1.76827
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.73325
## 2 phi 70.0 1.69893
## 3 phi 90.0 1.84043
## 4 phi 30.0 1.91554
## 5 phi 60.0 1.99372
## 6 phi 60.0 1.91554
## 7 phi 30.0 1.59999
## 8 phi 50.0 1.73325
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 40.0 2.11700
## 3 phi 50.0 1.87761
## 4 phi 60.0 1.84043
## 5 phi 30.0 2.11700
## 6 phi 50.0 1.84043
## 7 phi 60.0 1.69893
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.84043
## 2 phi 40.0 1.99372
## 3 phi 40.0 1.76827
## 4 phi 40.0 1.69893
## 5 phi 30.0 2.07508
## 6 phi 20.0 1.47698
## 7 phi 50.0 1.91554
## 8 phi 20.0 1.95424
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.80399
## 2 phi 50.0 2.03399
## 3 phi 60.0 1.84043
## 4 phi 30.0 1.84043
## 5 phi 40.0 1.95424
## 6 phi 40.0 1.84043
## 7 phi 50.0 1.56831
## 8 phi 50.0 2.03399
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.91554
## 2 phi 10.0 2.15977
## 3 phi 70.0 1.87761
## 4 phi 30.0 1.53726
## 5 phi 20.0 1.66529
## 6 phi 60.0 1.95424
## 7 phi 40.0 1.59999
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.87761
## 2 phi 10.0 1.76827
## 3 phi 50.0 2.11700
## 4 phi 10.0 1.66529
## 5 phi 60.0 1.66529
## 6 phi 50.0 1.84043
## 7 phi 70.0 1.53726
## 8 phi 30.0 2.11700
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.76827
## 2 phi 70.0 1.63232
## 3 phi 60.0 1.99372
## 4 phi 50.0 1.95424
## 5 phi 70.0 1.56831
## 6 phi 30.0 2.11700
## 7 phi 20.0 1.59999
## 8 phi 0.0 1.91554
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
summary(ms_cover_forage)
##
## Call:
## spMsPGOcc(occ.formula = occ.forage, det.formula = det.cover,
## data = data_list, priors = priors, cov.model = "exponential",
## NNGP = FALSE, n.batch = 1000, batch.length = 10, n.report = 100,
## n.burn = 3000, n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 1.7717
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.3165 0.4015 -1.0791 -0.3238 0.5099 1.0002 3889
## Veg_shannon_index 0.3917 0.2973 -0.1886 0.3895 0.9817 1.0005 3689
## Avg_Cogongrass_Cover 0.3720 0.3079 -0.2423 0.3720 0.9762 1.0012 3592
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.9145 1.0017 0.0923 0.6207 3.5218 1.0047 2405
## Veg_shannon_index 0.3034 0.4231 0.0371 0.1870 1.2461 1.0117 5243
## Avg_Cogongrass_Cover 0.3883 0.5292 0.0393 0.2295 1.7144 1.0020 4297
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.7163 0.3149 -3.3189 -2.7251 -2.0602 1.0017 7910
## shrub_cover 0.2478 0.3101 -0.3871 0.2516 0.8658 1.0000 6853
## veg_height 0.0604 0.1997 -0.3492 0.0635 0.4472 1.0002 6645
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7438 0.7151 0.1653 0.5562 2.4737 1.0015 4757
## shrub_cover 0.6720 0.6031 0.1274 0.5048 2.2433 1.0037 4012
## veg_height 0.2561 0.2360 0.0578 0.1927 0.8498 1.0027 5943
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.2563 0.5218 -0.7147 0.2322
## (Intercept)-Procyon_lotor 0.4914 0.5338 -0.5329 0.4779
## (Intercept)-Dasypus_novemcinctus -0.5670 0.4343 -1.4553 -0.5580
## (Intercept)-Lynx_rufus -0.0271 0.6969 -1.1953 -0.0922
## (Intercept)-Didelphis_virginiana -1.1411 0.5454 -2.3042 -1.1115
## (Intercept)-Sylvilagus_floridanus -0.3984 0.5478 -1.4310 -0.4132
## (Intercept)-Meleagris_gallopavo -0.1685 0.7646 -1.5287 -0.2179
## (Intercept)-Sciurus_carolinensis -1.0629 0.5510 -2.2445 -1.0266
## Veg_shannon_index-Canis_latrans 0.6367 0.4111 -0.0996 0.6151
## Veg_shannon_index-Procyon_lotor 0.4545 0.3856 -0.2814 0.4471
## Veg_shannon_index-Dasypus_novemcinctus 0.2466 0.3618 -0.4891 0.2552
## Veg_shannon_index-Lynx_rufus 0.1946 0.5036 -0.8824 0.2138
## Veg_shannon_index-Didelphis_virginiana 0.5214 0.4057 -0.2205 0.5029
## Veg_shannon_index-Sylvilagus_floridanus 0.4960 0.4355 -0.3189 0.4835
## Veg_shannon_index-Meleagris_gallopavo 0.5900 0.5004 -0.3185 0.5602
## Veg_shannon_index-Sciurus_carolinensis 0.0430 0.4309 -0.8802 0.0674
## Avg_Cogongrass_Cover-Canis_latrans 0.6590 0.4459 -0.1012 0.6207
## Avg_Cogongrass_Cover-Procyon_lotor 0.4188 0.3980 -0.3352 0.4097
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.4964 0.3759 -0.2210 0.4853
## Avg_Cogongrass_Cover-Lynx_rufus 0.6221 0.4570 -0.1789 0.5840
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.4646 0.3958 -0.2851 0.4527
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0698 0.5036 -1.1590 -0.0299
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.0493 0.6527 -1.5044 0.0081
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4695 0.4003 -0.2900 0.4575
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 1.3398 1.0012 4408
## (Intercept)-Procyon_lotor 1.5764 1.0003 3756
## (Intercept)-Dasypus_novemcinctus 0.2832 1.0010 8269
## (Intercept)-Lynx_rufus 1.4964 1.0034 1505
## (Intercept)-Didelphis_virginiana -0.1565 1.0006 4569
## (Intercept)-Sylvilagus_floridanus 0.7207 1.0006 4093
## (Intercept)-Meleagris_gallopavo 1.4804 1.0013 1312
## (Intercept)-Sciurus_carolinensis -0.0525 1.0013 4672
## Veg_shannon_index-Canis_latrans 1.5228 1.0011 5603
## Veg_shannon_index-Procyon_lotor 1.2547 1.0005 5665
## Veg_shannon_index-Dasypus_novemcinctus 0.9410 1.0002 6936
## Veg_shannon_index-Lynx_rufus 1.1277 1.0017 3945
## Veg_shannon_index-Didelphis_virginiana 1.3798 1.0002 6929
## Veg_shannon_index-Sylvilagus_floridanus 1.4029 1.0018 5189
## Veg_shannon_index-Meleagris_gallopavo 1.6891 1.0040 4411
## Veg_shannon_index-Sciurus_carolinensis 0.8240 1.0018 5390
## Avg_Cogongrass_Cover-Canis_latrans 1.6574 1.0016 5395
## Avg_Cogongrass_Cover-Procyon_lotor 1.2347 1.0004 5646
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.2794 1.0009 7257
## Avg_Cogongrass_Cover-Lynx_rufus 1.6291 1.0005 5613
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.2637 1.0006 7482
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.8319 1.0024 3515
## Avg_Cogongrass_Cover-Meleagris_gallopavo 1.0810 1.0012 2400
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.2888 1.0016 6919
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.7270 0.1828 -3.0960 -2.7210 -2.3823 1.0029
## (Intercept)-Procyon_lotor -2.2933 0.1414 -2.5782 -2.2895 -2.0305 1.0007
## (Intercept)-Dasypus_novemcinctus -1.7625 0.1615 -2.0841 -1.7576 -1.4560 1.0008
## (Intercept)-Lynx_rufus -3.5412 0.3400 -4.2295 -3.5335 -2.9081 1.0012
## (Intercept)-Didelphis_virginiana -2.5919 0.2763 -3.1543 -2.5821 -2.0734 1.0002
## (Intercept)-Sylvilagus_floridanus -3.1292 0.2850 -3.7236 -3.1120 -2.6071 0.9999
## (Intercept)-Meleagris_gallopavo -3.7712 0.4772 -4.7168 -3.7633 -2.8310 1.0054
## (Intercept)-Sciurus_carolinensis -2.6552 0.3063 -3.2813 -2.6440 -2.0923 1.0001
## shrub_cover-Canis_latrans -0.2824 0.2158 -0.7175 -0.2795 0.1342 1.0007
## shrub_cover-Procyon_lotor 0.2551 0.1637 -0.0811 0.2602 0.5620 1.0028
## shrub_cover-Dasypus_novemcinctus 0.8584 0.2975 0.3014 0.8533 1.4599 1.0010
## shrub_cover-Lynx_rufus -0.2148 0.3658 -0.9341 -0.2134 0.5006 1.0019
## shrub_cover-Didelphis_virginiana 0.9858 0.3660 0.2983 0.9774 1.7333 1.0010
## shrub_cover-Sylvilagus_floridanus 0.2187 0.4156 -0.5629 0.2105 1.0387 1.0024
## shrub_cover-Meleagris_gallopavo -0.6018 0.4247 -1.4690 -0.5975 0.2338 1.0027
## shrub_cover-Sciurus_carolinensis 0.8730 0.4160 0.0693 0.8670 1.7088 1.0025
## veg_height-Canis_latrans -0.5908 0.1866 -0.9682 -0.5844 -0.2418 1.0019
## veg_height-Procyon_lotor 0.3422 0.1221 0.1052 0.3428 0.5829 1.0021
## veg_height-Dasypus_novemcinctus 0.2503 0.1359 -0.0099 0.2479 0.5213 1.0024
## veg_height-Lynx_rufus 0.0099 0.2482 -0.5050 0.0179 0.4779 1.0010
## veg_height-Didelphis_virginiana 0.4468 0.2463 -0.0144 0.4376 0.9559 1.0014
## veg_height-Sylvilagus_floridanus 0.1528 0.2468 -0.3369 0.1533 0.6411 1.0015
## veg_height-Meleagris_gallopavo -0.1947 0.4026 -0.9965 -0.1944 0.6080 1.0022
## veg_height-Sciurus_carolinensis 0.0818 0.2136 -0.3314 0.0784 0.5096 1.0016
## ESS
## (Intercept)-Canis_latrans 3259
## (Intercept)-Procyon_lotor 6321
## (Intercept)-Dasypus_novemcinctus 6720
## (Intercept)-Lynx_rufus 1436
## (Intercept)-Didelphis_virginiana 3331
## (Intercept)-Sylvilagus_floridanus 2219
## (Intercept)-Meleagris_gallopavo 940
## (Intercept)-Sciurus_carolinensis 3806
## shrub_cover-Canis_latrans 4084
## shrub_cover-Procyon_lotor 6787
## shrub_cover-Dasypus_novemcinctus 5710
## shrub_cover-Lynx_rufus 2146
## shrub_cover-Didelphis_virginiana 3088
## shrub_cover-Sylvilagus_floridanus 2338
## shrub_cover-Meleagris_gallopavo 1155
## shrub_cover-Sciurus_carolinensis 3252
## veg_height-Canis_latrans 3396
## veg_height-Procyon_lotor 7743
## veg_height-Dasypus_novemcinctus 8919
## veg_height-Lynx_rufus 3382
## veg_height-Didelphis_virginiana 4961
## veg_height-Sylvilagus_floridanus 3364
## veg_height-Meleagris_gallopavo 2022
## veg_height-Sciurus_carolinensis 5042
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 1.0036 1.3354 0.1843 0.6148 4.5552 1.0187 1178
## sigma.sq-Procyon_lotor 1.8832 5.9854 0.2013 0.8091 9.2078 1.1744 482
## sigma.sq-Dasypus_novemcinctus 0.9843 1.7313 0.1837 0.6162 3.8815 1.1449 1495
## sigma.sq-Lynx_rufus 1.1864 2.5676 0.1856 0.6662 5.0576 1.0956 1008
## sigma.sq-Didelphis_virginiana 0.8605 0.9380 0.1804 0.5854 3.3385 1.0013 1352
## sigma.sq-Sylvilagus_floridanus 1.8058 11.1201 0.1901 0.6788 7.0769 1.4438 438
## sigma.sq-Meleagris_gallopavo 1.9451 3.9574 0.2039 0.8749 10.5619 1.0878 716
## sigma.sq-Sciurus_carolinensis 1.0956 1.9208 0.1798 0.6210 4.9567 1.0625 883
## phi-Canis_latrans 0.0049 0.0029 0.0001 0.0049 0.0097 1.0084 738
## phi-Procyon_lotor 0.0052 0.0028 0.0003 0.0052 0.0097 1.0049 707
## phi-Dasypus_novemcinctus 0.0053 0.0028 0.0005 0.0054 0.0098 1.0036 926
## phi-Lynx_rufus 0.0048 0.0029 0.0003 0.0047 0.0098 1.0060 730
## phi-Didelphis_virginiana 0.0052 0.0028 0.0004 0.0052 0.0098 1.0265 955
## phi-Sylvilagus_floridanus 0.0053 0.0028 0.0003 0.0054 0.0097 1.0438 601
## phi-Meleagris_gallopavo 0.0047 0.0028 0.0004 0.0044 0.0097 1.0097 832
## phi-Sciurus_carolinensis 0.0050 0.0029 0.0004 0.0050 0.0098 1.0344 931
# Includes movement covariates of occupancy and cover for detection
ms_cover_move <- spMsPGOcc(
occ.formula = occ.move,
det.formula = det.cover,
data = data_list,
priors = priors,
cov.model = "exponential",
NNGP = FALSE,
n.batch = 1000,
batch.length = 10,
n.burn = 3000,
n.thin = 2,
n.chains = 4,
n.report = 100
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## phi is not specified in initial values.
## Setting initial value to random values from the prior distribution
## sigma.sq is not specified in initial values.
## Setting initial values to random values from the prior distribution
## w is not specified in initial values.
## Setting initial value to 0
## ----------------------------------------
## Model description
## ----------------------------------------
## Spatial Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per chain: 10000 (1000 batches of length 10)
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## Using the exponential spatial correlation model.
##
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## Adaptive Metropolis with target acceptance rate: 43.0
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.36343
## 2 phi 60.0 1.59999
## 3 phi 40.0 1.59999
## 4 phi 70.0 1.16183
## 5 phi 50.0 1.47698
## 6 phi 40.0 1.41907
## 7 phi 40.0 1.39097
## 8 phi 30.0 1.36343
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.66529
## 2 phi 60.0 2.03399
## 3 phi 20.0 1.80399
## 4 phi 50.0 1.53726
## 5 phi 50.0 1.66529
## 6 phi 10.0 1.76827
## 7 phi 20.0 1.73325
## 8 phi 20.0 1.76827
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 50.0 2.20340
## 3 phi 40.0 1.87761
## 4 phi 30.0 1.53726
## 5 phi 10.0 1.39097
## 6 phi 60.0 1.95424
## 7 phi 20.0 1.36343
## 8 phi 60.0 1.66529
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.91554
## 2 phi 60.0 2.07508
## 3 phi 60.0 2.03399
## 4 phi 60.0 1.73325
## 5 phi 30.0 1.76827
## 6 phi 50.0 1.76827
## 7 phi 30.0 1.50682
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 2.11700
## 2 phi 60.0 2.20340
## 3 phi 60.0 1.59999
## 4 phi 50.0 1.30996
## 5 phi 70.0 1.76827
## 6 phi 30.0 1.91554
## 7 phi 40.0 1.39097
## 8 phi 50.0 1.99372
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 2.11700
## 2 phi 70.0 1.84043
## 3 phi 80.0 1.73325
## 4 phi 80.0 1.47698
## 5 phi 30.0 1.56831
## 6 phi 50.0 2.07508
## 7 phi 60.0 1.44773
## 8 phi 60.0 1.84043
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 60.0 1.76827
## 3 phi 50.0 1.87761
## 4 phi 50.0 1.41907
## 5 phi 40.0 1.73325
## 6 phi 50.0 1.47698
## 7 phi 50.0 1.56831
## 8 phi 60.0 1.99372
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.87761
## 2 phi 60.0 1.80399
## 3 phi 60.0 1.47698
## 4 phi 40.0 1.20925
## 5 phi 30.0 1.80399
## 6 phi 60.0 1.73325
## 7 phi 30.0 1.73325
## 8 phi 30.0 1.53726
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.69893
## 2 phi 90.0 1.44773
## 3 phi 30.0 1.63232
## 4 phi 70.0 1.63232
## 5 phi 50.0 1.84043
## 6 phi 80.0 1.66529
## 7 phi 50.0 1.66529
## 8 phi 60.0 1.73325
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.66529
## 2 phi 30.0 1.76827
## 3 phi 50.0 1.59999
## 4 phi 10.0 1.84043
## 5 phi 80.0 1.91554
## 6 phi 60.0 1.80399
## 7 phi 30.0 1.59999
## 8 phi 60.0 1.84043
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.73325
## 2 phi 60.0 1.87761
## 3 phi 50.0 1.73325
## 4 phi 70.0 1.84043
## 5 phi 50.0 1.87761
## 6 phi 30.0 1.76827
## 7 phi 60.0 1.73325
## 8 phi 0.0 1.66529
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.69893
## 2 phi 40.0 1.80399
## 3 phi 30.0 1.66529
## 4 phi 50.0 1.80399
## 5 phi 30.0 1.91554
## 6 phi 60.0 1.76827
## 7 phi 50.0 1.87761
## 8 phi 70.0 1.73325
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 40.0 2.07508
## 3 phi 70.0 1.80399
## 4 phi 30.0 1.53726
## 5 phi 10.0 1.66529
## 6 phi 30.0 1.63232
## 7 phi 30.0 1.84043
## 8 phi 30.0 1.66529
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.91554
## 2 phi 60.0 1.69893
## 3 phi 40.0 1.87761
## 4 phi 30.0 1.56831
## 5 phi 30.0 1.66529
## 6 phi 40.0 1.50682
## 7 phi 40.0 1.59999
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.59999
## 2 phi 80.0 2.11700
## 3 phi 50.0 1.99372
## 4 phi 40.0 1.50682
## 5 phi 50.0 1.91554
## 6 phi 40.0 1.56831
## 7 phi 30.0 1.73325
## 8 phi 60.0 1.53726
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.80399
## 2 phi 70.0 1.73325
## 3 phi 50.0 1.66529
## 4 phi 20.0 1.56831
## 5 phi 30.0 1.84043
## 6 phi 50.0 1.95424
## 7 phi 50.0 1.84043
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.84043
## 2 phi 40.0 1.87761
## 3 phi 60.0 1.84043
## 4 phi 10.0 1.41907
## 5 phi 50.0 1.73325
## 6 phi 70.0 2.03399
## 7 phi 20.0 2.07508
## 8 phi 30.0 1.84043
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.73325
## 2 phi 10.0 1.69893
## 3 phi 0.0 1.99372
## 4 phi 30.0 1.87761
## 5 phi 60.0 1.87761
## 6 phi 50.0 2.03399
## 7 phi 50.0 2.15977
## 8 phi 70.0 1.87761
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.99372
## 2 phi 40.0 1.91554
## 3 phi 70.0 1.63232
## 4 phi 60.0 1.59999
## 5 phi 50.0 1.73325
## 6 phi 70.0 1.59999
## 7 phi 20.0 1.76827
## 8 phi 10.0 1.44773
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.76827
## 2 phi 30.0 1.69893
## 3 phi 60.0 1.87761
## 4 phi 60.0 2.07508
## 5 phi 70.0 1.80399
## 6 phi 60.0 1.84043
## 7 phi 10.0 1.80399
## 8 phi 50.0 1.44773
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.53726
## 2 phi 70.0 1.69893
## 3 phi 0.0 1.76827
## 4 phi 30.0 1.63232
## 5 phi 40.0 1.87761
## 6 phi 40.0 1.84043
## 7 phi 70.0 1.66529
## 8 phi 80.0 1.53726
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 2.03399
## 2 phi 40.0 1.87761
## 3 phi 60.0 2.03399
## 4 phi 50.0 1.76827
## 5 phi 30.0 1.76827
## 6 phi 10.0 1.76827
## 7 phi 60.0 1.66529
## 8 phi 50.0 1.63232
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 2.07508
## 2 phi 20.0 1.87761
## 3 phi 20.0 1.99372
## 4 phi 40.0 1.76827
## 5 phi 80.0 1.87761
## 6 phi 20.0 1.80399
## 7 phi 50.0 1.47698
## 8 phi 20.0 1.66529
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 2.11700
## 2 phi 60.0 1.99372
## 3 phi 70.0 1.73325
## 4 phi 60.0 1.56831
## 5 phi 70.0 1.95424
## 6 phi 30.0 1.95424
## 7 phi 30.0 1.56831
## 8 phi 70.0 1.80399
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.80399
## 2 phi 60.0 1.69893
## 3 phi 40.0 1.69893
## 4 phi 40.0 1.50682
## 5 phi 50.0 1.84043
## 6 phi 40.0 1.73325
## 7 phi 20.0 1.50682
## 8 phi 70.0 1.56831
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.87761
## 2 phi 60.0 1.84043
## 3 phi 40.0 2.15977
## 4 phi 70.0 1.76827
## 5 phi 70.0 1.69893
## 6 phi 60.0 1.84043
## 7 phi 30.0 1.28403
## 8 phi 40.0 1.53726
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.87761
## 2 phi 30.0 2.11700
## 3 phi 20.0 1.99372
## 4 phi 50.0 1.99372
## 5 phi 30.0 1.23368
## 6 phi 50.0 1.69893
## 7 phi 70.0 1.39097
## 8 phi 30.0 1.59999
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.84043
## 2 phi 70.0 1.84043
## 3 phi 70.0 1.91554
## 4 phi 10.0 1.73325
## 5 phi 60.0 1.80399
## 6 phi 10.0 1.87761
## 7 phi 20.0 1.56831
## 8 phi 60.0 1.56831
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.66529
## 2 phi 50.0 1.91554
## 3 phi 20.0 1.84043
## 4 phi 70.0 1.66529
## 5 phi 30.0 1.33643
## 6 phi 20.0 1.69893
## 7 phi 60.0 1.73325
## 8 phi 10.0 1.87761
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 90.0 1.91554
## 2 phi 70.0 1.95424
## 3 phi 40.0 2.03399
## 4 phi 30.0 1.47698
## 5 phi 20.0 1.66529
## 6 phi 50.0 1.59999
## 7 phi 40.0 1.56831
## 8 phi 50.0 1.95424
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.80399
## 2 phi 20.0 1.47698
## 3 phi 20.0 2.07508
## 4 phi 30.0 1.63232
## 5 phi 10.0 1.50682
## 6 phi 30.0 1.76827
## 7 phi 30.0 1.41907
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.95424
## 2 phi 70.0 1.53726
## 3 phi 30.0 1.76827
## 4 phi 60.0 1.41907
## 5 phi 20.0 1.53726
## 6 phi 40.0 1.84043
## 7 phi 50.0 1.63232
## 8 phi 30.0 1.69893
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 2.03399
## 2 phi 40.0 1.59999
## 3 phi 50.0 1.84043
## 4 phi 30.0 1.39097
## 5 phi 10.0 1.84043
## 6 phi 70.0 1.84043
## 7 phi 40.0 1.76827
## 8 phi 30.0 1.56831
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 70.0 1.73325
## 3 phi 60.0 1.99372
## 4 phi 30.0 1.59999
## 5 phi 20.0 1.87761
## 6 phi 50.0 1.95424
## 7 phi 40.0 1.50682
## 8 phi 60.0 2.11700
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.76827
## 2 phi 50.0 1.87761
## 3 phi 60.0 1.91554
## 4 phi 60.0 2.07508
## 5 phi 60.0 1.80399
## 6 phi 70.0 1.73325
## 7 phi 30.0 1.41907
## 8 phi 60.0 1.87761
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.69893
## 2 phi 60.0 2.03399
## 3 phi 20.0 1.87761
## 4 phi 30.0 1.95424
## 5 phi 20.0 1.66529
## 6 phi 30.0 1.87761
## 7 phi 20.0 1.80399
## 8 phi 40.0 1.87761
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
summary(ms_cover_move)
##
## Call:
## spMsPGOcc(occ.formula = occ.move, det.formula = det.cover, data = data_list,
## priors = priors, cov.model = "exponential", NNGP = FALSE,
## n.batch = 1000, batch.length = 10, n.report = 100, n.burn = 3000,
## n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 1.8328
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1771 0.4321 -1.0178 -0.1805 0.7019 1.0035 2032
## Cogon_Patch_Size 0.0840 0.4051 -0.7350 0.0838 0.8778 1.0017 3344
## Avg_Cogongrass_Cover 0.0432 0.3731 -0.6952 0.0433 0.7909 1.0055 2846
## total_shrub_cover -0.9258 0.4344 -1.8538 -0.8978 -0.1417 1.0037 1382
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.9045 1.0463 0.0768 0.5938 3.6033 1.0083 3455
## Cogon_Patch_Size 0.7435 1.2401 0.0520 0.3944 3.5686 1.0099 3437
## Avg_Cogongrass_Cover 0.5424 0.9582 0.0454 0.2995 2.4350 1.0442 4452
## total_shrub_cover 0.6140 0.8345 0.0485 0.3541 2.7094 1.0008 2613
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.7457 0.2926 -3.3162 -2.7484 -2.1599 1.0010 4637
## shrub_cover 0.4874 0.3191 -0.1481 0.4862 1.1167 1.0006 3921
## veg_height 0.0831 0.2018 -0.3266 0.0856 0.4811 1.0009 5326
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.5943 0.5606 0.1336 0.4400 1.9702 1.0020 4840
## shrub_cover 0.6986 0.6472 0.1207 0.5205 2.3375 1.0041 3520
## veg_height 0.2576 0.2333 0.0590 0.1944 0.8366 1.0023 6492
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.4085 0.5656 -0.6043 0.3714
## (Intercept)-Procyon_lotor 0.6878 0.5830 -0.3507 0.6479
## (Intercept)-Dasypus_novemcinctus -0.3597 0.5287 -1.3924 -0.3676
## (Intercept)-Lynx_rufus -0.0078 0.6790 -1.2343 -0.0543
## (Intercept)-Didelphis_virginiana -0.8796 0.6495 -2.2220 -0.8646
## (Intercept)-Sylvilagus_floridanus -0.0984 0.6605 -1.3222 -0.1307
## (Intercept)-Meleagris_gallopavo -0.4266 0.7158 -1.7929 -0.4344
## (Intercept)-Sciurus_carolinensis -0.7829 0.6700 -2.1418 -0.7629
## Cogon_Patch_Size-Canis_latrans 0.7322 0.6725 -0.2904 0.6334
## Cogon_Patch_Size-Procyon_lotor 0.0260 0.4624 -0.8884 0.0271
## Cogon_Patch_Size-Dasypus_novemcinctus 0.1010 0.4725 -0.8385 0.0971
## Cogon_Patch_Size-Lynx_rufus 0.0595 0.7072 -1.2929 0.0314
## Cogon_Patch_Size-Didelphis_virginiana 0.5640 0.5089 -0.3424 0.5309
## Cogon_Patch_Size-Sylvilagus_floridanus -0.5353 0.7871 -2.4354 -0.4038
## Cogon_Patch_Size-Meleagris_gallopavo 0.1064 0.6834 -1.1718 0.0834
## Cogon_Patch_Size-Sciurus_carolinensis -0.3749 0.6752 -1.9553 -0.2834
## Avg_Cogongrass_Cover-Canis_latrans 0.2394 0.5007 -0.6652 0.2132
## Avg_Cogongrass_Cover-Procyon_lotor 0.0295 0.4598 -0.8670 0.0262
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.2630 0.4609 -0.5935 0.2409
## Avg_Cogongrass_Cover-Lynx_rufus 0.4449 0.5620 -0.4822 0.3872
## Avg_Cogongrass_Cover-Didelphis_virginiana -0.0041 0.4987 -1.0162 -0.0050
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.3363 0.5882 -1.6081 -0.3009
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.5666 0.7734 -2.3192 -0.4891
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.2836 0.5009 -0.6325 0.2592
## total_shrub_cover-Canis_latrans -0.2982 0.5739 -1.3854 -0.3207
## total_shrub_cover-Procyon_lotor -1.2000 0.5451 -2.4283 -1.1419
## total_shrub_cover-Dasypus_novemcinctus -0.6567 0.5808 -1.9213 -0.6219
## total_shrub_cover-Lynx_rufus -1.1654 0.7116 -2.8075 -1.0956
## total_shrub_cover-Didelphis_virginiana -0.9469 0.6179 -2.3253 -0.8946
## total_shrub_cover-Sylvilagus_floridanus -1.0744 0.7235 -2.7448 -0.9993
## total_shrub_cover-Meleagris_gallopavo -1.3011 0.6917 -2.8953 -1.2350
## total_shrub_cover-Sciurus_carolinensis -0.9679 0.6790 -2.5459 -0.8965
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 1.6325 1.0056 3764
## (Intercept)-Procyon_lotor 1.9344 1.0052 3336
## (Intercept)-Dasypus_novemcinctus 0.7431 1.0065 2239
## (Intercept)-Lynx_rufus 1.4705 1.0026 2277
## (Intercept)-Didelphis_virginiana 0.3462 1.0089 1606
## (Intercept)-Sylvilagus_floridanus 1.3149 1.0023 1760
## (Intercept)-Meleagris_gallopavo 1.1001 1.0047 1669
## (Intercept)-Sciurus_carolinensis 0.4649 1.0030 1509
## Cogon_Patch_Size-Canis_latrans 2.3583 1.0009 3173
## Cogon_Patch_Size-Procyon_lotor 0.9402 1.0009 5779
## Cogon_Patch_Size-Dasypus_novemcinctus 1.0567 1.0018 5243
## Cogon_Patch_Size-Lynx_rufus 1.6163 1.0037 3057
## Cogon_Patch_Size-Didelphis_virginiana 1.6649 1.0011 4156
## Cogon_Patch_Size-Sylvilagus_floridanus 0.6723 1.0059 2379
## Cogon_Patch_Size-Meleagris_gallopavo 1.5466 1.0020 3632
## Cogon_Patch_Size-Sciurus_carolinensis 0.6774 1.0048 2935
## Avg_Cogongrass_Cover-Canis_latrans 1.3555 1.0018 4340
## Avg_Cogongrass_Cover-Procyon_lotor 0.9497 1.0053 4748
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.2523 1.0019 4933
## Avg_Cogongrass_Cover-Lynx_rufus 1.7244 1.0016 3721
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.9855 1.0020 4204
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.7466 1.0095 3082
## Avg_Cogongrass_Cover-Meleagris_gallopavo 0.7839 1.0065 1829
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.3379 1.0033 4473
## total_shrub_cover-Canis_latrans 0.9097 1.0039 2820
## total_shrub_cover-Procyon_lotor -0.2834 1.0022 2578
## total_shrub_cover-Dasypus_novemcinctus 0.3769 1.0108 1830
## total_shrub_cover-Lynx_rufus 0.0602 1.0005 1783
## total_shrub_cover-Didelphis_virginiana 0.1263 1.0035 1833
## total_shrub_cover-Sylvilagus_floridanus 0.1560 1.0011 1307
## total_shrub_cover-Meleagris_gallopavo -0.1210 1.0007 2074
## total_shrub_cover-Sciurus_carolinensis 0.1731 1.0048 1188
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.7438 0.1817 -3.1187 -2.7400 -2.4071 1.0085
## (Intercept)-Procyon_lotor -2.2941 0.1379 -2.5694 -2.2931 -2.0298 1.0022
## (Intercept)-Dasypus_novemcinctus -1.8416 0.1782 -2.2125 -1.8362 -1.5101 1.0036
## (Intercept)-Lynx_rufus -3.4239 0.3218 -4.0740 -3.4120 -2.8296 1.0092
## (Intercept)-Didelphis_virginiana -2.7033 0.3004 -3.3079 -2.6932 -2.1479 1.0022
## (Intercept)-Sylvilagus_floridanus -3.2135 0.2709 -3.7598 -3.2049 -2.6967 1.0021
## (Intercept)-Meleagris_gallopavo -3.4965 0.5057 -4.5436 -3.4815 -2.5594 1.0071
## (Intercept)-Sciurus_carolinensis -2.8270 0.3335 -3.5203 -2.8122 -2.2068 1.0035
## shrub_cover-Canis_latrans -0.2376 0.2293 -0.6911 -0.2344 0.2067 1.0009
## shrub_cover-Procyon_lotor 0.3076 0.1592 -0.0093 0.3081 0.6092 1.0009
## shrub_cover-Dasypus_novemcinctus 1.0599 0.3443 0.4066 1.0509 1.7434 1.0079
## shrub_cover-Lynx_rufus 0.1408 0.3717 -0.6346 0.1581 0.8215 1.0056
## shrub_cover-Didelphis_virginiana 1.1905 0.4135 0.4311 1.1740 2.0376 1.0063
## shrub_cover-Sylvilagus_floridanus 0.6749 0.4324 -0.2118 0.6857 1.4893 1.0028
## shrub_cover-Meleagris_gallopavo -0.2887 0.4712 -1.2487 -0.2782 0.5879 1.0046
## shrub_cover-Sciurus_carolinensis 1.1613 0.4251 0.3281 1.1618 2.0093 1.0086
## veg_height-Canis_latrans -0.5826 0.1888 -0.9661 -0.5788 -0.2265 1.0014
## veg_height-Procyon_lotor 0.3470 0.1221 0.1052 0.3472 0.5864 1.0013
## veg_height-Dasypus_novemcinctus 0.2806 0.1420 0.0067 0.2780 0.5634 1.0006
## veg_height-Lynx_rufus 0.0510 0.2476 -0.4595 0.0570 0.5161 1.0013
## veg_height-Didelphis_virginiana 0.4527 0.2455 -0.0128 0.4475 0.9503 1.0006
## veg_height-Sylvilagus_floridanus 0.0881 0.2452 -0.3882 0.0882 0.5631 1.0036
## veg_height-Meleagris_gallopavo -0.1033 0.4366 -0.9595 -0.1043 0.7857 1.0067
## veg_height-Sciurus_carolinensis 0.1313 0.2296 -0.3066 0.1275 0.5928 1.0007
## ESS
## (Intercept)-Canis_latrans 3506
## (Intercept)-Procyon_lotor 6584
## (Intercept)-Dasypus_novemcinctus 3106
## (Intercept)-Lynx_rufus 1845
## (Intercept)-Didelphis_virginiana 2034
## (Intercept)-Sylvilagus_floridanus 2112
## (Intercept)-Meleagris_gallopavo 1289
## (Intercept)-Sciurus_carolinensis 1681
## shrub_cover-Canis_latrans 3557
## shrub_cover-Procyon_lotor 6720
## shrub_cover-Dasypus_novemcinctus 1888
## shrub_cover-Lynx_rufus 1830
## shrub_cover-Didelphis_virginiana 1370
## shrub_cover-Sylvilagus_floridanus 1588
## shrub_cover-Meleagris_gallopavo 1597
## shrub_cover-Sciurus_carolinensis 1482
## veg_height-Canis_latrans 3047
## veg_height-Procyon_lotor 7772
## veg_height-Dasypus_novemcinctus 6915
## veg_height-Lynx_rufus 3117
## veg_height-Didelphis_virginiana 4248
## veg_height-Sylvilagus_floridanus 2989
## veg_height-Meleagris_gallopavo 1712
## veg_height-Sciurus_carolinensis 3713
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 1.7087 3.7638 0.1969 0.7742 8.7852 1.1023 447
## sigma.sq-Procyon_lotor 1.2529 2.5460 0.1804 0.6413 6.3790 1.0263 784
## sigma.sq-Dasypus_novemcinctus 1.3027 2.1869 0.1890 0.6971 6.3161 1.0576 728
## sigma.sq-Lynx_rufus 1.3559 5.2412 0.1911 0.6590 5.4711 1.4130 385
## sigma.sq-Didelphis_virginiana 1.1457 1.6436 0.1890 0.6761 5.1198 1.0375 1171
## sigma.sq-Sylvilagus_floridanus 1.0791 1.6685 0.1805 0.6108 5.0182 1.0133 994
## sigma.sq-Meleagris_gallopavo 1.1041 1.7981 0.1799 0.6596 4.8154 1.0503 1013
## sigma.sq-Sciurus_carolinensis 1.2311 2.4206 0.1851 0.6849 5.3455 1.0949 1040
## phi-Canis_latrans 0.0053 0.0027 0.0006 0.0053 0.0098 1.0100 1066
## phi-Procyon_lotor 0.0049 0.0029 0.0003 0.0048 0.0098 1.0116 716
## phi-Dasypus_novemcinctus 0.0052 0.0029 0.0003 0.0053 0.0098 1.0281 773
## phi-Lynx_rufus 0.0045 0.0030 0.0002 0.0043 0.0097 1.0066 566
## phi-Didelphis_virginiana 0.0047 0.0030 0.0002 0.0046 0.0097 1.0062 666
## phi-Sylvilagus_floridanus 0.0051 0.0028 0.0003 0.0051 0.0097 1.0050 848
## phi-Meleagris_gallopavo 0.0046 0.0029 0.0002 0.0044 0.0097 1.0201 845
## phi-Sciurus_carolinensis 0.0049 0.0029 0.0003 0.0049 0.0097 1.0061 645
#Includes cover covariate of detection and only canopy for occupancy
ms_cover_canopy <- spMsPGOcc(
occ.formula = occ.canopy,
det.formula = det.cover,
data = data_list,
priors = priors,
cov.model = "exponential",
NNGP = FALSE,
n.batch = 1000,
batch.length = 10,
n.burn = 3000,
n.thin = 2,
n.chains = 4,
n.report = 100
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## phi is not specified in initial values.
## Setting initial value to random values from the prior distribution
## sigma.sq is not specified in initial values.
## Setting initial values to random values from the prior distribution
## w is not specified in initial values.
## Setting initial value to 0
## ----------------------------------------
## Model description
## ----------------------------------------
## Spatial Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per chain: 10000 (1000 batches of length 10)
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## Using the exponential spatial correlation model.
##
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## Adaptive Metropolis with target acceptance rate: 43.0
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.63232
## 2 phi 60.0 1.39097
## 3 phi 50.0 1.69893
## 4 phi 60.0 1.41907
## 5 phi 60.0 1.63232
## 6 phi 60.0 1.66529
## 7 phi 60.0 1.53726
## 8 phi 70.0 1.53726
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.59999
## 2 phi 80.0 1.69893
## 3 phi 40.0 1.84043
## 4 phi 10.0 1.76827
## 5 phi 60.0 1.56831
## 6 phi 10.0 1.76827
## 7 phi 60.0 1.66529
## 8 phi 60.0 1.95424
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.84043
## 2 phi 50.0 1.56831
## 3 phi 50.0 1.69893
## 4 phi 70.0 1.39097
## 5 phi 20.0 1.84043
## 6 phi 60.0 1.99372
## 7 phi 50.0 1.80399
## 8 phi 50.0 1.80399
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 20.0 1.80399
## 3 phi 20.0 1.73325
## 4 phi 20.0 1.28403
## 5 phi 30.0 1.76827
## 6 phi 40.0 1.73325
## 7 phi 30.0 1.76827
## 8 phi 40.0 1.76827
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 2.07508
## 2 phi 50.0 1.76827
## 3 phi 50.0 1.91554
## 4 phi 30.0 1.66529
## 5 phi 40.0 2.03399
## 6 phi 60.0 1.56831
## 7 phi 60.0 1.73325
## 8 phi 50.0 2.11700
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 2.07508
## 2 phi 30.0 1.33643
## 3 phi 20.0 1.53726
## 4 phi 40.0 1.76827
## 5 phi 80.0 1.76827
## 6 phi 50.0 1.76827
## 7 phi 40.0 1.73325
## 8 phi 20.0 1.76827
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.76827
## 2 phi 50.0 1.63232
## 3 phi 60.0 1.76827
## 4 phi 50.0 1.84043
## 5 phi 70.0 1.76827
## 6 phi 30.0 1.59999
## 7 phi 20.0 1.95424
## 8 phi 60.0 1.80399
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.66529
## 2 phi 10.0 1.95424
## 3 phi 30.0 1.84043
## 4 phi 70.0 1.69893
## 5 phi 50.0 1.87761
## 6 phi 50.0 1.91554
## 7 phi 10.0 2.03399
## 8 phi 70.0 1.95424
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.73325
## 2 phi 70.0 1.76827
## 3 phi 50.0 1.76827
## 4 phi 90.0 1.66529
## 5 phi 30.0 2.07508
## 6 phi 30.0 1.66529
## 7 phi 50.0 1.66529
## 8 phi 80.0 1.91554
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.41907
## 2 phi 50.0 1.59999
## 3 phi 10.0 2.15977
## 4 phi 80.0 1.69893
## 5 phi 40.0 2.03399
## 6 phi 60.0 1.73325
## 7 phi 60.0 1.69893
## 8 phi 40.0 1.73325
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.63232
## 2 phi 40.0 1.91554
## 3 phi 40.0 1.84043
## 4 phi 60.0 1.59999
## 5 phi 50.0 2.07508
## 6 phi 50.0 1.73325
## 7 phi 40.0 1.76827
## 8 phi 30.0 1.99372
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.87761
## 2 phi 30.0 1.80399
## 3 phi 20.0 2.07508
## 4 phi 50.0 1.63232
## 5 phi 10.0 1.69893
## 6 phi 40.0 1.91554
## 7 phi 60.0 1.99372
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.95424
## 2 phi 40.0 1.80399
## 3 phi 30.0 1.91554
## 4 phi 40.0 1.91554
## 5 phi 10.0 1.76827
## 6 phi 50.0 2.11700
## 7 phi 40.0 1.91554
## 8 phi 10.0 1.66529
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.99372
## 2 phi 30.0 1.91554
## 3 phi 50.0 2.03399
## 4 phi 20.0 1.80399
## 5 phi 50.0 1.95424
## 6 phi 40.0 1.91554
## 7 phi 50.0 1.91554
## 8 phi 60.0 1.80399
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.99372
## 2 phi 40.0 1.99372
## 3 phi 80.0 1.99372
## 4 phi 50.0 1.69893
## 5 phi 50.0 2.24791
## 6 phi 30.0 1.99372
## 7 phi 30.0 1.99372
## 8 phi 40.0 1.99372
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.80399
## 2 phi 20.0 1.99372
## 3 phi 40.0 2.20340
## 4 phi 30.0 1.87761
## 5 phi 50.0 2.07508
## 6 phi 60.0 1.95424
## 7 phi 70.0 1.84043
## 8 phi 40.0 2.11700
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 50.0 1.73325
## 3 phi 20.0 1.59999
## 4 phi 50.0 1.99372
## 5 phi 20.0 1.91554
## 6 phi 0.0 1.76827
## 7 phi 30.0 1.80399
## 8 phi 60.0 2.03399
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.73325
## 2 phi 40.0 1.87761
## 3 phi 50.0 1.41907
## 4 phi 30.0 1.56831
## 5 phi 40.0 1.99372
## 6 phi 50.0 1.59999
## 7 phi 20.0 1.84043
## 8 phi 80.0 1.84043
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.84043
## 2 phi 30.0 2.07508
## 3 phi 60.0 1.80399
## 4 phi 20.0 1.69893
## 5 phi 50.0 2.11700
## 6 phi 90.0 1.63232
## 7 phi 50.0 1.73325
## 8 phi 50.0 1.66529
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.69893
## 2 phi 40.0 1.95424
## 3 phi 50.0 1.76827
## 4 phi 70.0 1.76827
## 5 phi 60.0 1.95424
## 6 phi 20.0 1.76827
## 7 phi 60.0 1.91554
## 8 phi 40.0 1.53726
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 60.0 1.95424
## 3 phi 50.0 1.80399
## 4 phi 30.0 1.76827
## 5 phi 50.0 1.87761
## 6 phi 50.0 1.50682
## 7 phi 80.0 1.99372
## 8 phi 20.0 1.66529
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.73325
## 2 phi 50.0 2.07508
## 3 phi 50.0 1.99372
## 4 phi 70.0 1.56831
## 5 phi 70.0 1.76827
## 6 phi 50.0 1.91554
## 7 phi 50.0 1.84043
## 8 phi 30.0 1.84043
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.87761
## 2 phi 30.0 1.66529
## 3 phi 50.0 2.07508
## 4 phi 20.0 1.80399
## 5 phi 60.0 1.95424
## 6 phi 50.0 1.99372
## 7 phi 30.0 1.73325
## 8 phi 20.0 1.95424
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.84043
## 2 phi 30.0 1.87761
## 3 phi 10.0 1.87761
## 4 phi 70.0 1.47698
## 5 phi 20.0 2.03399
## 6 phi 50.0 1.99372
## 7 phi 20.0 1.66529
## 8 phi 30.0 1.84043
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 2.07508
## 2 phi 50.0 1.95424
## 3 phi 70.0 1.99372
## 4 phi 20.0 1.80399
## 5 phi 80.0 1.84043
## 6 phi 60.0 1.80399
## 7 phi 80.0 1.59999
## 8 phi 30.0 1.76827
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.56831
## 2 phi 30.0 1.91554
## 3 phi 60.0 2.03399
## 4 phi 70.0 1.87761
## 5 phi 50.0 1.91554
## 6 phi 60.0 1.95424
## 7 phi 50.0 1.99372
## 8 phi 0.0 1.91554
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.69893
## 2 phi 80.0 1.95424
## 3 phi 20.0 1.69893
## 4 phi 30.0 1.39097
## 5 phi 50.0 1.80399
## 6 phi 50.0 1.87761
## 7 phi 30.0 1.76827
## 8 phi 80.0 1.87761
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.91554
## 2 phi 70.0 1.84043
## 3 phi 50.0 1.66529
## 4 phi 50.0 1.84043
## 5 phi 70.0 1.99372
## 6 phi 20.0 1.87761
## 7 phi 60.0 1.87761
## 8 phi 30.0 1.99372
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.84043
## 2 phi 0.0 1.99372
## 3 phi 80.0 1.84043
## 4 phi 60.0 1.69893
## 5 phi 40.0 1.69893
## 6 phi 50.0 1.87761
## 7 phi 20.0 1.73325
## 8 phi 30.0 2.20340
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.73325
## 2 phi 10.0 1.69893
## 3 phi 50.0 1.80399
## 4 phi 30.0 1.63232
## 5 phi 10.0 1.66529
## 6 phi 30.0 1.59999
## 7 phi 40.0 1.84043
## 8 phi 20.0 1.84043
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.99372
## 2 phi 50.0 2.11700
## 3 phi 60.0 1.87761
## 4 phi 40.0 1.66529
## 5 phi 50.0 1.59999
## 6 phi 30.0 1.73325
## 7 phi 50.0 1.59999
## 8 phi 50.0 1.50682
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 2.20340
## 2 phi 30.0 1.80399
## 3 phi 20.0 1.95424
## 4 phi 40.0 1.47698
## 5 phi 20.0 1.84043
## 6 phi 60.0 1.69893
## 7 phi 70.0 1.73325
## 8 phi 20.0 1.91554
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 2.15977
## 2 phi 40.0 1.80399
## 3 phi 30.0 2.07508
## 4 phi 60.0 1.25860
## 5 phi 60.0 1.95424
## 6 phi 60.0 2.03399
## 7 phi 80.0 1.80399
## 8 phi 60.0 1.99372
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.84043
## 2 phi 40.0 1.76827
## 3 phi 60.0 1.63232
## 4 phi 60.0 1.66529
## 5 phi 10.0 1.91554
## 6 phi 40.0 1.84043
## 7 phi 40.0 1.84043
## 8 phi 40.0 1.53726
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.91554
## 2 phi 70.0 1.73325
## 3 phi 70.0 1.56831
## 4 phi 30.0 1.41907
## 5 phi 50.0 1.87761
## 6 phi 80.0 1.76827
## 7 phi 60.0 1.80399
## 8 phi 70.0 1.69893
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 80.0 1.66529
## 3 phi 50.0 1.69893
## 4 phi 70.0 1.63232
## 5 phi 30.0 1.87761
## 6 phi 30.0 1.80399
## 7 phi 30.0 1.87761
## 8 phi 30.0 1.91554
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
summary(ms_cover_canopy)
##
## Call:
## spMsPGOcc(occ.formula = occ.canopy, det.formula = det.cover,
## data = data_list, priors = priors, cov.model = "exponential",
## NNGP = FALSE, n.batch = 1000, batch.length = 10, n.report = 100,
## n.burn = 3000, n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 1.8113
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.3558 0.5061 -1.3240 -0.3707 0.7092 1.0024 3996
## Tree_Density -0.8617 0.4916 -1.9544 -0.8230 0.0171 1.0014 2971
## Avg_Canopy_Cover 1.1812 0.4720 0.3251 1.1566 2.1735 1.0003 4101
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.6630 2.2645 0.1549 1.1028 6.4744 1.0155 1463
## Tree_Density 1.0652 1.8208 0.0544 0.5079 5.4897 1.0088 2710
## Avg_Canopy_Cover 1.2574 1.7307 0.0853 0.7578 5.3262 1.0084 2979
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.7471 0.3265 -3.3714 -2.7547 -2.0518 1.0008 9614
## shrub_cover 0.2686 0.3194 -0.3788 0.2695 0.9117 1.0019 5769
## veg_height 0.0932 0.1999 -0.3103 0.0959 0.4791 1.0009 7219
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7954 1.1143 0.1835 0.5964 2.5516 1.1342 7613
## shrub_cover 0.7231 0.6422 0.1524 0.5454 2.3729 1.0008 5844
## veg_height 0.2645 0.2350 0.0601 0.2011 0.8779 1.0027 7277
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Canis_latrans 0.2672 0.5819 -0.8234 0.2416 1.4641
## (Intercept)-Procyon_lotor 0.7359 0.6106 -0.3860 0.7128 2.0248
## (Intercept)-Dasypus_novemcinctus -0.8341 0.5539 -2.0212 -0.8080 0.1959
## (Intercept)-Lynx_rufus 0.4828 1.1151 -1.1237 0.3097 3.0813
## (Intercept)-Didelphis_virginiana -1.4347 0.6877 -2.8904 -1.3950 -0.1807
## (Intercept)-Sylvilagus_floridanus -0.6299 0.6173 -1.8672 -0.6193 0.5610
## (Intercept)-Meleagris_gallopavo -0.1608 0.8752 -1.6902 -0.2346 1.8158
## (Intercept)-Sciurus_carolinensis -1.4265 0.6922 -2.8754 -1.3913 -0.1683
## Tree_Density-Canis_latrans -1.1044 0.6667 -2.6556 -1.0227 -0.0338
## Tree_Density-Procyon_lotor -0.5532 0.4754 -1.5010 -0.5455 0.3458
## Tree_Density-Dasypus_novemcinctus -1.4549 0.9366 -3.9038 -1.2528 -0.1797
## Tree_Density-Lynx_rufus 0.1215 0.8487 -1.1890 -0.0237 2.2143
## Tree_Density-Didelphis_virginiana -1.0226 0.7817 -2.8673 -0.9173 0.2292
## Tree_Density-Sylvilagus_floridanus -1.1657 0.8390 -3.1813 -1.0363 0.1262
## Tree_Density-Meleagris_gallopavo -1.1770 0.8920 -3.3308 -1.0334 0.1885
## Tree_Density-Sciurus_carolinensis -0.9414 0.7686 -2.7737 -0.8543 0.3486
## Avg_Canopy_Cover-Canis_latrans 0.0140 0.5707 -1.1140 0.0133 1.1411
## Avg_Canopy_Cover-Procyon_lotor 1.0963 0.5437 0.1262 1.0590 2.2897
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.2086 0.5306 0.2748 1.1712 2.3632
## Avg_Canopy_Cover-Lynx_rufus 0.8202 0.7950 -0.7234 0.8075 2.4791
## Avg_Canopy_Cover-Didelphis_virginiana 1.6186 0.7464 0.4746 1.5041 3.4099
## Avg_Canopy_Cover-Sylvilagus_floridanus 2.1999 1.0553 0.7429 1.9936 4.7954
## Avg_Canopy_Cover-Meleagris_gallopavo 1.5074 0.8068 0.2118 1.4000 3.3730
## Avg_Canopy_Cover-Sciurus_carolinensis 1.5416 0.6828 0.4301 1.4529 3.1269
## Rhat ESS
## (Intercept)-Canis_latrans 1.0021 3702
## (Intercept)-Procyon_lotor 1.0041 2395
## (Intercept)-Dasypus_novemcinctus 1.0004 4341
## (Intercept)-Lynx_rufus 1.0157 667
## (Intercept)-Didelphis_virginiana 1.0041 2832
## (Intercept)-Sylvilagus_floridanus 1.0019 4578
## (Intercept)-Meleagris_gallopavo 1.0024 1540
## (Intercept)-Sciurus_carolinensis 1.0038 2957
## Tree_Density-Canis_latrans 1.0013 3723
## Tree_Density-Procyon_lotor 1.0018 5783
## Tree_Density-Dasypus_novemcinctus 1.0017 2096
## Tree_Density-Lynx_rufus 1.0021 2071
## Tree_Density-Didelphis_virginiana 1.0011 3112
## Tree_Density-Sylvilagus_floridanus 1.0032 2802
## Tree_Density-Meleagris_gallopavo 1.0026 2269
## Tree_Density-Sciurus_carolinensis 1.0027 3674
## Avg_Canopy_Cover-Canis_latrans 1.0004 3385
## Avg_Canopy_Cover-Procyon_lotor 1.0000 4920
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0006 5640
## Avg_Canopy_Cover-Lynx_rufus 1.0042 2532
## Avg_Canopy_Cover-Didelphis_virginiana 1.0040 2905
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.0045 1858
## Avg_Canopy_Cover-Meleagris_gallopavo 1.0006 2673
## Avg_Canopy_Cover-Sciurus_carolinensis 1.0012 3008
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.7384 0.1828 -3.1086 -2.7341 -2.3901 1.0036
## (Intercept)-Procyon_lotor -2.3010 0.1408 -2.5853 -2.2975 -2.0350 1.0003
## (Intercept)-Dasypus_novemcinctus -1.7718 0.1624 -2.1034 -1.7681 -1.4631 1.0012
## (Intercept)-Lynx_rufus -3.7024 0.3517 -4.4032 -3.6983 -3.0259 1.0046
## (Intercept)-Didelphis_virginiana -2.6486 0.2877 -3.2362 -2.6400 -2.1174 1.0022
## (Intercept)-Sylvilagus_floridanus -3.0980 0.2533 -3.6160 -3.0896 -2.6225 1.0018
## (Intercept)-Meleagris_gallopavo -3.8114 0.4531 -4.7284 -3.8002 -2.9345 1.0042
## (Intercept)-Sciurus_carolinensis -2.6990 0.3203 -3.3518 -2.6900 -2.0977 1.0104
## shrub_cover-Canis_latrans -0.3017 0.2203 -0.7287 -0.3023 0.1283 1.0016
## shrub_cover-Procyon_lotor 0.2548 0.1613 -0.0641 0.2562 0.5688 1.0008
## shrub_cover-Dasypus_novemcinctus 0.8900 0.2980 0.3143 0.8864 1.4765 1.0029
## shrub_cover-Lynx_rufus -0.3089 0.3484 -1.0021 -0.3053 0.3762 1.0031
## shrub_cover-Didelphis_virginiana 1.0292 0.3616 0.3615 1.0142 1.7754 1.0022
## shrub_cover-Sylvilagus_floridanus 0.3937 0.3958 -0.3737 0.3877 1.1832 1.0046
## shrub_cover-Meleagris_gallopavo -0.6231 0.4060 -1.4451 -0.6192 0.1747 1.0046
## shrub_cover-Sciurus_carolinensis 0.9018 0.4114 0.1167 0.8940 1.7436 1.0060
## veg_height-Canis_latrans -0.5902 0.1897 -0.9845 -0.5842 -0.2336 1.0016
## veg_height-Procyon_lotor 0.3489 0.1234 0.1109 0.3489 0.5894 1.0005
## veg_height-Dasypus_novemcinctus 0.2673 0.1371 -0.0001 0.2668 0.5375 1.0007
## veg_height-Lynx_rufus 0.0873 0.2439 -0.4117 0.0954 0.5468 1.0001
## veg_height-Didelphis_virginiana 0.5134 0.2464 0.0483 0.5073 1.0209 1.0004
## veg_height-Sylvilagus_floridanus 0.1819 0.2408 -0.2947 0.1829 0.6486 1.0037
## veg_height-Meleagris_gallopavo -0.1733 0.3576 -0.9096 -0.1645 0.5011 1.0021
## veg_height-Sciurus_carolinensis 0.1338 0.2177 -0.2816 0.1287 0.5697 1.0082
## ESS
## (Intercept)-Canis_latrans 3507
## (Intercept)-Procyon_lotor 5789
## (Intercept)-Dasypus_novemcinctus 5986
## (Intercept)-Lynx_rufus 1138
## (Intercept)-Didelphis_virginiana 3053
## (Intercept)-Sylvilagus_floridanus 3573
## (Intercept)-Meleagris_gallopavo 1192
## (Intercept)-Sciurus_carolinensis 2912
## shrub_cover-Canis_latrans 3895
## shrub_cover-Procyon_lotor 6645
## shrub_cover-Dasypus_novemcinctus 5376
## shrub_cover-Lynx_rufus 1979
## shrub_cover-Didelphis_virginiana 3195
## shrub_cover-Sylvilagus_floridanus 2750
## shrub_cover-Meleagris_gallopavo 1378
## shrub_cover-Sciurus_carolinensis 2980
## veg_height-Canis_latrans 3013
## veg_height-Procyon_lotor 7053
## veg_height-Dasypus_novemcinctus 7987
## veg_height-Lynx_rufus 3224
## veg_height-Didelphis_virginiana 4821
## veg_height-Sylvilagus_floridanus 4838
## veg_height-Meleagris_gallopavo 2679
## veg_height-Sciurus_carolinensis 4382
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 1.6655 3.3620 0.1930 0.7785 9.3375 1.0189 724
## sigma.sq-Procyon_lotor 1.5609 3.1286 0.1935 0.7355 8.1104 1.0094 862
## sigma.sq-Dasypus_novemcinctus 0.8561 1.0274 0.1761 0.5727 3.3330 1.0332 872
## sigma.sq-Lynx_rufus 1.1828 2.0871 0.1839 0.6628 5.3480 1.0478 706
## sigma.sq-Didelphis_virginiana 0.7463 0.7382 0.1742 0.5346 2.5732 1.0093 1645
## sigma.sq-Sylvilagus_floridanus 0.7601 0.8060 0.1714 0.5347 2.7094 1.0413 1472
## sigma.sq-Meleagris_gallopavo 1.3020 2.1803 0.1842 0.7123 6.2460 1.0232 1031
## sigma.sq-Sciurus_carolinensis 0.8247 0.8396 0.1805 0.5777 3.0507 1.0139 1541
## phi-Canis_latrans 0.0053 0.0027 0.0005 0.0053 0.0097 1.0088 982
## phi-Procyon_lotor 0.0052 0.0028 0.0005 0.0053 0.0098 1.0112 1030
## phi-Dasypus_novemcinctus 0.0050 0.0029 0.0003 0.0051 0.0097 1.0144 676
## phi-Lynx_rufus 0.0046 0.0030 0.0001 0.0045 0.0097 1.0261 589
## phi-Didelphis_virginiana 0.0053 0.0028 0.0005 0.0054 0.0098 1.0080 892
## phi-Sylvilagus_floridanus 0.0051 0.0028 0.0004 0.0051 0.0098 1.0257 719
## phi-Meleagris_gallopavo 0.0048 0.0029 0.0002 0.0048 0.0097 1.0085 652
## phi-Sciurus_carolinensis 0.0051 0.0028 0.0003 0.0052 0.0098 1.0145 895
# Includes quadratic week covariate of detection and quadratic cogon for occupancy
ms_weekQ_cogonQ<- spMsPGOcc(
occ.formula = occ.cogon.quad,
det.formula = det.week.quad,
data = data_list,
priors = priors,
cov.model = "exponential",
NNGP = FALSE,
n.batch = 1000,
batch.length = 10,
n.burn = 3000,
n.thin = 2,
n.chains = 4,
n.report = 100
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## phi is not specified in initial values.
## Setting initial value to random values from the prior distribution
## sigma.sq is not specified in initial values.
## Setting initial values to random values from the prior distribution
## w is not specified in initial values.
## Setting initial value to 0
## ----------------------------------------
## Model description
## ----------------------------------------
## Spatial Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per chain: 10000 (1000 batches of length 10)
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## Using the exponential spatial correlation model.
##
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## Adaptive Metropolis with target acceptance rate: 43.0
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 60.0 1.56831
## 3 phi 40.0 1.56831
## 4 phi 10.0 1.41907
## 5 phi 60.0 1.56831
## 6 phi 90.0 1.50682
## 7 phi 70.0 1.33643
## 8 phi 80.0 1.50682
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.99372
## 2 phi 20.0 1.84043
## 3 phi 60.0 1.80399
## 4 phi 70.0 1.80399
## 5 phi 40.0 1.84043
## 6 phi 60.0 1.80399
## 7 phi 40.0 1.41907
## 8 phi 60.0 2.03399
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.84043
## 2 phi 30.0 1.66529
## 3 phi 30.0 1.91554
## 4 phi 10.0 1.63232
## 5 phi 20.0 1.91554
## 6 phi 40.0 1.91554
## 7 phi 50.0 1.73325
## 8 phi 60.0 1.76827
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.84043
## 2 phi 50.0 1.47698
## 3 phi 60.0 2.15977
## 4 phi 40.0 1.66529
## 5 phi 20.0 1.80399
## 6 phi 30.0 1.76827
## 7 phi 20.0 1.53726
## 8 phi 60.0 1.63232
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.99372
## 2 phi 70.0 1.59999
## 3 phi 50.0 2.07508
## 4 phi 40.0 1.18530
## 5 phi 50.0 1.91554
## 6 phi 20.0 1.99372
## 7 phi 80.0 1.59999
## 8 phi 10.0 1.80399
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.76827
## 2 phi 50.0 1.63232
## 3 phi 70.0 1.87761
## 4 phi 80.0 1.44773
## 5 phi 20.0 2.11700
## 6 phi 50.0 1.80399
## 7 phi 20.0 1.50682
## 8 phi 60.0 1.63232
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.87761
## 2 phi 0.0 1.73325
## 3 phi 30.0 1.80399
## 4 phi 40.0 1.47698
## 5 phi 30.0 1.95424
## 6 phi 30.0 1.95424
## 7 phi 20.0 1.50682
## 8 phi 30.0 1.36343
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.91554
## 2 phi 40.0 1.80399
## 3 phi 10.0 1.76827
## 4 phi 0.0 1.36343
## 5 phi 10.0 1.87761
## 6 phi 40.0 1.91554
## 7 phi 30.0 1.66529
## 8 phi 80.0 1.44773
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.87761
## 2 phi 80.0 1.80399
## 3 phi 20.0 1.84043
## 4 phi 40.0 1.59999
## 5 phi 50.0 1.69893
## 6 phi 0.0 1.91554
## 7 phi 50.0 1.69893
## 8 phi 50.0 1.80399
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.95424
## 2 phi 60.0 1.95424
## 3 phi 50.0 2.03399
## 4 phi 50.0 1.76827
## 5 phi 10.0 1.76827
## 6 phi 30.0 2.03399
## 7 phi 10.0 1.50682
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.80399
## 2 phi 60.0 1.91554
## 3 phi 80.0 1.69893
## 4 phi 70.0 1.69893
## 5 phi 30.0 1.99372
## 6 phi 40.0 1.80399
## 7 phi 30.0 1.76827
## 8 phi 40.0 1.76827
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 60.0 1.73325
## 3 phi 60.0 1.76827
## 4 phi 80.0 1.87761
## 5 phi 90.0 1.73325
## 6 phi 40.0 2.03399
## 7 phi 60.0 1.44773
## 8 phi 70.0 2.07508
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.99372
## 2 phi 40.0 1.63232
## 3 phi 50.0 1.76827
## 4 phi 90.0 1.69893
## 5 phi 60.0 1.76827
## 6 phi 30.0 2.11700
## 7 phi 40.0 1.59999
## 8 phi 50.0 1.76827
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 90.0 1.91554
## 2 phi 40.0 1.76827
## 3 phi 60.0 1.66529
## 4 phi 10.0 1.69893
## 5 phi 50.0 1.84043
## 6 phi 50.0 1.91554
## 7 phi 40.0 1.66529
## 8 phi 30.0 1.91554
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.84043
## 2 phi 50.0 1.80399
## 3 phi 30.0 1.59999
## 4 phi 70.0 1.87761
## 5 phi 50.0 1.80399
## 6 phi 50.0 1.69893
## 7 phi 70.0 1.63232
## 8 phi 70.0 1.63232
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.73325
## 2 phi 40.0 1.76827
## 3 phi 40.0 1.87761
## 4 phi 40.0 1.87761
## 5 phi 70.0 1.99372
## 6 phi 50.0 1.80399
## 7 phi 40.0 1.56831
## 8 phi 40.0 1.87761
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.84043
## 2 phi 40.0 1.76827
## 3 phi 0.0 1.84043
## 4 phi 60.0 1.91554
## 5 phi 60.0 1.69893
## 6 phi 50.0 1.91554
## 7 phi 40.0 1.66529
## 8 phi 30.0 1.76827
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.91554
## 2 phi 40.0 1.84043
## 3 phi 50.0 1.80399
## 4 phi 90.0 1.76827
## 5 phi 80.0 1.76827
## 6 phi 50.0 1.99372
## 7 phi 40.0 1.59999
## 8 phi 40.0 1.73325
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.87761
## 2 phi 40.0 1.80399
## 3 phi 70.0 1.91554
## 4 phi 30.0 1.99372
## 5 phi 10.0 2.11700
## 6 phi 30.0 2.11700
## 7 phi 20.0 1.59999
## 8 phi 60.0 1.36343
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.80399
## 2 phi 50.0 1.87761
## 3 phi 10.0 1.99372
## 4 phi 30.0 1.99372
## 5 phi 20.0 1.84043
## 6 phi 30.0 1.76827
## 7 phi 20.0 1.36343
## 8 phi 50.0 1.47698
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.76827
## 2 phi 50.0 2.07508
## 3 phi 30.0 2.20340
## 4 phi 40.0 1.76827
## 5 phi 30.0 1.36343
## 6 phi 10.0 1.73325
## 7 phi 70.0 1.53726
## 8 phi 50.0 1.80399
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.80399
## 2 phi 10.0 1.73325
## 3 phi 70.0 2.03399
## 4 phi 50.0 1.16183
## 5 phi 40.0 1.80399
## 6 phi 60.0 1.53726
## 7 phi 70.0 1.47698
## 8 phi 70.0 1.56831
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.87761
## 2 phi 50.0 1.63232
## 3 phi 30.0 1.95424
## 4 phi 40.0 1.59999
## 5 phi 20.0 1.66529
## 6 phi 80.0 1.69893
## 7 phi 60.0 1.80399
## 8 phi 30.0 1.47698
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.53726
## 2 phi 30.0 1.53726
## 3 phi 60.0 1.95424
## 4 phi 20.0 1.80399
## 5 phi 80.0 1.84043
## 6 phi 20.0 1.73325
## 7 phi 40.0 1.47698
## 8 phi 30.0 1.47698
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.76827
## 2 phi 40.0 1.56831
## 3 phi 70.0 1.99372
## 4 phi 10.0 1.84043
## 5 phi 50.0 1.73325
## 6 phi 60.0 1.87761
## 7 phi 30.0 1.56831
## 8 phi 20.0 1.41907
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.87761
## 2 phi 60.0 1.84043
## 3 phi 40.0 1.87761
## 4 phi 70.0 1.73325
## 5 phi 50.0 1.80399
## 6 phi 60.0 1.84043
## 7 phi 60.0 1.63232
## 8 phi 40.0 1.50682
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.76827
## 2 phi 40.0 1.44773
## 3 phi 50.0 1.91554
## 4 phi 30.0 1.69893
## 5 phi 40.0 1.76827
## 6 phi 50.0 1.91554
## 7 phi 60.0 1.63232
## 8 phi 10.0 1.66529
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 2.03399
## 2 phi 60.0 1.53726
## 3 phi 60.0 1.84043
## 4 phi 60.0 1.99372
## 5 phi 60.0 1.80399
## 6 phi 50.0 1.63232
## 7 phi 50.0 1.56831
## 8 phi 70.0 1.66529
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.76827
## 2 phi 40.0 1.80399
## 3 phi 20.0 1.99372
## 4 phi 70.0 1.59999
## 5 phi 60.0 1.80399
## 6 phi 40.0 1.66529
## 7 phi 40.0 1.63232
## 8 phi 40.0 1.56831
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.63232
## 2 phi 30.0 1.84043
## 3 phi 50.0 1.73325
## 4 phi 30.0 1.56831
## 5 phi 50.0 1.99372
## 6 phi 60.0 1.87761
## 7 phi 70.0 1.84043
## 8 phi 20.0 1.69893
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.76827
## 2 phi 20.0 1.87761
## 3 phi 30.0 1.80399
## 4 phi 20.0 1.80399
## 5 phi 50.0 1.99372
## 6 phi 70.0 1.66529
## 7 phi 20.0 1.84043
## 8 phi 20.0 1.63232
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.66529
## 2 phi 50.0 1.73325
## 3 phi 40.0 1.95424
## 4 phi 60.0 1.53726
## 5 phi 10.0 1.73325
## 6 phi 40.0 2.03399
## 7 phi 0.0 1.80399
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 50.0 1.69893
## 3 phi 40.0 2.11700
## 4 phi 70.0 1.76827
## 5 phi 60.0 2.03399
## 6 phi 30.0 2.11700
## 7 phi 40.0 1.91554
## 8 phi 20.0 1.66529
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.56831
## 2 phi 20.0 2.07508
## 3 phi 50.0 1.66529
## 4 phi 50.0 1.69893
## 5 phi 70.0 1.76827
## 6 phi 60.0 1.95424
## 7 phi 20.0 1.56831
## 8 phi 60.0 1.69893
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.87761
## 2 phi 40.0 2.03399
## 3 phi 70.0 1.99372
## 4 phi 40.0 1.59999
## 5 phi 60.0 2.03399
## 6 phi 40.0 2.15977
## 7 phi 70.0 1.66529
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.87761
## 2 phi 10.0 2.07508
## 3 phi 40.0 1.80399
## 4 phi 40.0 1.76827
## 5 phi 40.0 1.99372
## 6 phi 70.0 1.69893
## 7 phi 50.0 1.66529
## 8 phi 30.0 1.50682
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
summary(ms_weekQ_cogonQ)
##
## Call:
## spMsPGOcc(occ.formula = occ.cogon.quad, det.formula = det.week.quad,
## data = data_list, priors = priors, cov.model = "exponential",
## NNGP = FALSE, n.batch = 1000, batch.length = 10, n.report = 100,
## n.burn = 3000, n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 2.1305
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -1.2577 0.4361 -2.1027 -1.2562 -0.4021 1.0009 2922
## Avg_Cogongrass_Cover -0.6269 0.4017 -1.4242 -0.6273 0.1626 1.0028 2628
## I(Avg_Cogongrass_Cover^2) 0.8637 0.4160 0.1479 0.8254 1.8031 1.0027 1900
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7688 0.8891 0.0625 0.5126 3.0098 1.0049 5085
## Avg_Cogongrass_Cover 0.4490 0.6296 0.0418 0.2591 2.0637 1.0035 3381
## I(Avg_Cogongrass_Cover^2) 0.7570 1.3171 0.0469 0.3406 4.0987 1.0068 1390
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4242 0.2782 -2.9640 -2.4273 -1.8491 1.0006 9554
## week 0.1783 0.2029 -0.2263 0.1789 0.5806 1.0012 5321
## I(week^2) -0.2200 0.1218 -0.4664 -0.2160 0.0059 1.0037 4295
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.5517 0.4684 0.1352 0.4275 1.7222 1.0038 6520
## week 0.1988 0.2184 0.0332 0.1384 0.7390 1.0019 6061
## I(week^2) 0.0825 0.0853 0.0197 0.0592 0.2865 1.0345 2304
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans -0.8288 0.5827 -1.9337 -0.8397
## (Intercept)-Procyon_lotor -0.5271 0.6179 -1.7176 -0.5282
## (Intercept)-Dasypus_novemcinctus -1.3853 0.5238 -2.4673 -1.3714
## (Intercept)-Lynx_rufus -1.3524 0.6292 -2.6109 -1.3502
## (Intercept)-Didelphis_virginiana -1.8366 0.6068 -3.1533 -1.7931
## (Intercept)-Sylvilagus_floridanus -1.2286 0.5878 -2.4015 -1.2335
## (Intercept)-Meleagris_gallopavo -1.1859 0.6549 -2.5203 -1.1823
## (Intercept)-Sciurus_carolinensis -2.0646 0.6542 -3.4842 -2.0175
## Avg_Cogongrass_Cover-Canis_latrans -0.4456 0.5437 -1.4850 -0.4638
## Avg_Cogongrass_Cover-Procyon_lotor -0.6255 0.5317 -1.6699 -0.6298
## Avg_Cogongrass_Cover-Dasypus_novemcinctus -0.4846 0.4978 -1.4382 -0.4902
## Avg_Cogongrass_Cover-Lynx_rufus -0.5616 0.5689 -1.7096 -0.5639
## Avg_Cogongrass_Cover-Didelphis_virginiana -0.3302 0.5621 -1.3584 -0.3569
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -1.1101 0.6353 -2.5029 -1.0519
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.9534 0.6259 -2.2935 -0.9109
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.6450 0.5364 -1.7106 -0.6430
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.4850 0.9309 0.3151 1.2476
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.3946 0.8987 0.2979 1.1764
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 0.7234 0.3727 0.0108 0.7100
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.2822 0.6033 0.3660 1.1998
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.4766 0.4331 -0.3433 0.4707
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 0.7591 0.5195 -0.1126 0.7141
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 0.1953 0.6659 -1.2650 0.2395
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 0.8644 0.4017 0.1330 0.8432
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 0.3471 1.0039 2821
## (Intercept)-Procyon_lotor 0.6793 1.0046 2524
## (Intercept)-Dasypus_novemcinctus -0.4115 1.0002 4607
## (Intercept)-Lynx_rufus -0.1253 1.0009 3157
## (Intercept)-Didelphis_virginiana -0.7682 1.0038 3928
## (Intercept)-Sylvilagus_floridanus -0.0454 1.0020 4122
## (Intercept)-Meleagris_gallopavo 0.1198 1.0011 3115
## (Intercept)-Sciurus_carolinensis -0.9115 1.0021 3675
## Avg_Cogongrass_Cover-Canis_latrans 0.6887 1.0026 4586
## Avg_Cogongrass_Cover-Procyon_lotor 0.4311 1.0007 4673
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.5349 1.0010 4511
## Avg_Cogongrass_Cover-Lynx_rufus 0.5596 1.0009 3543
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.8723 1.0006 3910
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0285 1.0009 3068
## Avg_Cogongrass_Cover-Meleagris_gallopavo 0.1572 1.0013 3413
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4122 1.0007 4167
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 3.9339 1.0015 1052
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 3.9085 1.0010 1041
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.5021 1.0029 3852
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.7392 1.0025 1813
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.3526 1.0009 3336
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.9421 1.0057 2316
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 1.3528 1.0016 1594
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.7209 1.0005 3944
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.4678 0.1816 -2.8395 -2.4637 -2.1227 1.0039
## (Intercept)-Procyon_lotor -2.1827 0.1478 -2.4809 -2.1793 -1.8973 1.0007
## (Intercept)-Dasypus_novemcinctus -1.4983 0.1592 -1.8189 -1.4948 -1.1962 1.0000
## (Intercept)-Lynx_rufus -3.1572 0.3003 -3.7797 -3.1450 -2.6152 1.0028
## (Intercept)-Didelphis_virginiana -2.1938 0.2701 -2.7545 -2.1836 -1.6898 1.0018
## (Intercept)-Sylvilagus_floridanus -2.9929 0.2867 -3.5773 -2.9837 -2.4596 1.0001
## (Intercept)-Meleagris_gallopavo -3.0738 0.3306 -3.7712 -3.0554 -2.4776 1.0036
## (Intercept)-Sciurus_carolinensis -2.3420 0.2791 -2.9233 -2.3315 -1.8270 1.0013
## week-Canis_latrans 0.4496 0.2453 0.0003 0.4402 0.9596 1.0003
## week-Procyon_lotor 0.1601 0.1964 -0.2200 0.1582 0.5517 1.0004
## week-Dasypus_novemcinctus 0.0599 0.2132 -0.3649 0.0601 0.4841 1.0002
## week-Lynx_rufus 0.2704 0.2990 -0.2931 0.2646 0.8803 1.0008
## week-Didelphis_virginiana 0.0347 0.3137 -0.6191 0.0472 0.6181 1.0016
## week-Sylvilagus_floridanus 0.0597 0.2934 -0.5431 0.0673 0.6298 1.0015
## week-Meleagris_gallopavo -0.0999 0.3540 -0.8743 -0.0769 0.5241 1.0022
## week-Sciurus_carolinensis 0.5339 0.3377 -0.0581 0.5121 1.2767 1.0009
## I(week^2)-Canis_latrans -0.1959 0.1052 -0.4112 -0.1914 0.0004 1.0006
## I(week^2)-Procyon_lotor -0.1127 0.0871 -0.2876 -0.1121 0.0564 1.0003
## I(week^2)-Dasypus_novemcinctus -0.1510 0.1014 -0.3546 -0.1487 0.0432 1.0014
## I(week^2)-Lynx_rufus -0.2104 0.1499 -0.5255 -0.2034 0.0602 1.0008
## I(week^2)-Didelphis_virginiana -0.3701 0.2203 -0.8843 -0.3414 -0.0237 1.0150
## I(week^2)-Sylvilagus_floridanus -0.1685 0.1494 -0.4803 -0.1627 0.1070 1.0050
## I(week^2)-Meleagris_gallopavo -0.3777 0.2397 -0.9449 -0.3468 -0.0032 1.0117
## I(week^2)-Sciurus_carolinensis -0.1933 0.1394 -0.4886 -0.1873 0.0626 1.0026
## ESS
## (Intercept)-Canis_latrans 5300
## (Intercept)-Procyon_lotor 7388
## (Intercept)-Dasypus_novemcinctus 10257
## (Intercept)-Lynx_rufus 2560
## (Intercept)-Didelphis_virginiana 5452
## (Intercept)-Sylvilagus_floridanus 2869
## (Intercept)-Meleagris_gallopavo 2003
## (Intercept)-Sciurus_carolinensis 5650
## week-Canis_latrans 5872
## week-Procyon_lotor 7357
## week-Dasypus_novemcinctus 8920
## week-Lynx_rufus 5271
## week-Didelphis_virginiana 5276
## week-Sylvilagus_floridanus 5512
## week-Meleagris_gallopavo 3008
## week-Sciurus_carolinensis 5688
## I(week^2)-Canis_latrans 5835
## I(week^2)-Procyon_lotor 7239
## I(week^2)-Dasypus_novemcinctus 7808
## I(week^2)-Lynx_rufus 2966
## I(week^2)-Didelphis_virginiana 1950
## I(week^2)-Sylvilagus_floridanus 3644
## I(week^2)-Meleagris_gallopavo 1089
## I(week^2)-Sciurus_carolinensis 6369
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 1.0100 1.3357 0.1850 0.6363 4.1525 1.0228 1302
## sigma.sq-Procyon_lotor 1.4106 5.0962 0.1950 0.7037 6.1922 1.2762 883
## sigma.sq-Dasypus_novemcinctus 1.0515 1.4928 0.1861 0.6367 4.4112 1.0152 972
## sigma.sq-Lynx_rufus 1.0190 2.0294 0.1879 0.6146 4.0766 1.1400 955
## sigma.sq-Didelphis_virginiana 0.9502 1.3414 0.1759 0.5913 4.0780 1.0203 1138
## sigma.sq-Sylvilagus_floridanus 1.3236 6.0066 0.1800 0.6163 4.8758 1.1871 610
## sigma.sq-Meleagris_gallopavo 2.3303 4.3220 0.2206 1.1640 11.3010 1.0368 768
## sigma.sq-Sciurus_carolinensis 0.8826 0.9943 0.1754 0.5940 3.3908 1.0212 1247
## phi-Canis_latrans 0.0052 0.0028 0.0004 0.0053 0.0098 1.0061 1001
## phi-Procyon_lotor 0.0051 0.0028 0.0004 0.0052 0.0098 1.0171 983
## phi-Dasypus_novemcinctus 0.0053 0.0029 0.0003 0.0055 0.0098 1.0101 955
## phi-Lynx_rufus 0.0047 0.0030 0.0002 0.0046 0.0097 1.0329 526
## phi-Didelphis_virginiana 0.0053 0.0028 0.0005 0.0053 0.0098 1.0048 1032
## phi-Sylvilagus_floridanus 0.0051 0.0028 0.0003 0.0052 0.0098 1.0087 936
## phi-Meleagris_gallopavo 0.0047 0.0027 0.0003 0.0044 0.0097 1.0105 802
## phi-Sciurus_carolinensis 0.0046 0.0030 0.0002 0.0044 0.0097 1.0040 643
# Includes quadratic week and full covariates of detection and all covariates and coverage for occupancy
ms_fullQ_cover<- spMsPGOcc(
occ.formula = occ.cover,
det.formula = det.full.quad,
data = data_list,
priors = priors,
cov.model = "exponential",
NNGP = FALSE,
n.batch = 1000,
batch.length = 10,
n.burn = 3000,
n.thin = 2,
n.chains = 4,
n.report = 100
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## phi is not specified in initial values.
## Setting initial value to random values from the prior distribution
## sigma.sq is not specified in initial values.
## Setting initial values to random values from the prior distribution
## w is not specified in initial values.
## Setting initial value to 0
## ----------------------------------------
## Model description
## ----------------------------------------
## Spatial Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per chain: 10000 (1000 batches of length 10)
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## Using the exponential spatial correlation model.
##
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## Adaptive Metropolis with target acceptance rate: 43.0
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.41907
## 2 phi 10.0 1.56831
## 3 phi 50.0 1.73325
## 4 phi 20.0 1.39097
## 5 phi 60.0 1.28403
## 6 phi 40.0 1.63232
## 7 phi 60.0 1.53726
## 8 phi 60.0 1.56831
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.76827
## 2 phi 60.0 1.59999
## 3 phi 20.0 1.69893
## 4 phi 50.0 1.33643
## 5 phi 60.0 1.80399
## 6 phi 40.0 1.66529
## 7 phi 50.0 1.73325
## 8 phi 20.0 1.95424
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.95424
## 2 phi 30.0 1.99372
## 3 phi 50.0 1.76827
## 4 phi 50.0 1.59999
## 5 phi 40.0 1.80399
## 6 phi 70.0 1.76827
## 7 phi 20.0 1.59999
## 8 phi 50.0 1.44773
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.95424
## 2 phi 40.0 1.59999
## 3 phi 50.0 1.63232
## 4 phi 40.0 1.63232
## 5 phi 20.0 1.59999
## 6 phi 10.0 1.73325
## 7 phi 50.0 1.69893
## 8 phi 40.0 1.20925
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.87761
## 2 phi 30.0 1.84043
## 3 phi 50.0 1.80399
## 4 phi 50.0 1.53726
## 5 phi 20.0 1.80399
## 6 phi 30.0 1.80399
## 7 phi 70.0 1.59999
## 8 phi 20.0 1.50682
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.95424
## 2 phi 60.0 1.73325
## 3 phi 50.0 1.59999
## 4 phi 20.0 1.73325
## 5 phi 50.0 1.95424
## 6 phi 30.0 1.63232
## 7 phi 40.0 1.84043
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.87761
## 2 phi 40.0 1.76827
## 3 phi 50.0 1.66529
## 4 phi 40.0 1.69893
## 5 phi 20.0 2.11700
## 6 phi 20.0 1.76827
## 7 phi 50.0 1.76827
## 8 phi 20.0 1.87761
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.80399
## 2 phi 60.0 1.76827
## 3 phi 60.0 2.11700
## 4 phi 30.0 1.84043
## 5 phi 70.0 1.59999
## 6 phi 50.0 1.73325
## 7 phi 60.0 1.69893
## 8 phi 30.0 1.59999
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.73325
## 2 phi 30.0 1.87761
## 3 phi 70.0 2.15977
## 4 phi 50.0 1.66529
## 5 phi 30.0 1.80399
## 6 phi 60.0 1.69893
## 7 phi 20.0 1.63232
## 8 phi 60.0 1.56831
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.95424
## 2 phi 70.0 1.73325
## 3 phi 60.0 1.99372
## 4 phi 40.0 1.66529
## 5 phi 60.0 1.80399
## 6 phi 70.0 1.73325
## 7 phi 30.0 1.59999
## 8 phi 80.0 1.39097
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 2.03399
## 2 phi 50.0 1.69893
## 3 phi 80.0 2.03399
## 4 phi 70.0 1.41907
## 5 phi 40.0 1.73325
## 6 phi 60.0 1.76827
## 7 phi 60.0 1.59999
## 8 phi 60.0 1.73325
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 30.0 1.76827
## 3 phi 20.0 2.07508
## 4 phi 40.0 1.47698
## 5 phi 70.0 1.69893
## 6 phi 70.0 1.87761
## 7 phi 0.0 1.95424
## 8 phi 40.0 1.63232
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.50682
## 2 phi 40.0 1.91554
## 3 phi 60.0 1.95424
## 4 phi 30.0 1.59999
## 5 phi 60.0 1.87761
## 6 phi 50.0 1.76827
## 7 phi 70.0 1.53726
## 8 phi 60.0 1.95424
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 20.0 1.95424
## 3 phi 30.0 1.87761
## 4 phi 30.0 1.80399
## 5 phi 30.0 1.84043
## 6 phi 60.0 1.80399
## 7 phi 40.0 1.56831
## 8 phi 0.0 1.59999
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.87761
## 2 phi 30.0 2.15977
## 3 phi 10.0 1.63232
## 4 phi 50.0 1.69893
## 5 phi 80.0 1.76827
## 6 phi 80.0 1.63232
## 7 phi 30.0 1.84043
## 8 phi 40.0 1.53726
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.84043
## 2 phi 60.0 1.91554
## 3 phi 40.0 1.91554
## 4 phi 60.0 1.87761
## 5 phi 70.0 1.84043
## 6 phi 40.0 1.66529
## 7 phi 60.0 1.95424
## 8 phi 40.0 1.87761
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.69893
## 2 phi 60.0 2.11700
## 3 phi 20.0 1.99372
## 4 phi 20.0 1.76827
## 5 phi 40.0 1.76827
## 6 phi 30.0 2.11700
## 7 phi 20.0 1.80399
## 8 phi 50.0 2.03399
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.80399
## 2 phi 40.0 1.91554
## 3 phi 70.0 1.80399
## 4 phi 50.0 1.59999
## 5 phi 70.0 1.91554
## 6 phi 40.0 1.95424
## 7 phi 30.0 1.87761
## 8 phi 70.0 1.56831
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.99372
## 2 phi 30.0 1.69893
## 3 phi 20.0 1.80399
## 4 phi 60.0 1.47698
## 5 phi 50.0 2.20340
## 6 phi 50.0 2.03399
## 7 phi 60.0 1.76827
## 8 phi 50.0 1.84043
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.84043
## 2 phi 40.0 1.80399
## 3 phi 40.0 1.91554
## 4 phi 30.0 1.73325
## 5 phi 60.0 2.24791
## 6 phi 50.0 1.87761
## 7 phi 50.0 1.84043
## 8 phi 70.0 1.99372
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 2.15977
## 2 phi 60.0 1.99372
## 3 phi 10.0 2.07508
## 4 phi 10.0 1.69893
## 5 phi 60.0 1.69893
## 6 phi 30.0 1.95424
## 7 phi 30.0 1.99372
## 8 phi 20.0 1.95424
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.91554
## 2 phi 50.0 1.95424
## 3 phi 20.0 2.07508
## 4 phi 0.0 1.80399
## 5 phi 40.0 1.87761
## 6 phi 40.0 1.80399
## 7 phi 40.0 1.80399
## 8 phi 60.0 1.66529
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.66529
## 2 phi 80.0 1.87761
## 3 phi 20.0 1.73325
## 4 phi 70.0 2.03399
## 5 phi 40.0 1.84043
## 6 phi 60.0 1.66529
## 7 phi 0.0 1.63232
## 8 phi 40.0 1.66529
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.59999
## 2 phi 50.0 1.76827
## 3 phi 30.0 1.53726
## 4 phi 40.0 1.50682
## 5 phi 30.0 2.15977
## 6 phi 80.0 1.80399
## 7 phi 70.0 1.69893
## 8 phi 80.0 1.80399
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.66529
## 2 phi 60.0 1.95424
## 3 phi 60.0 1.69893
## 4 phi 50.0 1.47698
## 5 phi 40.0 1.84043
## 6 phi 80.0 1.73325
## 7 phi 30.0 1.73325
## 8 phi 20.0 1.73325
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.84043
## 2 phi 70.0 2.20340
## 3 phi 50.0 1.73325
## 4 phi 30.0 1.59999
## 5 phi 50.0 1.73325
## 6 phi 40.0 1.84043
## 7 phi 10.0 1.80399
## 8 phi 70.0 1.84043
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.80399
## 2 phi 70.0 1.91554
## 3 phi 70.0 1.95424
## 4 phi 60.0 1.76827
## 5 phi 50.0 1.84043
## 6 phi 60.0 1.73325
## 7 phi 30.0 1.87761
## 8 phi 50.0 1.95424
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.59999
## 2 phi 20.0 2.03399
## 3 phi 40.0 1.59999
## 4 phi 30.0 1.56831
## 5 phi 40.0 1.95424
## 6 phi 70.0 2.24791
## 7 phi 40.0 1.69893
## 8 phi 60.0 1.76827
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.53726
## 2 phi 20.0 1.84043
## 3 phi 70.0 1.87761
## 4 phi 40.0 1.41907
## 5 phi 60.0 1.80399
## 6 phi 10.0 1.91554
## 7 phi 30.0 1.41907
## 8 phi 40.0 1.76827
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.69893
## 2 phi 60.0 1.63232
## 3 phi 40.0 1.80399
## 4 phi 50.0 1.53726
## 5 phi 70.0 1.66529
## 6 phi 10.0 1.84043
## 7 phi 50.0 1.87761
## 8 phi 60.0 2.11700
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.73325
## 2 phi 20.0 1.73325
## 3 phi 100.0 1.69893
## 4 phi 40.0 1.50682
## 5 phi 10.0 1.66529
## 6 phi 40.0 1.80399
## 7 phi 70.0 1.87761
## 8 phi 50.0 2.03399
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.76827
## 2 phi 60.0 1.69893
## 3 phi 60.0 1.95424
## 4 phi 80.0 1.59999
## 5 phi 40.0 1.59999
## 6 phi 40.0 2.24791
## 7 phi 80.0 1.53726
## 8 phi 20.0 1.66529
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.99372
## 2 phi 50.0 1.99372
## 3 phi 60.0 1.87761
## 4 phi 40.0 1.76827
## 5 phi 20.0 1.59999
## 6 phi 50.0 1.73325
## 7 phi 60.0 1.41907
## 8 phi 30.0 1.59999
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.95424
## 2 phi 30.0 1.84043
## 3 phi 30.0 1.76827
## 4 phi 80.0 1.59999
## 5 phi 30.0 1.69893
## 6 phi 60.0 1.76827
## 7 phi 50.0 1.47698
## 8 phi 60.0 1.73325
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.95424
## 2 phi 50.0 1.59999
## 3 phi 60.0 1.91554
## 4 phi 50.0 1.66529
## 5 phi 30.0 1.66529
## 6 phi 30.0 1.91554
## 7 phi 30.0 1.76827
## 8 phi 40.0 2.07508
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.95424
## 2 phi 20.0 1.69893
## 3 phi 40.0 1.80399
## 4 phi 20.0 1.59999
## 5 phi 50.0 1.69893
## 6 phi 10.0 1.66529
## 7 phi 60.0 1.69893
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
summary(ms_fullQ_cover)
##
## Call:
## spMsPGOcc(occ.formula = occ.cover, det.formula = det.full.quad,
## data = data_list, priors = priors, cov.model = "exponential",
## NNGP = FALSE, n.batch = 1000, batch.length = 10, n.report = 100,
## n.burn = 3000, n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 2.5623
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0738 0.4695 -0.9403 -0.0969 0.9521 1.0044 1094
## Avg_Cogongrass_Cover 0.0259 0.3981 -0.7793 0.0330 0.8003 1.0004 2649
## total_shrub_cover -0.9538 0.4755 -1.9998 -0.9201 -0.1098 1.0068 1282
## avg_veg_height 0.0913 0.4319 -0.7390 0.0887 0.9535 1.0020 1267
## CWD_presence -0.1016 0.2934 -0.6737 -0.1038 0.4815 1.0067 3734
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.9262 1.1485 0.0764 0.5948 3.7433 1.0019 3368
## Avg_Cogongrass_Cover 0.5827 0.8748 0.0446 0.3172 2.6793 1.0086 2630
## total_shrub_cover 0.8202 1.2447 0.0548 0.4502 3.7677 1.0106 1257
## avg_veg_height 0.4741 0.8407 0.0402 0.2415 2.3032 1.0628 1225
## CWD_presence 0.2940 0.3622 0.0359 0.1810 1.2427 1.0052 5148
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6438 0.2984 -3.2302 -2.6461 -2.0307 1.0016 3822
## shrub_cover 0.5090 0.3461 -0.1733 0.5086 1.1938 1.0037 4725
## veg_height 0.0811 0.2107 -0.3476 0.0819 0.5046 1.0015 4143
## week 0.1849 0.2041 -0.2300 0.1858 0.5858 1.0012 5192
## I(week^2) -0.2234 0.1232 -0.4837 -0.2195 0.0058 1.0053 4119
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.5895 0.5255 0.1272 0.4447 1.9585 1.0016 4323
## shrub_cover 0.8140 0.8121 0.1489 0.6033 2.7156 1.0092 2462
## veg_height 0.2705 0.2567 0.0604 0.2035 0.8890 1.0045 6324
## week 0.2033 0.2142 0.0335 0.1411 0.7365 1.0039 4527
## I(week^2) 0.0823 0.0873 0.0196 0.0596 0.2868 1.0073 3837
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.4694 0.5965 -0.5671 0.4181
## (Intercept)-Procyon_lotor 0.7568 0.5942 -0.2898 0.7158
## (Intercept)-Dasypus_novemcinctus -0.2838 0.5987 -1.3761 -0.3222
## (Intercept)-Lynx_rufus 0.0984 0.7017 -1.1349 0.0408
## (Intercept)-Didelphis_virginiana -0.7486 0.6906 -2.1151 -0.7441
## (Intercept)-Sylvilagus_floridanus 0.0826 0.7215 -1.1909 0.0250
## (Intercept)-Meleagris_gallopavo -0.3423 0.7850 -1.8022 -0.3781
## (Intercept)-Sciurus_carolinensis -0.6664 0.7052 -2.0663 -0.6600
## Avg_Cogongrass_Cover-Canis_latrans 0.3947 0.5791 -0.6216 0.3484
## Avg_Cogongrass_Cover-Procyon_lotor -0.0178 0.5021 -1.0163 -0.0140
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.1699 0.5185 -0.8195 0.1604
## Avg_Cogongrass_Cover-Lynx_rufus 0.4364 0.5920 -0.5894 0.3839
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.1373 0.5537 -0.9448 0.1297
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.4494 0.6299 -1.8694 -0.3933
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.5383 0.7579 -2.2777 -0.4516
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.0507 0.5359 -1.0247 0.0551
## total_shrub_cover-Canis_latrans -0.1496 0.6662 -1.3300 -0.1902
## total_shrub_cover-Procyon_lotor -1.2076 0.5713 -2.5143 -1.1493
## total_shrub_cover-Dasypus_novemcinctus -0.6665 0.6769 -2.2402 -0.6021
## total_shrub_cover-Lynx_rufus -1.2216 0.7685 -2.9048 -1.1569
## total_shrub_cover-Didelphis_virginiana -1.0186 0.7227 -2.6968 -0.9392
## total_shrub_cover-Sylvilagus_floridanus -1.2208 0.8328 -3.2331 -1.1161
## total_shrub_cover-Meleagris_gallopavo -1.4029 0.7787 -3.2008 -1.3108
## total_shrub_cover-Sciurus_carolinensis -1.0534 0.7641 -2.8801 -0.9643
## avg_veg_height-Canis_latrans 0.1284 0.5361 -0.9045 0.1132
## avg_veg_height-Procyon_lotor 0.1009 0.5147 -0.8943 0.0968
## avg_veg_height-Dasypus_novemcinctus 0.3472 0.5465 -0.6178 0.3105
## avg_veg_height-Lynx_rufus -0.0209 0.6580 -1.3909 -0.0004
## avg_veg_height-Didelphis_virginiana -0.0086 0.5646 -1.1486 0.0017
## avg_veg_height-Sylvilagus_floridanus 0.0051 0.5900 -1.1787 0.0001
## avg_veg_height-Meleagris_gallopavo -0.2725 0.8584 -2.2578 -0.1882
## avg_veg_height-Sciurus_carolinensis 0.4808 0.5955 -0.5510 0.4342
## CWD_presence-Canis_latrans 0.2351 0.4581 -0.5433 0.1971
## CWD_presence-Procyon_lotor -0.2466 0.3879 -1.0401 -0.2351
## CWD_presence-Dasypus_novemcinctus -0.0868 0.3907 -0.8650 -0.0825
## CWD_presence-Lynx_rufus -0.0186 0.4546 -0.8811 -0.0342
## CWD_presence-Didelphis_virginiana -0.0429 0.4355 -0.9006 -0.0471
## CWD_presence-Sylvilagus_floridanus -0.3689 0.4659 -1.3925 -0.3325
## CWD_presence-Meleagris_gallopavo -0.1668 0.4910 -1.1740 -0.1618
## CWD_presence-Sciurus_carolinensis -0.1195 0.4233 -0.9933 -0.1107
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 1.7739 1.0038 2249
## (Intercept)-Procyon_lotor 2.0331 1.0021 2714
## (Intercept)-Dasypus_novemcinctus 1.0671 1.0054 974
## (Intercept)-Lynx_rufus 1.6577 1.0043 1673
## (Intercept)-Didelphis_virginiana 0.6115 1.0035 1164
## (Intercept)-Sylvilagus_floridanus 1.6842 1.0070 1022
## (Intercept)-Meleagris_gallopavo 1.3393 1.0012 1199
## (Intercept)-Sciurus_carolinensis 0.7316 1.0065 1298
## Avg_Cogongrass_Cover-Canis_latrans 1.6757 1.0035 3214
## Avg_Cogongrass_Cover-Procyon_lotor 0.9779 1.0008 3906
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.2128 1.0009 3813
## Avg_Cogongrass_Cover-Lynx_rufus 1.7611 1.0065 3716
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.2775 1.0003 3928
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6373 1.0017 2662
## Avg_Cogongrass_Cover-Meleagris_gallopavo 0.7146 1.0085 2095
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.1132 1.0002 3835
## total_shrub_cover-Canis_latrans 1.3243 1.0021 1713
## total_shrub_cover-Procyon_lotor -0.2465 1.0032 1924
## total_shrub_cover-Dasypus_novemcinctus 0.4769 1.0040 1059
## total_shrub_cover-Lynx_rufus 0.1247 1.0052 1614
## total_shrub_cover-Didelphis_virginiana 0.1733 1.0089 1030
## total_shrub_cover-Sylvilagus_floridanus 0.1396 1.0040 919
## total_shrub_cover-Meleagris_gallopavo -0.1231 1.0053 1547
## total_shrub_cover-Sciurus_carolinensis 0.2124 1.0084 1142
## avg_veg_height-Canis_latrans 1.2617 1.0021 2173
## avg_veg_height-Procyon_lotor 1.1421 1.0015 2773
## avg_veg_height-Dasypus_novemcinctus 1.5460 1.0015 1696
## avg_veg_height-Lynx_rufus 1.2355 1.0050 1989
## avg_veg_height-Didelphis_virginiana 1.0790 1.0028 1958
## avg_veg_height-Sylvilagus_floridanus 1.1829 1.0020 2118
## avg_veg_height-Meleagris_gallopavo 1.1787 1.0140 1117
## avg_veg_height-Sciurus_carolinensis 1.7986 1.0018 1926
## CWD_presence-Canis_latrans 1.2384 1.0008 4331
## CWD_presence-Procyon_lotor 0.4801 1.0020 6772
## CWD_presence-Dasypus_novemcinctus 0.6771 1.0022 6489
## CWD_presence-Lynx_rufus 0.9268 1.0043 5113
## CWD_presence-Didelphis_virginiana 0.8422 1.0013 5592
## CWD_presence-Sylvilagus_floridanus 0.4564 1.0063 5294
## CWD_presence-Meleagris_gallopavo 0.7993 1.0054 4131
## CWD_presence-Sciurus_carolinensis 0.7018 1.0028 5834
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.6184 0.2033 -3.0275 -2.6128 -2.2368 1.0069
## (Intercept)-Procyon_lotor -2.2086 0.1536 -2.5191 -2.2064 -1.9150 1.0004
## (Intercept)-Dasypus_novemcinctus -1.7458 0.2026 -2.1524 -1.7403 -1.3618 1.0029
## (Intercept)-Lynx_rufus -3.3166 0.3423 -4.0328 -3.3001 -2.6957 1.0014
## (Intercept)-Didelphis_virginiana -2.6026 0.3227 -3.2530 -2.5980 -1.9775 1.0049
## (Intercept)-Sylvilagus_floridanus -3.1377 0.2929 -3.7330 -3.1299 -2.5925 1.0026
## (Intercept)-Meleagris_gallopavo -3.3884 0.5166 -4.4379 -3.3714 -2.4272 1.0029
## (Intercept)-Sciurus_carolinensis -2.7001 0.3358 -3.3849 -2.6924 -2.0650 1.0073
## shrub_cover-Canis_latrans -0.2765 0.2385 -0.7472 -0.2740 0.1825 1.0018
## shrub_cover-Procyon_lotor 0.3130 0.1580 -0.0013 0.3153 0.6164 1.0002
## shrub_cover-Dasypus_novemcinctus 1.1211 0.3639 0.4292 1.1204 1.8234 1.0032
## shrub_cover-Lynx_rufus 0.1125 0.3863 -0.7181 0.1367 0.8082 1.0083
## shrub_cover-Didelphis_virginiana 1.3254 0.4370 0.5123 1.3082 2.2456 1.0048
## shrub_cover-Sylvilagus_floridanus 0.7306 0.4409 -0.1786 0.7456 1.5651 1.0048
## shrub_cover-Meleagris_gallopavo -0.3205 0.4737 -1.2544 -0.3141 0.5816 1.0045
## shrub_cover-Sciurus_carolinensis 1.2319 0.4363 0.3620 1.2334 2.0772 1.0102
## veg_height-Canis_latrans -0.6087 0.1953 -1.0002 -0.6047 -0.2375 1.0021
## veg_height-Procyon_lotor 0.3463 0.1223 0.1053 0.3467 0.5875 1.0006
## veg_height-Dasypus_novemcinctus 0.2810 0.1423 0.0050 0.2792 0.5677 1.0021
## veg_height-Lynx_rufus 0.0542 0.2530 -0.4560 0.0582 0.5339 1.0003
## veg_height-Didelphis_virginiana 0.4573 0.2590 -0.0238 0.4454 0.9904 1.0021
## veg_height-Sylvilagus_floridanus 0.0836 0.2511 -0.4056 0.0802 0.5639 1.0004
## veg_height-Meleagris_gallopavo -0.0517 0.4829 -0.9884 -0.0510 0.9053 1.0034
## veg_height-Sciurus_carolinensis 0.1037 0.2292 -0.3407 0.1012 0.5605 1.0015
## week-Canis_latrans 0.4572 0.2511 -0.0041 0.4456 0.9814 1.0012
## week-Procyon_lotor 0.1565 0.1973 -0.2335 0.1539 0.5474 1.0011
## week-Dasypus_novemcinctus 0.0594 0.2135 -0.3587 0.0620 0.4763 1.0008
## week-Lynx_rufus 0.2793 0.2990 -0.2820 0.2713 0.8924 1.0003
## week-Didelphis_virginiana 0.0483 0.3155 -0.6046 0.0586 0.6461 1.0059
## week-Sylvilagus_floridanus 0.0517 0.3004 -0.5640 0.0605 0.6270 1.0016
## week-Meleagris_gallopavo -0.0986 0.3490 -0.8619 -0.0760 0.5235 1.0025
## week-Sciurus_carolinensis 0.5446 0.3397 -0.0540 0.5244 1.2670 1.0019
## I(week^2)-Canis_latrans -0.1965 0.1059 -0.4114 -0.1934 0.0031 1.0027
## I(week^2)-Procyon_lotor -0.1099 0.0877 -0.2846 -0.1088 0.0611 1.0006
## I(week^2)-Dasypus_novemcinctus -0.1528 0.1011 -0.3571 -0.1506 0.0424 1.0019
## I(week^2)-Lynx_rufus -0.2051 0.1467 -0.5068 -0.1989 0.0650 1.0049
## I(week^2)-Didelphis_virginiana -0.3824 0.2133 -0.8732 -0.3601 -0.0314 1.0061
## I(week^2)-Sylvilagus_floridanus -0.1650 0.1510 -0.4808 -0.1604 0.1150 1.0043
## I(week^2)-Meleagris_gallopavo -0.3785 0.2379 -0.9300 -0.3501 0.0042 1.0051
## I(week^2)-Sciurus_carolinensis -0.1989 0.1397 -0.4897 -0.1934 0.0582 1.0004
## ESS
## (Intercept)-Canis_latrans 2995
## (Intercept)-Procyon_lotor 7283
## (Intercept)-Dasypus_novemcinctus 2172
## (Intercept)-Lynx_rufus 1728
## (Intercept)-Didelphis_virginiana 1622
## (Intercept)-Sylvilagus_floridanus 1976
## (Intercept)-Meleagris_gallopavo 1151
## (Intercept)-Sciurus_carolinensis 1774
## shrub_cover-Canis_latrans 2511
## shrub_cover-Procyon_lotor 6836
## shrub_cover-Dasypus_novemcinctus 1392
## shrub_cover-Lynx_rufus 1720
## shrub_cover-Didelphis_virginiana 1083
## shrub_cover-Sylvilagus_floridanus 1185
## shrub_cover-Meleagris_gallopavo 1478
## shrub_cover-Sciurus_carolinensis 1284
## veg_height-Canis_latrans 3015
## veg_height-Procyon_lotor 7694
## veg_height-Dasypus_novemcinctus 6752
## veg_height-Lynx_rufus 2616
## veg_height-Didelphis_virginiana 3551
## veg_height-Sylvilagus_floridanus 2495
## veg_height-Meleagris_gallopavo 1180
## veg_height-Sciurus_carolinensis 4133
## week-Canis_latrans 4742
## week-Procyon_lotor 7560
## week-Dasypus_novemcinctus 8480
## week-Lynx_rufus 4402
## week-Didelphis_virginiana 4038
## week-Sylvilagus_floridanus 4550
## week-Meleagris_gallopavo 2708
## week-Sciurus_carolinensis 4590
## I(week^2)-Canis_latrans 4839
## I(week^2)-Procyon_lotor 7375
## I(week^2)-Dasypus_novemcinctus 7606
## I(week^2)-Lynx_rufus 3075
## I(week^2)-Didelphis_virginiana 1725
## I(week^2)-Sylvilagus_floridanus 3394
## I(week^2)-Meleagris_gallopavo 1087
## I(week^2)-Sciurus_carolinensis 4997
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 1.8066 4.4857 0.1956 0.7902 9.7553 1.1632 721
## sigma.sq-Procyon_lotor 1.2909 4.6847 0.1879 0.6296 4.9274 1.3421 369
## sigma.sq-Dasypus_novemcinctus 1.5712 7.3102 0.1855 0.6760 6.2444 1.3602 410
## sigma.sq-Lynx_rufus 0.9912 1.2510 0.1844 0.6266 4.2171 1.0100 1246
## sigma.sq-Didelphis_virginiana 1.1800 1.7034 0.1887 0.6766 5.5094 1.0319 982
## sigma.sq-Sylvilagus_floridanus 1.1484 1.9039 0.1876 0.6440 4.9464 1.0490 747
## sigma.sq-Meleagris_gallopavo 1.3137 2.8715 0.1852 0.6623 6.5469 1.0286 886
## sigma.sq-Sciurus_carolinensis 1.1875 2.0492 0.1865 0.6627 5.3167 1.0511 903
## phi-Canis_latrans 0.0051 0.0028 0.0006 0.0051 0.0097 1.0300 1068
## phi-Procyon_lotor 0.0051 0.0029 0.0002 0.0052 0.0097 1.0072 679
## phi-Dasypus_novemcinctus 0.0052 0.0029 0.0003 0.0052 0.0098 1.0020 897
## phi-Lynx_rufus 0.0047 0.0030 0.0002 0.0047 0.0098 1.0011 554
## phi-Didelphis_virginiana 0.0050 0.0029 0.0003 0.0051 0.0097 1.0264 788
## phi-Sylvilagus_floridanus 0.0049 0.0029 0.0002 0.0049 0.0098 1.0032 748
## phi-Meleagris_gallopavo 0.0047 0.0029 0.0002 0.0045 0.0097 1.0056 672
## phi-Sciurus_carolinensis 0.0048 0.0029 0.0003 0.0047 0.0096 1.0369 640
#Includes quadratic week and full covariates of detection and only foraging for occupancy
ms_fullQ_forage<- spMsPGOcc(
occ.formula = occ.forage,
det.formula = det.full.quad,
data = data_list,
priors = priors,
cov.model = "exponential",
NNGP = FALSE,
n.batch = 1000,
batch.length = 10,
n.burn = 3000,
n.thin = 2,
n.chains = 4,
n.report = 100
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## phi is not specified in initial values.
## Setting initial value to random values from the prior distribution
## sigma.sq is not specified in initial values.
## Setting initial values to random values from the prior distribution
## w is not specified in initial values.
## Setting initial value to 0
## ----------------------------------------
## Model description
## ----------------------------------------
## Spatial Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per chain: 10000 (1000 batches of length 10)
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## Using the exponential spatial correlation model.
##
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## Adaptive Metropolis with target acceptance rate: 43.0
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.53726
## 2 phi 40.0 1.56831
## 3 phi 40.0 1.20925
## 4 phi 40.0 1.69893
## 5 phi 70.0 1.33643
## 6 phi 50.0 1.59999
## 7 phi 30.0 1.39097
## 8 phi 60.0 1.53726
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.33643
## 2 phi 50.0 1.91554
## 3 phi 60.0 1.59999
## 4 phi 50.0 1.73325
## 5 phi 70.0 1.53726
## 6 phi 40.0 1.47698
## 7 phi 10.0 1.73325
## 8 phi 40.0 1.69893
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.66529
## 2 phi 40.0 1.91554
## 3 phi 10.0 1.76827
## 4 phi 30.0 1.36343
## 5 phi 60.0 1.59999
## 6 phi 70.0 1.76827
## 7 phi 50.0 1.66529
## 8 phi 50.0 2.07508
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.95424
## 2 phi 30.0 1.66529
## 3 phi 40.0 2.03399
## 4 phi 80.0 1.84043
## 5 phi 60.0 1.53726
## 6 phi 20.0 1.76827
## 7 phi 70.0 1.76827
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.80399
## 2 phi 50.0 1.66529
## 3 phi 80.0 2.03399
## 4 phi 50.0 1.53726
## 5 phi 70.0 1.73325
## 6 phi 30.0 1.84043
## 7 phi 50.0 1.91554
## 8 phi 70.0 2.15977
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.69893
## 2 phi 30.0 1.69893
## 3 phi 40.0 2.15977
## 4 phi 90.0 1.87761
## 5 phi 60.0 2.11700
## 6 phi 40.0 1.73325
## 7 phi 30.0 1.91554
## 8 phi 30.0 1.63232
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.84043
## 2 phi 70.0 1.99372
## 3 phi 20.0 1.95424
## 4 phi 50.0 2.03399
## 5 phi 50.0 1.87761
## 6 phi 70.0 1.76827
## 7 phi 30.0 1.76827
## 8 phi 70.0 1.56831
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.87761
## 2 phi 50.0 2.15977
## 3 phi 50.0 2.15977
## 4 phi 30.0 2.07508
## 5 phi 30.0 1.84043
## 6 phi 30.0 1.76827
## 7 phi 40.0 1.95424
## 8 phi 70.0 1.63232
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.56831
## 2 phi 30.0 1.95424
## 3 phi 40.0 2.07508
## 4 phi 30.0 1.91554
## 5 phi 60.0 1.80399
## 6 phi 50.0 1.80399
## 7 phi 50.0 1.91554
## 8 phi 20.0 1.59999
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.73325
## 2 phi 20.0 1.84043
## 3 phi 10.0 2.03399
## 4 phi 10.0 1.69893
## 5 phi 80.0 1.80399
## 6 phi 20.0 1.47698
## 7 phi 40.0 1.63232
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.80399
## 2 phi 30.0 1.95424
## 3 phi 20.0 2.03399
## 4 phi 20.0 1.39097
## 5 phi 0.0 1.84043
## 6 phi 60.0 1.95424
## 7 phi 30.0 1.69893
## 8 phi 30.0 1.63232
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.84043
## 2 phi 10.0 1.84043
## 3 phi 50.0 1.91554
## 4 phi 30.0 1.80399
## 5 phi 60.0 2.07508
## 6 phi 40.0 1.95424
## 7 phi 30.0 1.73325
## 8 phi 70.0 1.91554
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 60.0 1.91554
## 3 phi 50.0 1.91554
## 4 phi 70.0 1.59999
## 5 phi 40.0 1.80399
## 6 phi 50.0 1.87761
## 7 phi 40.0 1.76827
## 8 phi 30.0 2.29332
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.53726
## 2 phi 30.0 1.91554
## 3 phi 10.0 1.91554
## 4 phi 10.0 1.66529
## 5 phi 30.0 1.95424
## 6 phi 30.0 2.07508
## 7 phi 50.0 1.80399
## 8 phi 0.0 1.87761
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 50.0 1.95424
## 3 phi 50.0 2.07508
## 4 phi 80.0 1.69893
## 5 phi 40.0 2.03399
## 6 phi 50.0 1.91554
## 7 phi 60.0 1.66529
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.76827
## 2 phi 40.0 2.03399
## 3 phi 80.0 1.99372
## 4 phi 50.0 1.63232
## 5 phi 40.0 1.84043
## 6 phi 50.0 1.80399
## 7 phi 40.0 1.73325
## 8 phi 0.0 1.99372
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 40.0 1.87761
## 3 phi 30.0 1.36343
## 4 phi 70.0 1.69893
## 5 phi 30.0 1.73325
## 6 phi 50.0 2.11700
## 7 phi 30.0 1.84043
## 8 phi 10.0 1.69893
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.69893
## 2 phi 10.0 1.95424
## 3 phi 60.0 1.76827
## 4 phi 20.0 1.69893
## 5 phi 40.0 1.53726
## 6 phi 20.0 2.11700
## 7 phi 40.0 1.76827
## 8 phi 50.0 1.73325
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 40.0 1.95424
## 3 phi 30.0 1.80399
## 4 phi 30.0 1.50682
## 5 phi 50.0 1.99372
## 6 phi 60.0 1.80399
## 7 phi 70.0 1.66529
## 8 phi 60.0 1.87761
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.95424
## 2 phi 20.0 1.87761
## 3 phi 60.0 1.95424
## 4 phi 50.0 1.80399
## 5 phi 50.0 1.84043
## 6 phi 70.0 1.87761
## 7 phi 60.0 1.87761
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.91554
## 2 phi 60.0 1.66529
## 3 phi 40.0 1.95424
## 4 phi 30.0 1.69893
## 5 phi 50.0 1.59999
## 6 phi 50.0 1.87761
## 7 phi 40.0 1.76827
## 8 phi 30.0 1.76827
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.69893
## 2 phi 50.0 1.76827
## 3 phi 50.0 1.99372
## 4 phi 50.0 1.76827
## 5 phi 30.0 1.80399
## 6 phi 70.0 1.95424
## 7 phi 70.0 1.66529
## 8 phi 70.0 1.47698
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.84043
## 2 phi 10.0 1.76827
## 3 phi 10.0 1.95424
## 4 phi 60.0 2.03399
## 5 phi 50.0 1.84043
## 6 phi 30.0 2.07508
## 7 phi 60.0 1.50682
## 8 phi 50.0 1.47698
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.76827
## 2 phi 40.0 1.91554
## 3 phi 70.0 1.87761
## 4 phi 20.0 1.56831
## 5 phi 50.0 1.73325
## 6 phi 30.0 1.95424
## 7 phi 60.0 1.56831
## 8 phi 80.0 1.80399
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.66529
## 2 phi 80.0 2.11700
## 3 phi 60.0 1.47698
## 4 phi 60.0 1.50682
## 5 phi 50.0 1.91554
## 6 phi 40.0 2.03399
## 7 phi 40.0 1.69893
## 8 phi 50.0 1.84043
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.76827
## 2 phi 50.0 2.07508
## 3 phi 50.0 1.87761
## 4 phi 50.0 1.41907
## 5 phi 40.0 2.03399
## 6 phi 40.0 2.03399
## 7 phi 50.0 1.87761
## 8 phi 70.0 1.84043
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.73325
## 2 phi 50.0 1.69893
## 3 phi 30.0 1.99372
## 4 phi 40.0 1.41907
## 5 phi 20.0 1.73325
## 6 phi 50.0 1.99372
## 7 phi 20.0 1.73325
## 8 phi 60.0 1.76827
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.80399
## 2 phi 10.0 1.87761
## 3 phi 30.0 1.84043
## 4 phi 20.0 2.03399
## 5 phi 50.0 2.15977
## 6 phi 30.0 1.76827
## 7 phi 70.0 1.56831
## 8 phi 50.0 1.63232
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.91554
## 2 phi 40.0 1.87761
## 3 phi 30.0 2.11700
## 4 phi 20.0 1.59999
## 5 phi 60.0 2.11700
## 6 phi 20.0 1.59999
## 7 phi 40.0 1.59999
## 8 phi 60.0 1.80399
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.95424
## 2 phi 40.0 1.76827
## 3 phi 80.0 1.99372
## 4 phi 20.0 1.76827
## 5 phi 60.0 1.69893
## 6 phi 10.0 1.95424
## 7 phi 50.0 1.76827
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.87761
## 2 phi 20.0 1.91554
## 3 phi 50.0 2.29332
## 4 phi 30.0 1.80399
## 5 phi 20.0 1.84043
## 6 phi 20.0 1.91554
## 7 phi 60.0 1.63232
## 8 phi 20.0 1.80399
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.76827
## 2 phi 50.0 1.73325
## 3 phi 40.0 2.11700
## 4 phi 30.0 1.76827
## 5 phi 50.0 1.76827
## 6 phi 30.0 1.99372
## 7 phi 50.0 1.66529
## 8 phi 20.0 1.95424
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.80399
## 2 phi 50.0 1.95424
## 3 phi 60.0 2.15977
## 4 phi 20.0 1.66529
## 5 phi 40.0 1.69893
## 6 phi 60.0 2.20340
## 7 phi 70.0 1.59999
## 8 phi 90.0 1.50682
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.63232
## 2 phi 30.0 1.84043
## 3 phi 20.0 1.80399
## 4 phi 80.0 1.56831
## 5 phi 50.0 1.91554
## 6 phi 30.0 1.76827
## 7 phi 50.0 1.73325
## 8 phi 60.0 1.84043
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.69893
## 2 phi 30.0 1.80399
## 3 phi 60.0 1.80399
## 4 phi 10.0 1.99372
## 5 phi 40.0 2.11700
## 6 phi 10.0 1.95424
## 7 phi 50.0 2.03399
## 8 phi 40.0 1.59999
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.76827
## 2 phi 20.0 1.69893
## 3 phi 40.0 1.73325
## 4 phi 30.0 2.03399
## 5 phi 10.0 2.03399
## 6 phi 60.0 2.03399
## 7 phi 30.0 1.73325
## 8 phi 30.0 1.95424
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
summary(ms_fullQ_forage)
##
## Call:
## spMsPGOcc(occ.formula = occ.forage, det.formula = det.full.quad,
## data = data_list, priors = priors, cov.model = "exponential",
## NNGP = FALSE, n.batch = 1000, batch.length = 10, n.report = 100,
## n.burn = 3000, n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 2.387
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2992 0.4040 -1.0678 -0.3130 0.5620 1.0083 3696
## Veg_shannon_index 0.3968 0.2985 -0.1873 0.3934 1.0056 1.0017 3845
## Avg_Cogongrass_Cover 0.3730 0.3151 -0.2431 0.3698 1.0078 1.0018 3535
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.9257 1.0809 0.0908 0.6282 3.5082 1.0060 2833
## Veg_shannon_index 0.3078 0.4048 0.0369 0.1890 1.3082 1.0042 5237
## Avg_Cogongrass_Cover 0.3989 0.5460 0.0401 0.2335 1.7422 1.0124 4032
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5951 0.3225 -3.2164 -2.6018 -1.9141 1.0006 7769
## shrub_cover 0.2514 0.3177 -0.3843 0.2549 0.8754 1.0026 6353
## veg_height 0.0643 0.2027 -0.3434 0.0664 0.4646 1.0016 6187
## week 0.1856 0.2081 -0.2264 0.1855 0.6008 1.0007 5066
## I(week^2) -0.2267 0.1277 -0.4971 -0.2209 0.0097 1.0020 3340
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.7592 0.7067 0.1689 0.5685 2.5011 1.0106 3901
## shrub_cover 0.7048 0.6856 0.1346 0.5276 2.2817 1.0095 4473
## veg_height 0.2606 0.2356 0.0593 0.1960 0.8604 1.0047 7017
## week 0.2055 0.2319 0.0339 0.1413 0.7612 1.0060 4705
## I(week^2) 0.0867 0.0956 0.0202 0.0614 0.3046 1.0257 1929
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans 0.2726 0.5160 -0.6546 0.2471
## (Intercept)-Procyon_lotor 0.5054 0.5306 -0.4805 0.4879
## (Intercept)-Dasypus_novemcinctus -0.5652 0.4428 -1.4642 -0.5531
## (Intercept)-Lynx_rufus -0.0116 0.6996 -1.1724 -0.0836
## (Intercept)-Didelphis_virginiana -1.1420 0.5519 -2.3070 -1.1148
## (Intercept)-Sylvilagus_floridanus -0.3960 0.5270 -1.3945 -0.4052
## (Intercept)-Meleagris_gallopavo -0.1054 0.7764 -1.4521 -0.1642
## (Intercept)-Sciurus_carolinensis -1.0680 0.5594 -2.2383 -1.0447
## Veg_shannon_index-Canis_latrans 0.6431 0.4092 -0.1004 0.6219
## Veg_shannon_index-Procyon_lotor 0.4529 0.3835 -0.2870 0.4410
## Veg_shannon_index-Dasypus_novemcinctus 0.2514 0.3701 -0.5012 0.2588
## Veg_shannon_index-Lynx_rufus 0.1984 0.5009 -0.8703 0.2234
## Veg_shannon_index-Didelphis_virginiana 0.5293 0.4031 -0.2267 0.5161
## Veg_shannon_index-Sylvilagus_floridanus 0.4956 0.4366 -0.3086 0.4740
## Veg_shannon_index-Meleagris_gallopavo 0.6043 0.5102 -0.3086 0.5653
## Veg_shannon_index-Sciurus_carolinensis 0.0416 0.4369 -0.9030 0.0672
## Avg_Cogongrass_Cover-Canis_latrans 0.6690 0.4538 -0.1081 0.6266
## Avg_Cogongrass_Cover-Procyon_lotor 0.4243 0.3992 -0.3398 0.4104
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.4987 0.3764 -0.2149 0.4860
## Avg_Cogongrass_Cover-Lynx_rufus 0.6329 0.4696 -0.1759 0.5920
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.4701 0.3999 -0.3127 0.4636
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0782 0.5070 -1.1931 -0.0339
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.0565 0.6611 -1.5171 0.0052
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4620 0.3996 -0.3067 0.4556
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 1.3568 1.0024 3851
## (Intercept)-Procyon_lotor 1.6061 1.0054 3919
## (Intercept)-Dasypus_novemcinctus 0.2910 1.0008 7713
## (Intercept)-Lynx_rufus 1.5339 1.0074 1783
## (Intercept)-Didelphis_virginiana -0.1416 1.0021 3470
## (Intercept)-Sylvilagus_floridanus 0.6719 1.0040 4344
## (Intercept)-Meleagris_gallopavo 1.6090 1.0148 1407
## (Intercept)-Sciurus_carolinensis -0.0540 1.0035 3698
## Veg_shannon_index-Canis_latrans 1.5189 1.0004 5739
## Veg_shannon_index-Procyon_lotor 1.2519 1.0001 5998
## Veg_shannon_index-Dasypus_novemcinctus 0.9734 1.0008 7489
## Veg_shannon_index-Lynx_rufus 1.1219 1.0010 4095
## Veg_shannon_index-Didelphis_virginiana 1.3737 1.0009 6302
## Veg_shannon_index-Sylvilagus_floridanus 1.4355 1.0015 4758
## Veg_shannon_index-Meleagris_gallopavo 1.7615 1.0010 4379
## Veg_shannon_index-Sciurus_carolinensis 0.8267 1.0011 5752
## Avg_Cogongrass_Cover-Canis_latrans 1.6925 1.0008 4813
## Avg_Cogongrass_Cover-Procyon_lotor 1.2534 1.0018 7516
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.2814 1.0007 7093
## Avg_Cogongrass_Cover-Lynx_rufus 1.6670 1.0012 4693
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.2869 1.0003 6820
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.8209 1.0035 3552
## Avg_Cogongrass_Cover-Meleagris_gallopavo 1.0934 1.0127 2194
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.2940 1.0022 5216
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.5717 0.1986 -2.9788 -2.5670 -2.2000 1.0011
## (Intercept)-Procyon_lotor -2.1960 0.1591 -2.5171 -2.1917 -1.8965 1.0010
## (Intercept)-Dasypus_novemcinctus -1.6442 0.1802 -2.0113 -1.6398 -1.3001 1.0015
## (Intercept)-Lynx_rufus -3.4072 0.3490 -4.1191 -3.3958 -2.7528 1.0064
## (Intercept)-Didelphis_virginiana -2.4171 0.2960 -3.0305 -2.4054 -1.8558 1.0016
## (Intercept)-Sylvilagus_floridanus -3.0530 0.3015 -3.6799 -3.0395 -2.4981 1.0060
## (Intercept)-Meleagris_gallopavo -3.6779 0.4910 -4.6773 -3.6691 -2.7179 1.0231
## (Intercept)-Sciurus_carolinensis -2.5246 0.3250 -3.2103 -2.5167 -1.9202 1.0013
## shrub_cover-Canis_latrans -0.2876 0.2150 -0.7070 -0.2867 0.1329 1.0021
## shrub_cover-Procyon_lotor 0.2549 0.1620 -0.0754 0.2587 0.5624 1.0008
## shrub_cover-Dasypus_novemcinctus 0.8685 0.2997 0.3098 0.8579 1.4761 1.0002
## shrub_cover-Lynx_rufus -0.2123 0.3677 -0.9416 -0.2120 0.5033 1.0062
## shrub_cover-Didelphis_virginiana 1.0013 0.3729 0.3191 0.9817 1.7729 1.0014
## shrub_cover-Sylvilagus_floridanus 0.2299 0.4206 -0.5606 0.2206 1.0812 1.0044
## shrub_cover-Meleagris_gallopavo -0.6430 0.4214 -1.5019 -0.6351 0.1858 1.0153
## shrub_cover-Sciurus_carolinensis 0.8845 0.4234 0.0766 0.8734 1.7369 1.0007
## veg_height-Canis_latrans -0.5903 0.1872 -0.9675 -0.5840 -0.2377 1.0038
## veg_height-Procyon_lotor 0.3379 0.1229 0.0951 0.3384 0.5754 1.0014
## veg_height-Dasypus_novemcinctus 0.2570 0.1361 -0.0059 0.2555 0.5297 1.0010
## veg_height-Lynx_rufus 0.0072 0.2519 -0.5008 0.0117 0.4865 1.0007
## veg_height-Didelphis_virginiana 0.4543 0.2450 -0.0116 0.4515 0.9363 1.0004
## veg_height-Sylvilagus_floridanus 0.1500 0.2436 -0.3364 0.1511 0.6201 1.0026
## veg_height-Meleagris_gallopavo -0.1942 0.3967 -0.9899 -0.1957 0.6017 1.0111
## veg_height-Sciurus_carolinensis 0.0790 0.2143 -0.3353 0.0772 0.5036 1.0020
## week-Canis_latrans 0.4585 0.2515 -0.0059 0.4478 0.9716 1.0029
## week-Procyon_lotor 0.1613 0.1972 -0.2197 0.1619 0.5496 1.0003
## week-Dasypus_novemcinctus 0.0690 0.2130 -0.3528 0.0695 0.4874 1.0012
## week-Lynx_rufus 0.2781 0.3049 -0.3088 0.2754 0.8966 1.0006
## week-Didelphis_virginiana 0.0415 0.3194 -0.6181 0.0504 0.6424 1.0006
## week-Sylvilagus_floridanus 0.0423 0.3006 -0.5702 0.0505 0.6109 1.0023
## week-Meleagris_gallopavo -0.1023 0.3490 -0.8704 -0.0777 0.5233 1.0116
## week-Sciurus_carolinensis 0.5484 0.3394 -0.0493 0.5235 1.2924 1.0019
## I(week^2)-Canis_latrans -0.1992 0.1060 -0.4170 -0.1971 -0.0013 1.0020
## I(week^2)-Procyon_lotor -0.1133 0.0877 -0.2902 -0.1119 0.0554 1.0001
## I(week^2)-Dasypus_novemcinctus -0.1570 0.1014 -0.3628 -0.1547 0.0364 1.0001
## I(week^2)-Lynx_rufus -0.2048 0.1479 -0.5094 -0.1996 0.0739 1.0026
## I(week^2)-Didelphis_virginiana -0.3860 0.2192 -0.9072 -0.3610 -0.0314 1.0035
## I(week^2)-Sylvilagus_floridanus -0.1629 0.1549 -0.4846 -0.1561 0.1299 1.0010
## I(week^2)-Meleagris_gallopavo -0.3996 0.2629 -1.0357 -0.3633 0.0056 1.0205
## I(week^2)-Sciurus_carolinensis -0.1986 0.1419 -0.4978 -0.1928 0.0646 1.0015
## ESS
## (Intercept)-Canis_latrans 4062
## (Intercept)-Procyon_lotor 6597
## (Intercept)-Dasypus_novemcinctus 7184
## (Intercept)-Lynx_rufus 1610
## (Intercept)-Didelphis_virginiana 4273
## (Intercept)-Sylvilagus_floridanus 2531
## (Intercept)-Meleagris_gallopavo 917
## (Intercept)-Sciurus_carolinensis 3981
## shrub_cover-Canis_latrans 4347
## shrub_cover-Procyon_lotor 6892
## shrub_cover-Dasypus_novemcinctus 5633
## shrub_cover-Lynx_rufus 1790
## shrub_cover-Didelphis_virginiana 3159
## shrub_cover-Sylvilagus_floridanus 2355
## shrub_cover-Meleagris_gallopavo 1082
## shrub_cover-Sciurus_carolinensis 3299
## veg_height-Canis_latrans 3193
## veg_height-Procyon_lotor 7683
## veg_height-Dasypus_novemcinctus 9119
## veg_height-Lynx_rufus 3258
## veg_height-Didelphis_virginiana 5062
## veg_height-Sylvilagus_floridanus 3817
## veg_height-Meleagris_gallopavo 1988
## veg_height-Sciurus_carolinensis 5675
## week-Canis_latrans 5093
## week-Procyon_lotor 7019
## week-Dasypus_novemcinctus 9046
## week-Lynx_rufus 4396
## week-Didelphis_virginiana 4648
## week-Sylvilagus_floridanus 4529
## week-Meleagris_gallopavo 2174
## week-Sciurus_carolinensis 4966
## I(week^2)-Canis_latrans 5508
## I(week^2)-Procyon_lotor 6473
## I(week^2)-Dasypus_novemcinctus 7736
## I(week^2)-Lynx_rufus 3072
## I(week^2)-Didelphis_virginiana 1907
## I(week^2)-Sylvilagus_floridanus 3019
## I(week^2)-Meleagris_gallopavo 816
## I(week^2)-Sciurus_carolinensis 5720
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 0.9593 1.3309 0.1829 0.6144 3.9281 1.0483 1030
## sigma.sq-Procyon_lotor 1.4270 2.2285 0.1978 0.7748 7.0368 1.0536 925
## sigma.sq-Dasypus_novemcinctus 1.0402 1.6193 0.1799 0.6254 4.5896 1.0954 803
## sigma.sq-Lynx_rufus 1.0609 1.5789 0.1875 0.6486 4.4795 1.0113 903
## sigma.sq-Didelphis_virginiana 0.9013 1.1677 0.1781 0.5845 3.5796 1.0372 1355
## sigma.sq-Sylvilagus_floridanus 1.3599 4.2483 0.1879 0.6522 6.3652 1.2794 633
## sigma.sq-Meleagris_gallopavo 1.8386 3.6115 0.2067 0.8848 9.4972 1.0279 851
## sigma.sq-Sciurus_carolinensis 1.1671 2.4641 0.1875 0.6472 4.9232 1.0793 652
## phi-Canis_latrans 0.0050 0.0028 0.0003 0.0049 0.0098 1.0036 849
## phi-Procyon_lotor 0.0052 0.0027 0.0005 0.0053 0.0097 1.0075 1079
## phi-Dasypus_novemcinctus 0.0053 0.0028 0.0003 0.0055 0.0098 1.0098 821
## phi-Lynx_rufus 0.0047 0.0029 0.0002 0.0046 0.0097 1.0178 747
## phi-Didelphis_virginiana 0.0051 0.0028 0.0003 0.0051 0.0097 1.0075 1021
## phi-Sylvilagus_floridanus 0.0054 0.0027 0.0006 0.0055 0.0098 1.0082 1124
## phi-Meleagris_gallopavo 0.0050 0.0027 0.0004 0.0049 0.0097 1.0159 1184
## phi-Sciurus_carolinensis 0.0048 0.0029 0.0002 0.0048 0.0098 1.0146 703
# Includes quadratic week and full covariates of detection and all covariates and quadratic cogon for occupancy
ms_fullQ_fullQ<- spMsPGOcc(
occ.formula = occ.full.quad,
det.formula = det.full.quad,
data = data_list,
priors = priors,
cov.model = "exponential",
NNGP = FALSE,
n.batch = 1000,
batch.length = 10,
n.burn = 3000,
n.thin = 2,
n.chains = 4,
n.report = 100
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## phi is not specified in initial values.
## Setting initial value to random values from the prior distribution
## sigma.sq is not specified in initial values.
## Setting initial values to random values from the prior distribution
## w is not specified in initial values.
## Setting initial value to 0
## ----------------------------------------
## Model description
## ----------------------------------------
## Spatial Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 8 species.
##
## Samples per chain: 10000 (1000 batches of length 10)
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## Using the exponential spatial correlation model.
##
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## Adaptive Metropolis with target acceptance rate: 43.0
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.66529
## 2 phi 60.0 1.44773
## 3 phi 50.0 1.36343
## 4 phi 50.0 1.41907
## 5 phi 30.0 1.33643
## 6 phi 80.0 1.30996
## 7 phi 60.0 1.50682
## 8 phi 30.0 1.59999
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.91554
## 2 phi 50.0 1.80399
## 3 phi 60.0 1.84043
## 4 phi 80.0 1.59999
## 5 phi 60.0 1.63232
## 6 phi 30.0 1.69893
## 7 phi 80.0 1.80399
## 8 phi 30.0 1.84043
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.87761
## 2 phi 70.0 1.66529
## 3 phi 20.0 1.99372
## 4 phi 70.0 1.66529
## 5 phi 40.0 1.84043
## 6 phi 50.0 1.59999
## 7 phi 40.0 1.80399
## 8 phi 40.0 1.56831
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.95424
## 2 phi 50.0 1.84043
## 3 phi 30.0 1.63232
## 4 phi 30.0 1.99372
## 5 phi 50.0 1.73325
## 6 phi 50.0 1.80399
## 7 phi 30.0 2.11700
## 8 phi 70.0 1.91554
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.59999
## 2 phi 70.0 1.76827
## 3 phi 80.0 2.15977
## 4 phi 20.0 1.80399
## 5 phi 40.0 1.91554
## 6 phi 10.0 1.80399
## 7 phi 70.0 1.53726
## 8 phi 30.0 1.91554
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.56831
## 2 phi 10.0 2.03399
## 3 phi 60.0 2.03399
## 4 phi 70.0 1.53726
## 5 phi 40.0 1.69893
## 6 phi 60.0 1.66529
## 7 phi 30.0 1.66529
## 8 phi 80.0 1.76827
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.73325
## 2 phi 30.0 1.91554
## 3 phi 60.0 1.95424
## 4 phi 80.0 1.91554
## 5 phi 90.0 1.87761
## 6 phi 40.0 1.80399
## 7 phi 90.0 1.76827
## 8 phi 50.0 1.87761
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.84043
## 2 phi 80.0 1.80399
## 3 phi 40.0 1.87761
## 4 phi 60.0 1.69893
## 5 phi 50.0 1.91554
## 6 phi 40.0 1.73325
## 7 phi 40.0 1.84043
## 8 phi 70.0 1.84043
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.73325
## 2 phi 40.0 1.66529
## 3 phi 40.0 1.95424
## 4 phi 70.0 1.66529
## 5 phi 70.0 1.91554
## 6 phi 40.0 1.87761
## 7 phi 70.0 1.99372
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.73325
## 2 phi 80.0 1.87761
## 3 phi 60.0 1.80399
## 4 phi 20.0 1.76827
## 5 phi 60.0 1.84043
## 6 phi 50.0 1.87761
## 7 phi 30.0 1.95424
## 8 phi 60.0 1.84043
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.66529
## 2 phi 60.0 1.69893
## 3 phi 50.0 1.87761
## 4 phi 60.0 1.63232
## 5 phi 50.0 1.80399
## 6 phi 70.0 1.91554
## 7 phi 70.0 1.80399
## 8 phi 90.0 2.11700
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.87761
## 2 phi 50.0 1.59999
## 3 phi 60.0 1.87761
## 4 phi 60.0 1.84043
## 5 phi 10.0 1.99372
## 6 phi 40.0 1.91554
## 7 phi 50.0 1.76827
## 8 phi 40.0 1.87761
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.84043
## 2 phi 20.0 1.76827
## 3 phi 60.0 1.91554
## 4 phi 50.0 1.73325
## 5 phi 40.0 1.95424
## 6 phi 10.0 1.69893
## 7 phi 20.0 1.76827
## 8 phi 10.0 1.91554
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 2.03399
## 2 phi 50.0 1.99372
## 3 phi 30.0 2.03399
## 4 phi 50.0 1.53726
## 5 phi 30.0 1.87761
## 6 phi 30.0 1.63232
## 7 phi 40.0 1.63232
## 8 phi 40.0 1.80399
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 2.11700
## 2 phi 50.0 1.63232
## 3 phi 20.0 1.76827
## 4 phi 30.0 1.56831
## 5 phi 30.0 2.07508
## 6 phi 60.0 1.73325
## 7 phi 50.0 1.84043
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.80399
## 2 phi 50.0 1.84043
## 3 phi 60.0 1.76827
## 4 phi 50.0 1.63232
## 5 phi 30.0 1.59999
## 6 phi 10.0 1.76827
## 7 phi 20.0 1.91554
## 8 phi 50.0 1.76827
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.73325
## 2 phi 40.0 1.87761
## 3 phi 40.0 1.84043
## 4 phi 60.0 1.69893
## 5 phi 50.0 1.80399
## 6 phi 60.0 1.73325
## 7 phi 30.0 1.84043
## 8 phi 70.0 2.03399
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.63232
## 2 phi 50.0 1.69893
## 3 phi 60.0 1.66529
## 4 phi 60.0 1.80399
## 5 phi 50.0 1.76827
## 6 phi 30.0 1.56831
## 7 phi 20.0 1.69893
## 8 phi 50.0 1.95424
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.95424
## 2 phi 50.0 1.99372
## 3 phi 50.0 1.99372
## 4 phi 40.0 1.63232
## 5 phi 20.0 1.76827
## 6 phi 20.0 1.73325
## 7 phi 50.0 1.87761
## 8 phi 90.0 1.73325
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.84043
## 2 phi 50.0 1.91554
## 3 phi 40.0 1.73325
## 4 phi 40.0 1.50682
## 5 phi 50.0 2.03399
## 6 phi 70.0 1.87761
## 7 phi 60.0 2.07508
## 8 phi 50.0 1.76827
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 30.0 2.03399
## 3 phi 30.0 1.84043
## 4 phi 30.0 1.84043
## 5 phi 50.0 1.99372
## 6 phi 30.0 1.91554
## 7 phi 60.0 2.15977
## 8 phi 40.0 1.69893
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.84043
## 2 phi 20.0 2.07508
## 3 phi 60.0 1.84043
## 4 phi 40.0 1.66529
## 5 phi 40.0 1.44773
## 6 phi 50.0 1.87761
## 7 phi 20.0 1.73325
## 8 phi 30.0 1.73325
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.66529
## 2 phi 60.0 1.95424
## 3 phi 50.0 1.80399
## 4 phi 60.0 1.66529
## 5 phi 50.0 1.63232
## 6 phi 40.0 1.66529
## 7 phi 50.0 1.69893
## 8 phi 50.0 1.73325
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 20.0 1.87761
## 2 phi 50.0 1.63232
## 3 phi 30.0 2.07508
## 4 phi 80.0 1.73325
## 5 phi 50.0 1.76827
## 6 phi 50.0 1.69893
## 7 phi 50.0 1.91554
## 8 phi 40.0 1.84043
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.63232
## 2 phi 80.0 1.80399
## 3 phi 60.0 1.99372
## 4 phi 20.0 1.73325
## 5 phi 40.0 1.80399
## 6 phi 40.0 1.63232
## 7 phi 70.0 1.59999
## 8 phi 20.0 1.84043
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.91554
## 2 phi 10.0 1.73325
## 3 phi 60.0 1.87761
## 4 phi 60.0 1.84043
## 5 phi 50.0 1.95424
## 6 phi 30.0 1.56831
## 7 phi 50.0 1.76827
## 8 phi 40.0 1.87761
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.91554
## 2 phi 30.0 1.95424
## 3 phi 40.0 1.73325
## 4 phi 60.0 1.80399
## 5 phi 40.0 2.03399
## 6 phi 50.0 1.95424
## 7 phi 40.0 1.99372
## 8 phi 50.0 1.87761
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
## ----------------------------------------
## Chain 4
## ----------------------------------------
## Sampling ...
## Batch: 100 of 1000, 10.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 1.87761
## 2 phi 30.0 1.87761
## 3 phi 70.0 1.66529
## 4 phi 50.0 1.56831
## 5 phi 40.0 1.91554
## 6 phi 40.0 1.59999
## 7 phi 30.0 1.76827
## 8 phi 30.0 1.69893
## -------------------------------------------------
## Batch: 200 of 1000, 20.00%
## Species Parameter Acceptance Tuning
## 1 phi 60.0 1.91554
## 2 phi 10.0 1.53726
## 3 phi 50.0 2.03399
## 4 phi 0.0 1.56831
## 5 phi 80.0 1.95424
## 6 phi 50.0 1.59999
## 7 phi 40.0 1.91554
## 8 phi 30.0 1.66529
## -------------------------------------------------
## Batch: 300 of 1000, 30.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.95424
## 2 phi 30.0 1.91554
## 3 phi 70.0 1.53726
## 4 phi 50.0 1.66529
## 5 phi 30.0 1.80399
## 6 phi 50.0 1.69893
## 7 phi 80.0 1.69893
## 8 phi 60.0 1.76827
## -------------------------------------------------
## Batch: 400 of 1000, 40.00%
## Species Parameter Acceptance Tuning
## 1 phi 70.0 1.39097
## 2 phi 10.0 1.69893
## 3 phi 20.0 1.39097
## 4 phi 50.0 1.69893
## 5 phi 40.0 1.91554
## 6 phi 20.0 1.76827
## 7 phi 60.0 2.11700
## 8 phi 30.0 1.76827
## -------------------------------------------------
## Batch: 500 of 1000, 50.00%
## Species Parameter Acceptance Tuning
## 1 phi 40.0 1.87761
## 2 phi 50.0 1.87761
## 3 phi 60.0 1.63232
## 4 phi 60.0 1.59999
## 5 phi 50.0 2.03399
## 6 phi 40.0 1.84043
## 7 phi 30.0 1.99372
## 8 phi 40.0 1.47698
## -------------------------------------------------
## Batch: 600 of 1000, 60.00%
## Species Parameter Acceptance Tuning
## 1 phi 30.0 1.63232
## 2 phi 20.0 1.76827
## 3 phi 50.0 1.80399
## 4 phi 30.0 1.56831
## 5 phi 30.0 1.80399
## 6 phi 50.0 1.91554
## 7 phi 30.0 1.69893
## 8 phi 40.0 1.63232
## -------------------------------------------------
## Batch: 700 of 1000, 70.00%
## Species Parameter Acceptance Tuning
## 1 phi 10.0 1.91554
## 2 phi 40.0 1.84043
## 3 phi 50.0 1.63232
## 4 phi 50.0 1.69893
## 5 phi 60.0 1.80399
## 6 phi 80.0 1.84043
## 7 phi 30.0 1.87761
## 8 phi 70.0 1.80399
## -------------------------------------------------
## Batch: 800 of 1000, 80.00%
## Species Parameter Acceptance Tuning
## 1 phi 80.0 1.63232
## 2 phi 40.0 1.87761
## 3 phi 30.0 1.84043
## 4 phi 80.0 1.66529
## 5 phi 50.0 1.99372
## 6 phi 30.0 2.03399
## 7 phi 50.0 1.66529
## 8 phi 60.0 1.95424
## -------------------------------------------------
## Batch: 900 of 1000, 90.00%
## Species Parameter Acceptance Tuning
## 1 phi 50.0 2.20340
## 2 phi 20.0 1.66529
## 3 phi 90.0 1.80399
## 4 phi 10.0 1.59999
## 5 phi 30.0 1.91554
## 6 phi 40.0 1.73325
## 7 phi 80.0 1.73325
## 8 phi 10.0 1.80399
## -------------------------------------------------
## Batch: 1000 of 1000, 100.00%
summary(ms_fullQ_fullQ)
##
## Call:
## spMsPGOcc(occ.formula = occ.full.quad, det.formula = det.full.quad,
## data = data_list, priors = priors, cov.model = "exponential",
## NNGP = FALSE, n.batch = 1000, batch.length = 10, n.report = 100,
## n.burn = 3000, n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 2.5548
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -1.7223 0.7522 -3.1430 -1.7351 -0.1724 1.0058 1385
## Cogon_Patch_Size 0.2907 0.7080 -1.1341 0.2914 1.6970 1.0038 1390
## Veg_shannon_index 0.9389 0.5272 -0.0734 0.9272 2.0092 1.0075 1625
## total_shrub_cover -1.3207 0.7196 -2.8587 -1.2794 0.0012 1.0041 1152
## Avg_Cogongrass_Cover -0.0756 1.0059 -2.0530 -0.0659 1.8608 1.0037 847
## I(Avg_Cogongrass_Cover^2) 1.4334 0.7345 -0.0692 1.4272 2.9057 1.0011 1967
## Tree_Density -2.3162 0.9280 -4.1358 -2.3270 -0.4661 1.0092 1037
## Avg_Canopy_Cover 1.9082 0.7964 0.3110 1.8973 3.5407 1.0040 3025
## avg_veg_height -0.1221 0.6035 -1.3576 -0.1138 1.0390 1.0026 1255
## CWD_presence -0.1123 0.4447 -0.9880 -0.1146 0.7837 1.0053 2456
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.4467 3.6015 0.0766 1.3651 11.3914 1.0263 1495
## Cogon_Patch_Size 2.2716 4.4850 0.0726 1.0541 11.6262 1.0604 1188
## Veg_shannon_index 0.9099 1.5839 0.0483 0.4376 4.5597 1.0056 1966
## total_shrub_cover 2.6784 4.7295 0.0965 1.4152 12.9366 1.0283 1414
## Avg_Cogongrass_Cover 1.5604 2.8610 0.0535 0.6207 8.9053 1.0042 2346
## I(Avg_Cogongrass_Cover^2) 3.8095 7.2859 0.0842 1.6479 21.0184 1.0023 535
## Tree_Density 3.6577 8.2028 0.0635 1.2859 22.1892 1.0151 986
## Avg_Canopy_Cover 5.2292 9.9773 0.1960 2.7130 24.6989 1.0446 580
## avg_veg_height 0.8976 1.8560 0.0483 0.3919 4.8195 1.1150 1349
## CWD_presence 0.6319 0.9499 0.0441 0.3344 3.1450 1.0218 2898
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6345 0.3042 -3.2264 -2.6418 -2.0034 1.0015 6317
## shrub_cover 0.4459 0.3217 -0.1960 0.4453 1.0901 1.0006 3499
## veg_height 0.1384 0.2046 -0.2843 0.1386 0.5456 1.0008 4111
## week 0.1872 0.2031 -0.2222 0.1887 0.5938 1.0057 5381
## I(week^2) -0.2256 0.1217 -0.4769 -0.2211 0.0014 1.0061 3502
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6413 0.6480 0.1373 0.4753 2.0977 1.0095 3431
## shrub_cover 0.7117 0.6500 0.1357 0.5407 2.3213 1.0067 4268
## veg_height 0.2598 0.2293 0.0594 0.1971 0.8537 1.0013 7532
## week 0.2083 0.2295 0.0335 0.1450 0.7659 1.0075 5595
## I(week^2) 0.0843 0.0886 0.0198 0.0600 0.2994 1.0056 2644
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans -1.3534 1.0229 -3.3576 -1.3692
## (Intercept)-Procyon_lotor -0.7065 1.0697 -2.7070 -0.7440
## (Intercept)-Dasypus_novemcinctus -2.1242 0.9075 -4.0443 -2.0865
## (Intercept)-Lynx_rufus -1.1536 1.4096 -3.4464 -1.3355
## (Intercept)-Didelphis_virginiana -2.8933 1.1711 -5.5073 -2.7967
## (Intercept)-Sylvilagus_floridanus -1.9209 1.0887 -4.1577 -1.9037
## (Intercept)-Meleagris_gallopavo -1.7830 1.1732 -4.0436 -1.8172
## (Intercept)-Sciurus_carolinensis -3.1302 1.3035 -5.9704 -2.9877
## Cogon_Patch_Size-Canis_latrans 1.4467 1.2649 -0.3783 1.2312
## Cogon_Patch_Size-Procyon_lotor -0.1005 0.8385 -1.7933 -0.0887
## Cogon_Patch_Size-Dasypus_novemcinctus 0.3189 0.9008 -1.3626 0.2899
## Cogon_Patch_Size-Lynx_rufus 0.1067 1.3260 -2.8085 0.1515
## Cogon_Patch_Size-Didelphis_virginiana 1.2933 1.0024 -0.3391 1.1792
## Cogon_Patch_Size-Sylvilagus_floridanus -0.6461 1.4481 -4.2168 -0.4315
## Cogon_Patch_Size-Meleagris_gallopavo 0.4796 1.2104 -1.6828 0.4000
## Cogon_Patch_Size-Sciurus_carolinensis -0.3719 1.2097 -3.0938 -0.2636
## Veg_shannon_index-Canis_latrans 1.2976 0.7411 0.0542 1.2185
## Veg_shannon_index-Procyon_lotor 1.1376 0.6745 -0.0625 1.0876
## Veg_shannon_index-Dasypus_novemcinctus 0.5720 0.6443 -0.7873 0.5908
## Veg_shannon_index-Lynx_rufus 0.9320 0.9756 -0.9955 0.9068
## Veg_shannon_index-Didelphis_virginiana 1.1997 0.7847 -0.1666 1.1330
## Veg_shannon_index-Sylvilagus_floridanus 1.0404 0.7597 -0.3546 1.0056
## Veg_shannon_index-Meleagris_gallopavo 1.3648 0.8780 -0.0688 1.2628
## Veg_shannon_index-Sciurus_carolinensis 0.2878 0.8671 -1.6362 0.3835
## total_shrub_cover-Canis_latrans 0.0397 0.9220 -1.5907 -0.0291
## total_shrub_cover-Procyon_lotor -1.7668 0.8405 -3.6129 -1.6890
## total_shrub_cover-Dasypus_novemcinctus -0.8436 1.0362 -3.0937 -0.7444
## total_shrub_cover-Lynx_rufus -2.1461 1.5020 -5.6712 -1.9164
## total_shrub_cover-Didelphis_virginiana -1.7215 1.2655 -4.8878 -1.5232
## total_shrub_cover-Sylvilagus_floridanus -1.3542 1.2809 -4.3312 -1.2232
## total_shrub_cover-Meleagris_gallopavo -2.7107 1.4929 -6.2182 -2.4798
## total_shrub_cover-Sciurus_carolinensis -1.3932 1.3166 -4.4883 -1.2464
## Avg_Cogongrass_Cover-Canis_latrans 0.0839 1.2716 -2.4300 0.0927
## Avg_Cogongrass_Cover-Procyon_lotor -0.3239 1.2897 -3.0157 -0.2668
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.5965 1.3762 -1.8588 0.5011
## Avg_Cogongrass_Cover-Lynx_rufus -0.0955 1.3729 -2.8546 -0.0847
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.1797 1.3364 -2.3242 0.1245
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.7303 1.4374 -3.9079 -0.6130
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.3973 1.4312 -3.4706 -0.3159
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.0019 1.3190 -2.6109 -0.0032
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.6308 1.4119 0.6988 2.3528
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.7476 1.5410 0.7494 2.4485
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.3533 0.7891 -0.0599 1.3006
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 3.0926 1.7305 0.8418 2.7159
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.7314 0.8465 -0.9377 0.7250
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.0981 0.9852 -0.6100 1.0215
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo -0.0287 1.7608 -3.9934 0.1620
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.5574 0.9028 -0.0044 1.4826
## Tree_Density-Canis_latrans -3.1843 1.4654 -6.7014 -2.9873
## Tree_Density-Procyon_lotor -2.4706 1.2131 -5.0307 -2.4134
## Tree_Density-Dasypus_novemcinctus -3.9122 1.8874 -8.7754 -3.5030
## Tree_Density-Lynx_rufus -1.2337 1.7593 -4.0693 -1.4483
## Tree_Density-Didelphis_virginiana -2.3055 1.3057 -5.0283 -2.2784
## Tree_Density-Sylvilagus_floridanus -2.8832 1.5652 -6.5341 -2.7198
## Tree_Density-Meleagris_gallopavo -2.6285 1.5175 -5.9480 -2.5320
## Tree_Density-Sciurus_carolinensis -2.4571 1.5000 -5.6148 -2.4293
## Avg_Canopy_Cover-Canis_latrans 0.2116 0.7432 -1.2103 0.1935
## Avg_Canopy_Cover-Procyon_lotor 1.5612 0.8623 -0.0188 1.5232
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.3750 0.9676 0.8328 2.2518
## Avg_Canopy_Cover-Lynx_rufus 1.1772 1.5665 -1.7297 1.1244
## Avg_Canopy_Cover-Didelphis_virginiana 3.3486 1.6145 1.1684 3.0569
## Avg_Canopy_Cover-Sylvilagus_floridanus 4.2102 2.1208 1.2999 3.8480
## Avg_Canopy_Cover-Meleagris_gallopavo 2.3867 1.3625 0.4092 2.1522
## Avg_Canopy_Cover-Sciurus_carolinensis 3.3100 1.9119 1.0420 2.9001
## avg_veg_height-Canis_latrans -0.2374 0.7176 -1.6702 -0.2306
## avg_veg_height-Procyon_lotor -0.0449 0.7377 -1.4942 -0.0456
## avg_veg_height-Dasypus_novemcinctus 0.3195 0.8043 -1.0752 0.2504
## avg_veg_height-Lynx_rufus -0.6131 1.0802 -3.2231 -0.4798
## avg_veg_height-Didelphis_virginiana -0.3381 0.8464 -2.1677 -0.2932
## avg_veg_height-Sylvilagus_floridanus -0.3029 0.8343 -2.0757 -0.2753
## avg_veg_height-Meleagris_gallopavo -0.1990 1.0313 -2.3899 -0.1668
## avg_veg_height-Sciurus_carolinensis 0.3502 0.9072 -1.1661 0.2625
## CWD_presence-Canis_latrans 0.4168 0.7083 -0.6954 0.3233
## CWD_presence-Procyon_lotor -0.4082 0.6133 -1.7182 -0.3740
## CWD_presence-Dasypus_novemcinctus -0.1925 0.5516 -1.3389 -0.1876
## CWD_presence-Lynx_rufus 0.1481 0.7133 -1.1264 0.0931
## CWD_presence-Didelphis_virginiana -0.1255 0.7219 -1.5662 -0.1325
## CWD_presence-Sylvilagus_floridanus -0.4874 0.6925 -2.0536 -0.4271
## CWD_presence-Meleagris_gallopavo -0.2325 0.7214 -1.6593 -0.2268
## CWD_presence-Sciurus_carolinensis -0.0234 0.6501 -1.2865 -0.0331
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 0.7058 1.0046 1202
## (Intercept)-Procyon_lotor 1.4575 1.0068 1048
## (Intercept)-Dasypus_novemcinctus -0.4172 1.0041 2062
## (Intercept)-Lynx_rufus 2.2045 1.0218 850
## (Intercept)-Didelphis_virginiana -0.9065 1.0106 1615
## (Intercept)-Sylvilagus_floridanus 0.2631 1.0054 1644
## (Intercept)-Meleagris_gallopavo 0.6945 1.0086 1263
## (Intercept)-Sciurus_carolinensis -0.9793 1.0051 1331
## Cogon_Patch_Size-Canis_latrans 4.5579 1.0038 1474
## Cogon_Patch_Size-Procyon_lotor 1.5511 1.0006 1885
## Cogon_Patch_Size-Dasypus_novemcinctus 2.2003 1.0026 1641
## Cogon_Patch_Size-Lynx_rufus 2.6798 1.0099 1063
## Cogon_Patch_Size-Didelphis_virginiana 3.5636 1.0001 1914
## Cogon_Patch_Size-Sylvilagus_floridanus 1.6287 1.0073 1289
## Cogon_Patch_Size-Meleagris_gallopavo 3.1388 1.0199 1417
## Cogon_Patch_Size-Sciurus_carolinensis 1.6907 1.0048 1620
## Veg_shannon_index-Canis_latrans 3.0114 1.0150 2298
## Veg_shannon_index-Procyon_lotor 2.6018 1.0073 2333
## Veg_shannon_index-Dasypus_novemcinctus 1.7979 1.0029 2997
## Veg_shannon_index-Lynx_rufus 3.0109 1.0103 1664
## Veg_shannon_index-Didelphis_virginiana 2.9789 1.0047 2180
## Veg_shannon_index-Sylvilagus_floridanus 2.6857 1.0084 2380
## Veg_shannon_index-Meleagris_gallopavo 3.3819 1.0123 1603
## Veg_shannon_index-Sciurus_carolinensis 1.7579 1.0011 2251
## total_shrub_cover-Canis_latrans 2.0775 1.0085 1907
## total_shrub_cover-Procyon_lotor -0.3393 1.0052 1435
## total_shrub_cover-Dasypus_novemcinctus 0.8687 1.0053 1117
## total_shrub_cover-Lynx_rufus 0.2559 1.0190 674
## total_shrub_cover-Didelphis_virginiana 0.1861 1.0032 1034
## total_shrub_cover-Sylvilagus_floridanus 0.8373 1.0020 1202
## total_shrub_cover-Meleagris_gallopavo -0.4765 1.0038 749
## total_shrub_cover-Sciurus_carolinensis 0.7607 1.0015 845
## Avg_Cogongrass_Cover-Canis_latrans 2.6275 1.0015 1116
## Avg_Cogongrass_Cover-Procyon_lotor 2.0732 1.0064 1108
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.6285 1.0008 1075
## Avg_Cogongrass_Cover-Lynx_rufus 2.6069 1.0005 950
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.9796 1.0026 1177
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.7596 1.0068 1284
## Avg_Cogongrass_Cover-Meleagris_gallopavo 2.1611 1.0049 1073
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.6381 1.0021 1114
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 6.2220 1.0108 635
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 6.5185 1.0072 407
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 3.0641 1.0030 1929
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 7.5195 1.0018 556
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 2.4430 1.0079 1538
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 3.2953 1.0097 1299
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 2.8557 1.0157 407
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 3.5995 1.0065 1845
## Tree_Density-Canis_latrans -0.9242 1.0053 995
## Tree_Density-Procyon_lotor -0.2675 1.0005 979
## Tree_Density-Dasypus_novemcinctus -1.3730 1.0116 705
## Tree_Density-Lynx_rufus 2.9219 1.0195 755
## Tree_Density-Didelphis_virginiana 0.2523 1.0050 1593
## Tree_Density-Sylvilagus_floridanus -0.1986 1.0056 1332
## Tree_Density-Meleagris_gallopavo 0.0596 1.0073 1478
## Tree_Density-Sciurus_carolinensis 0.5432 1.0105 1378
## Avg_Canopy_Cover-Canis_latrans 1.7109 1.0075 2135
## Avg_Canopy_Cover-Procyon_lotor 3.3859 1.0034 3756
## Avg_Canopy_Cover-Dasypus_novemcinctus 4.6101 1.0052 1508
## Avg_Canopy_Cover-Lynx_rufus 4.4928 1.0112 946
## Avg_Canopy_Cover-Didelphis_virginiana 7.2506 1.0133 954
## Avg_Canopy_Cover-Sylvilagus_floridanus 9.2178 1.0261 591
## Avg_Canopy_Cover-Meleagris_gallopavo 5.7340 1.0241 1155
## Avg_Canopy_Cover-Sciurus_carolinensis 7.8324 1.0246 513
## avg_veg_height-Canis_latrans 1.1657 1.0008 2009
## avg_veg_height-Procyon_lotor 1.4063 1.0019 2153
## avg_veg_height-Dasypus_novemcinctus 2.0941 1.0065 1790
## avg_veg_height-Lynx_rufus 1.1454 1.0171 1149
## avg_veg_height-Didelphis_virginiana 1.2288 1.0024 1640
## avg_veg_height-Sylvilagus_floridanus 1.2557 1.0037 1888
## avg_veg_height-Meleagris_gallopavo 1.7625 1.0147 1296
## avg_veg_height-Sciurus_carolinensis 2.3468 1.0046 1661
## CWD_presence-Canis_latrans 2.1110 1.0208 2482
## CWD_presence-Procyon_lotor 0.7307 1.0036 3649
## CWD_presence-Dasypus_novemcinctus 0.8557 1.0011 4120
## CWD_presence-Lynx_rufus 1.7313 1.0127 2397
## CWD_presence-Didelphis_virginiana 1.3706 1.0007 3510
## CWD_presence-Sylvilagus_floridanus 0.7193 1.0014 3196
## CWD_presence-Meleagris_gallopavo 1.2353 1.0010 3016
## CWD_presence-Sciurus_carolinensis 1.3031 1.0047 2863
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.5541 0.1931 -2.9508 -2.5478 -2.1846 1.0036
## (Intercept)-Procyon_lotor -2.2234 0.1605 -2.5417 -2.2206 -1.9150 1.0013
## (Intercept)-Dasypus_novemcinctus -1.7244 0.1894 -2.1041 -1.7223 -1.3597 1.0012
## (Intercept)-Lynx_rufus -3.4780 0.3410 -4.1709 -3.4687 -2.8371 1.0218
## (Intercept)-Didelphis_virginiana -2.5413 0.3014 -3.1347 -2.5377 -1.9566 1.0026
## (Intercept)-Sylvilagus_floridanus -3.0602 0.2675 -3.6104 -3.0548 -2.5587 1.0070
## (Intercept)-Meleagris_gallopavo -3.3863 0.4974 -4.3909 -3.3747 -2.4271 1.0058
## (Intercept)-Sciurus_carolinensis -2.7125 0.3435 -3.4154 -2.7058 -2.0562 1.0001
## shrub_cover-Canis_latrans -0.2847 0.2308 -0.7296 -0.2866 0.1713 1.0060
## shrub_cover-Procyon_lotor 0.2960 0.1592 -0.0261 0.2976 0.6029 1.0005
## shrub_cover-Dasypus_novemcinctus 1.0640 0.3173 0.4398 1.0660 1.6764 1.0040
## shrub_cover-Lynx_rufus 0.0521 0.3793 -0.7115 0.0608 0.7633 1.0270
## shrub_cover-Didelphis_virginiana 1.1790 0.3820 0.4675 1.1641 1.9643 1.0007
## shrub_cover-Sylvilagus_floridanus 0.5959 0.3871 -0.1702 0.5969 1.3505 1.0022
## shrub_cover-Meleagris_gallopavo -0.3438 0.4479 -1.2474 -0.3392 0.5296 1.0039
## shrub_cover-Sciurus_carolinensis 1.1347 0.4248 0.3127 1.1308 1.9696 1.0024
## veg_height-Canis_latrans -0.5477 0.1832 -0.9134 -0.5452 -0.2001 1.0035
## veg_height-Procyon_lotor 0.3759 0.1225 0.1346 0.3763 0.6132 1.0006
## veg_height-Dasypus_novemcinctus 0.2979 0.1410 0.0242 0.2955 0.5789 1.0005
## veg_height-Lynx_rufus 0.1814 0.2369 -0.2969 0.1885 0.6287 1.0013
## veg_height-Didelphis_virginiana 0.5354 0.2531 0.0601 0.5310 1.0445 1.0028
## veg_height-Sylvilagus_floridanus 0.1741 0.2459 -0.3128 0.1726 0.6583 1.0057
## veg_height-Meleagris_gallopavo -0.0845 0.4249 -0.9145 -0.0907 0.7658 1.0084
## veg_height-Sciurus_carolinensis 0.1866 0.2310 -0.2584 0.1833 0.6508 1.0001
## week-Canis_latrans 0.4611 0.2495 -0.0062 0.4550 0.9752 1.0008
## week-Procyon_lotor 0.1605 0.1982 -0.2222 0.1584 0.5521 1.0008
## week-Dasypus_novemcinctus 0.0615 0.2130 -0.3669 0.0626 0.4773 1.0002
## week-Lynx_rufus 0.2943 0.3024 -0.2713 0.2834 0.9176 1.0048
## week-Didelphis_virginiana 0.0472 0.3162 -0.6055 0.0559 0.6374 1.0067
## week-Sylvilagus_floridanus 0.0431 0.2972 -0.5780 0.0521 0.5969 1.0045
## week-Meleagris_gallopavo -0.0963 0.3557 -0.8727 -0.0733 0.5357 1.0036
## week-Sciurus_carolinensis 0.5554 0.3343 -0.0426 0.5340 1.2712 1.0027
## I(week^2)-Canis_latrans -0.1966 0.1051 -0.4109 -0.1947 0.0033 1.0023
## I(week^2)-Procyon_lotor -0.1120 0.0884 -0.2869 -0.1117 0.0592 1.0003
## I(week^2)-Dasypus_novemcinctus -0.1545 0.1003 -0.3594 -0.1531 0.0410 1.0006
## I(week^2)-Lynx_rufus -0.2130 0.1482 -0.5306 -0.2044 0.0568 1.0053
## I(week^2)-Didelphis_virginiana -0.3805 0.2198 -0.9078 -0.3524 -0.0291 1.0121
## I(week^2)-Sylvilagus_floridanus -0.1583 0.1485 -0.4633 -0.1541 0.1221 1.0015
## I(week^2)-Meleagris_gallopavo -0.3856 0.2576 -0.9980 -0.3497 0.0091 1.0170
## I(week^2)-Sciurus_carolinensis -0.2049 0.1394 -0.4917 -0.1998 0.0540 1.0025
## ESS
## (Intercept)-Canis_latrans 4422
## (Intercept)-Procyon_lotor 5340
## (Intercept)-Dasypus_novemcinctus 3312
## (Intercept)-Lynx_rufus 1286
## (Intercept)-Didelphis_virginiana 2305
## (Intercept)-Sylvilagus_floridanus 3385
## (Intercept)-Meleagris_gallopavo 728
## (Intercept)-Sciurus_carolinensis 1587
## shrub_cover-Canis_latrans 2888
## shrub_cover-Procyon_lotor 6408
## shrub_cover-Dasypus_novemcinctus 1656
## shrub_cover-Lynx_rufus 1059
## shrub_cover-Didelphis_virginiana 1955
## shrub_cover-Sylvilagus_floridanus 1896
## shrub_cover-Meleagris_gallopavo 896
## shrub_cover-Sciurus_carolinensis 1444
## veg_height-Canis_latrans 3255
## veg_height-Procyon_lotor 5803
## veg_height-Dasypus_novemcinctus 5815
## veg_height-Lynx_rufus 2408
## veg_height-Didelphis_virginiana 3842
## veg_height-Sylvilagus_floridanus 2309
## veg_height-Meleagris_gallopavo 862
## veg_height-Sciurus_carolinensis 2902
## week-Canis_latrans 5896
## week-Procyon_lotor 7090
## week-Dasypus_novemcinctus 8538
## week-Lynx_rufus 3835
## week-Didelphis_virginiana 4777
## week-Sylvilagus_floridanus 4720
## week-Meleagris_gallopavo 2729
## week-Sciurus_carolinensis 4690
## I(week^2)-Canis_latrans 6170
## I(week^2)-Procyon_lotor 6757
## I(week^2)-Dasypus_novemcinctus 8135
## I(week^2)-Lynx_rufus 2907
## I(week^2)-Didelphis_virginiana 1636
## I(week^2)-Sylvilagus_floridanus 3420
## I(week^2)-Meleagris_gallopavo 1023
## I(week^2)-Sciurus_carolinensis 5179
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 1.3631 2.8473 0.1869 0.6691 7.0159 1.1008 482
## sigma.sq-Procyon_lotor 1.9926 3.9521 0.1954 0.8564 12.2273 1.0482 608
## sigma.sq-Dasypus_novemcinctus 1.2526 2.2427 0.1855 0.6644 6.4541 1.0119 936
## sigma.sq-Lynx_rufus 1.2906 2.6640 0.1863 0.6787 5.8990 1.1330 696
## sigma.sq-Didelphis_virginiana 0.8976 1.2904 0.1808 0.5763 3.6257 1.0496 1170
## sigma.sq-Sylvilagus_floridanus 0.8951 1.3789 0.1748 0.5742 3.4420 1.0962 1044
## sigma.sq-Meleagris_gallopavo 1.1048 2.2481 0.1877 0.6189 4.8550 1.0632 837
## sigma.sq-Sciurus_carolinensis 1.0052 1.9125 0.1764 0.5803 4.4879 1.1605 1084
## phi-Canis_latrans 0.0051 0.0028 0.0005 0.0051 0.0098 1.0118 774
## phi-Procyon_lotor 0.0051 0.0028 0.0003 0.0052 0.0098 1.0040 818
## phi-Dasypus_novemcinctus 0.0050 0.0029 0.0003 0.0051 0.0098 1.0034 658
## phi-Lynx_rufus 0.0048 0.0029 0.0003 0.0047 0.0097 1.0075 798
## phi-Didelphis_virginiana 0.0051 0.0028 0.0003 0.0051 0.0097 1.0118 1029
## phi-Sylvilagus_floridanus 0.0050 0.0029 0.0003 0.0050 0.0097 1.0335 816
## phi-Meleagris_gallopavo 0.0050 0.0028 0.0004 0.0050 0.0097 1.0145 931
## phi-Sciurus_carolinensis 0.0051 0.0029 0.0003 0.0052 0.0098 1.0093 744
waicOcc(ms_full_full, by.sp = FALSE)
## elpd pD WAIC
## -963.6736 101.0968 2129.5407
waicOcc(ms_null_null, by.sp = FALSE)
## elpd pD WAIC
## -1041.25218 49.28904 2181.08244
waicOcc(ms_cover_forage, by.sp = FALSE)
## elpd pD WAIC
## -1001.99796 85.32555 2174.64704
waicOcc(ms_cover_move, by.sp = FALSE)
## elpd pD WAIC
## -997.63559 91.38292 2178.03701
waicOcc(ms_cover_canopy, by.sp = FALSE)
## elpd pD WAIC
## -989.96355 81.57687 2143.08084
waicOcc(ms_weekQ_cogonQ, by.sp = FALSE)
## elpd pD WAIC
## -1020.07585 70.61533 2181.38236
waicOcc(ms_fullQ_cover, by.sp = FALSE)
## elpd pD WAIC
## -987.4807 110.9133 2196.7880
waicOcc(ms_fullQ_forage, by.sp = FALSE)
## elpd pD WAIC
## -991.22590 99.78253 2182.01686
waicOcc(ms_fullQ_fullQ, by.sp = FALSE)
## elpd pD WAIC
## -951.4575 110.1057 2123.1264
This test explains how well the model fits that data at the community and species level. I believe 0.5 is the target p-value, though how far from this number is considered adequate, I do not know yet. I believe this is a good place to check when thinking about which species we include in the model (currently set at mammals with > 2 occurences).
ppc_ft <- ppcOcc(
ms_fullQ_fullQ,
fit.stat = "freeman-tukey",
group = 1
)
## Currently on species 1 out of 8
## Currently on species 2 out of 8
## Currently on species 3 out of 8
## Currently on species 4 out of 8
## Currently on species 5 out of 8
## Currently on species 6 out of 8
## Currently on species 7 out of 8
## Currently on species 8 out of 8
ppc_chisq <- ppcOcc(
ms_fullQ_fullQ,
fit.stat = "chi-square",
group = 1
)
## Currently on species 1 out of 8
## Currently on species 2 out of 8
## Currently on species 3 out of 8
## Currently on species 4 out of 8
## Currently on species 5 out of 8
## Currently on species 6 out of 8
## Currently on species 7 out of 8
## Currently on species 8 out of 8
summary(ppc_ft)
##
## Call:
## ppcOcc(object = ms_fullQ_fullQ, fit.stat = "freeman-tukey", group = 1)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Bayesian p-value: 0.3391
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Canis_latrans Bayesian p-value: 0.6806
## Procyon_lotor Bayesian p-value: 0.0709
## Dasypus_novemcinctus Bayesian p-value: 1e-04
## Lynx_rufus Bayesian p-value: 0.3086
## Didelphis_virginiana Bayesian p-value: 0.3439
## Sylvilagus_floridanus Bayesian p-value: 0.4079
## Meleagris_gallopavo Bayesian p-value: 0.6119
## Sciurus_carolinensis Bayesian p-value: 0.289
## Fit statistic: freeman-tukey
summary(ppc_chisq)
##
## Call:
## ppcOcc(object = ms_fullQ_fullQ, fit.stat = "chi-square", group = 1)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Bayesian p-value: 0.2886
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Canis_latrans Bayesian p-value: 0.5409
## Procyon_lotor Bayesian p-value: 0.0027
## Dasypus_novemcinctus Bayesian p-value: 0
## Lynx_rufus Bayesian p-value: 0.3315
## Didelphis_virginiana Bayesian p-value: 0.2839
## Sylvilagus_floridanus Bayesian p-value: 0.212
## Meleagris_gallopavo Bayesian p-value: 0.6211
## Sciurus_carolinensis Bayesian p-value: 0.3169
## Fit statistic: chi-square
pd <- function(x) {
max(mean(x > 0), mean(x < 0))
}
pd_table <- apply(
ms_fullQ_fullQ$beta.samples,
2,
pd
)
head(pd_table)
## (Intercept)-Canis_latrans (Intercept)-Procyon_lotor
## 0.9067857 0.7477857
## (Intercept)-Dasypus_novemcinctus (Intercept)-Lynx_rufus
## 0.9916429 0.8331429
## (Intercept)-Didelphis_virginiana (Intercept)-Sylvilagus_floridanus
## 0.9985000 0.9620714
beta_means <- colMeans(ms_fullQ_fullQ$beta.samples)
beta_samps <- ms_fullQ_fullQ$beta.samples
pd_vals <- apply(beta_samps, 2, pd)
beta_means <- colMeans(beta_samps)
results_species <- data.frame(
parameter = colnames(beta_samps),
mean = beta_means,
pd = pd_vals,
pd_95 = pd_vals >= 0.95
)
head(results_species)
## parameter mean
## (Intercept)-Canis_latrans (Intercept)-Canis_latrans -1.3533606
## (Intercept)-Procyon_lotor (Intercept)-Procyon_lotor -0.7064982
## (Intercept)-Dasypus_novemcinctus (Intercept)-Dasypus_novemcinctus -2.1241751
## (Intercept)-Lynx_rufus (Intercept)-Lynx_rufus -1.1535655
## (Intercept)-Didelphis_virginiana (Intercept)-Didelphis_virginiana -2.8933473
## (Intercept)-Sylvilagus_floridanus (Intercept)-Sylvilagus_floridanus -1.9208957
## pd pd_95
## (Intercept)-Canis_latrans 0.9067857 FALSE
## (Intercept)-Procyon_lotor 0.7477857 FALSE
## (Intercept)-Dasypus_novemcinctus 0.9916429 TRUE
## (Intercept)-Lynx_rufus 0.8331429 FALSE
## (Intercept)-Didelphis_virginiana 0.9985000 TRUE
## (Intercept)-Sylvilagus_floridanus 0.9620714 TRUE
beta_comm <- ms_fullQ_fullQ$beta.comm.samples
results_comm <- data.frame(
parameter = colnames(beta_comm),
mean = colMeans(beta_comm),
pd = apply(beta_comm, 2, pd)
)
results_comm$pd_95 <- results_comm$pd >= 0.95
pd <- function(x) {
max(mean(x > 0), mean(x < 0))
}
alpha_samps <- ms_fullQ_fullQ$alpha.samples
pd_vals_alpha <- apply(alpha_samps, 2, pd)
alpha_means <- colMeans(alpha_samps)
results_species_det <- data.frame(
parameter = colnames(alpha_samps),
mean = alpha_means,
pd = pd_vals_alpha,
pd_95 = pd_vals_alpha >= 0.95
)
head(results_species_det)
## parameter mean
## (Intercept)-Canis_latrans (Intercept)-Canis_latrans -2.554122
## (Intercept)-Procyon_lotor (Intercept)-Procyon_lotor -2.223360
## (Intercept)-Dasypus_novemcinctus (Intercept)-Dasypus_novemcinctus -1.724363
## (Intercept)-Lynx_rufus (Intercept)-Lynx_rufus -3.478031
## (Intercept)-Didelphis_virginiana (Intercept)-Didelphis_virginiana -2.541346
## (Intercept)-Sylvilagus_floridanus (Intercept)-Sylvilagus_floridanus -3.060246
## pd pd_95
## (Intercept)-Canis_latrans 1 TRUE
## (Intercept)-Procyon_lotor 1 TRUE
## (Intercept)-Dasypus_novemcinctus 1 TRUE
## (Intercept)-Lynx_rufus 1 TRUE
## (Intercept)-Didelphis_virginiana 1 TRUE
## (Intercept)-Sylvilagus_floridanus 1 TRUE
alpha_comm <- ms_fullQ_fullQ$alpha.comm.samples
results_comm_det <- data.frame(
parameter = colnames(alpha_comm),
mean = colMeans(alpha_comm),
pd = apply(alpha_comm, 2, pd)
)
results_comm_det$pd_95 <- results_comm_det$pd >= 0.95
results_comm_det
## parameter mean pd pd_95
## (Intercept) (Intercept) -2.6344774 0.9999286 TRUE
## shrub_cover shrub_cover 0.4458863 0.9257143 FALSE
## veg_height veg_height 0.1383951 0.7697857 FALSE
## week week 0.1871768 0.8375000 FALSE
## I(week^2) I(week^2) -0.2255501 0.9742143 TRUE
summary(ms_fullQ_fullQ) # Summary of parameter estimates
##
## Call:
## spMsPGOcc(occ.formula = occ.full.quad, det.formula = det.full.quad,
## data = data_list, priors = priors, cov.model = "exponential",
## NNGP = FALSE, n.batch = 1000, batch.length = 10, n.report = 100,
## n.burn = 3000, n.thin = 2, n.chains = 4)
##
## Samples per Chain: 10000
## Burn-in: 3000
## Thinning Rate: 2
## Number of Chains: 4
## Total Posterior Samples: 14000
## Run Time (min): 2.5548
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -1.7223 0.7522 -3.1430 -1.7351 -0.1724 1.0058 1385
## Cogon_Patch_Size 0.2907 0.7080 -1.1341 0.2914 1.6970 1.0038 1390
## Veg_shannon_index 0.9389 0.5272 -0.0734 0.9272 2.0092 1.0075 1625
## total_shrub_cover -1.3207 0.7196 -2.8587 -1.2794 0.0012 1.0041 1152
## Avg_Cogongrass_Cover -0.0756 1.0059 -2.0530 -0.0659 1.8608 1.0037 847
## I(Avg_Cogongrass_Cover^2) 1.4334 0.7345 -0.0692 1.4272 2.9057 1.0011 1967
## Tree_Density -2.3162 0.9280 -4.1358 -2.3270 -0.4661 1.0092 1037
## Avg_Canopy_Cover 1.9082 0.7964 0.3110 1.8973 3.5407 1.0040 3025
## avg_veg_height -0.1221 0.6035 -1.3576 -0.1138 1.0390 1.0026 1255
## CWD_presence -0.1123 0.4447 -0.9880 -0.1146 0.7837 1.0053 2456
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.4467 3.6015 0.0766 1.3651 11.3914 1.0263 1495
## Cogon_Patch_Size 2.2716 4.4850 0.0726 1.0541 11.6262 1.0604 1188
## Veg_shannon_index 0.9099 1.5839 0.0483 0.4376 4.5597 1.0056 1966
## total_shrub_cover 2.6784 4.7295 0.0965 1.4152 12.9366 1.0283 1414
## Avg_Cogongrass_Cover 1.5604 2.8610 0.0535 0.6207 8.9053 1.0042 2346
## I(Avg_Cogongrass_Cover^2) 3.8095 7.2859 0.0842 1.6479 21.0184 1.0023 535
## Tree_Density 3.6577 8.2028 0.0635 1.2859 22.1892 1.0151 986
## Avg_Canopy_Cover 5.2292 9.9773 0.1960 2.7130 24.6989 1.0446 580
## avg_veg_height 0.8976 1.8560 0.0483 0.3919 4.8195 1.1150 1349
## CWD_presence 0.6319 0.9499 0.0441 0.3344 3.1450 1.0218 2898
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6345 0.3042 -3.2264 -2.6418 -2.0034 1.0015 6317
## shrub_cover 0.4459 0.3217 -0.1960 0.4453 1.0901 1.0006 3499
## veg_height 0.1384 0.2046 -0.2843 0.1386 0.5456 1.0008 4111
## week 0.1872 0.2031 -0.2222 0.1887 0.5938 1.0057 5381
## I(week^2) -0.2256 0.1217 -0.4769 -0.2211 0.0014 1.0061 3502
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.6413 0.6480 0.1373 0.4753 2.0977 1.0095 3431
## shrub_cover 0.7117 0.6500 0.1357 0.5407 2.3213 1.0067 4268
## veg_height 0.2598 0.2293 0.0594 0.1971 0.8537 1.0013 7532
## week 0.2083 0.2295 0.0335 0.1450 0.7659 1.0075 5595
## I(week^2) 0.0843 0.0886 0.0198 0.0600 0.2994 1.0056 2644
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Canis_latrans -1.3534 1.0229 -3.3576 -1.3692
## (Intercept)-Procyon_lotor -0.7065 1.0697 -2.7070 -0.7440
## (Intercept)-Dasypus_novemcinctus -2.1242 0.9075 -4.0443 -2.0865
## (Intercept)-Lynx_rufus -1.1536 1.4096 -3.4464 -1.3355
## (Intercept)-Didelphis_virginiana -2.8933 1.1711 -5.5073 -2.7967
## (Intercept)-Sylvilagus_floridanus -1.9209 1.0887 -4.1577 -1.9037
## (Intercept)-Meleagris_gallopavo -1.7830 1.1732 -4.0436 -1.8172
## (Intercept)-Sciurus_carolinensis -3.1302 1.3035 -5.9704 -2.9877
## Cogon_Patch_Size-Canis_latrans 1.4467 1.2649 -0.3783 1.2312
## Cogon_Patch_Size-Procyon_lotor -0.1005 0.8385 -1.7933 -0.0887
## Cogon_Patch_Size-Dasypus_novemcinctus 0.3189 0.9008 -1.3626 0.2899
## Cogon_Patch_Size-Lynx_rufus 0.1067 1.3260 -2.8085 0.1515
## Cogon_Patch_Size-Didelphis_virginiana 1.2933 1.0024 -0.3391 1.1792
## Cogon_Patch_Size-Sylvilagus_floridanus -0.6461 1.4481 -4.2168 -0.4315
## Cogon_Patch_Size-Meleagris_gallopavo 0.4796 1.2104 -1.6828 0.4000
## Cogon_Patch_Size-Sciurus_carolinensis -0.3719 1.2097 -3.0938 -0.2636
## Veg_shannon_index-Canis_latrans 1.2976 0.7411 0.0542 1.2185
## Veg_shannon_index-Procyon_lotor 1.1376 0.6745 -0.0625 1.0876
## Veg_shannon_index-Dasypus_novemcinctus 0.5720 0.6443 -0.7873 0.5908
## Veg_shannon_index-Lynx_rufus 0.9320 0.9756 -0.9955 0.9068
## Veg_shannon_index-Didelphis_virginiana 1.1997 0.7847 -0.1666 1.1330
## Veg_shannon_index-Sylvilagus_floridanus 1.0404 0.7597 -0.3546 1.0056
## Veg_shannon_index-Meleagris_gallopavo 1.3648 0.8780 -0.0688 1.2628
## Veg_shannon_index-Sciurus_carolinensis 0.2878 0.8671 -1.6362 0.3835
## total_shrub_cover-Canis_latrans 0.0397 0.9220 -1.5907 -0.0291
## total_shrub_cover-Procyon_lotor -1.7668 0.8405 -3.6129 -1.6890
## total_shrub_cover-Dasypus_novemcinctus -0.8436 1.0362 -3.0937 -0.7444
## total_shrub_cover-Lynx_rufus -2.1461 1.5020 -5.6712 -1.9164
## total_shrub_cover-Didelphis_virginiana -1.7215 1.2655 -4.8878 -1.5232
## total_shrub_cover-Sylvilagus_floridanus -1.3542 1.2809 -4.3312 -1.2232
## total_shrub_cover-Meleagris_gallopavo -2.7107 1.4929 -6.2182 -2.4798
## total_shrub_cover-Sciurus_carolinensis -1.3932 1.3166 -4.4883 -1.2464
## Avg_Cogongrass_Cover-Canis_latrans 0.0839 1.2716 -2.4300 0.0927
## Avg_Cogongrass_Cover-Procyon_lotor -0.3239 1.2897 -3.0157 -0.2668
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.5965 1.3762 -1.8588 0.5011
## Avg_Cogongrass_Cover-Lynx_rufus -0.0955 1.3729 -2.8546 -0.0847
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.1797 1.3364 -2.3242 0.1245
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.7303 1.4374 -3.9079 -0.6130
## Avg_Cogongrass_Cover-Meleagris_gallopavo -0.3973 1.4312 -3.4706 -0.3159
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.0019 1.3190 -2.6109 -0.0032
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.6308 1.4119 0.6988 2.3528
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.7476 1.5410 0.7494 2.4485
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.3533 0.7891 -0.0599 1.3006
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 3.0926 1.7305 0.8418 2.7159
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.7314 0.8465 -0.9377 0.7250
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.0981 0.9852 -0.6100 1.0215
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo -0.0287 1.7608 -3.9934 0.1620
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.5574 0.9028 -0.0044 1.4826
## Tree_Density-Canis_latrans -3.1843 1.4654 -6.7014 -2.9873
## Tree_Density-Procyon_lotor -2.4706 1.2131 -5.0307 -2.4134
## Tree_Density-Dasypus_novemcinctus -3.9122 1.8874 -8.7754 -3.5030
## Tree_Density-Lynx_rufus -1.2337 1.7593 -4.0693 -1.4483
## Tree_Density-Didelphis_virginiana -2.3055 1.3057 -5.0283 -2.2784
## Tree_Density-Sylvilagus_floridanus -2.8832 1.5652 -6.5341 -2.7198
## Tree_Density-Meleagris_gallopavo -2.6285 1.5175 -5.9480 -2.5320
## Tree_Density-Sciurus_carolinensis -2.4571 1.5000 -5.6148 -2.4293
## Avg_Canopy_Cover-Canis_latrans 0.2116 0.7432 -1.2103 0.1935
## Avg_Canopy_Cover-Procyon_lotor 1.5612 0.8623 -0.0188 1.5232
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.3750 0.9676 0.8328 2.2518
## Avg_Canopy_Cover-Lynx_rufus 1.1772 1.5665 -1.7297 1.1244
## Avg_Canopy_Cover-Didelphis_virginiana 3.3486 1.6145 1.1684 3.0569
## Avg_Canopy_Cover-Sylvilagus_floridanus 4.2102 2.1208 1.2999 3.8480
## Avg_Canopy_Cover-Meleagris_gallopavo 2.3867 1.3625 0.4092 2.1522
## Avg_Canopy_Cover-Sciurus_carolinensis 3.3100 1.9119 1.0420 2.9001
## avg_veg_height-Canis_latrans -0.2374 0.7176 -1.6702 -0.2306
## avg_veg_height-Procyon_lotor -0.0449 0.7377 -1.4942 -0.0456
## avg_veg_height-Dasypus_novemcinctus 0.3195 0.8043 -1.0752 0.2504
## avg_veg_height-Lynx_rufus -0.6131 1.0802 -3.2231 -0.4798
## avg_veg_height-Didelphis_virginiana -0.3381 0.8464 -2.1677 -0.2932
## avg_veg_height-Sylvilagus_floridanus -0.3029 0.8343 -2.0757 -0.2753
## avg_veg_height-Meleagris_gallopavo -0.1990 1.0313 -2.3899 -0.1668
## avg_veg_height-Sciurus_carolinensis 0.3502 0.9072 -1.1661 0.2625
## CWD_presence-Canis_latrans 0.4168 0.7083 -0.6954 0.3233
## CWD_presence-Procyon_lotor -0.4082 0.6133 -1.7182 -0.3740
## CWD_presence-Dasypus_novemcinctus -0.1925 0.5516 -1.3389 -0.1876
## CWD_presence-Lynx_rufus 0.1481 0.7133 -1.1264 0.0931
## CWD_presence-Didelphis_virginiana -0.1255 0.7219 -1.5662 -0.1325
## CWD_presence-Sylvilagus_floridanus -0.4874 0.6925 -2.0536 -0.4271
## CWD_presence-Meleagris_gallopavo -0.2325 0.7214 -1.6593 -0.2268
## CWD_presence-Sciurus_carolinensis -0.0234 0.6501 -1.2865 -0.0331
## 97.5% Rhat ESS
## (Intercept)-Canis_latrans 0.7058 1.0046 1202
## (Intercept)-Procyon_lotor 1.4575 1.0068 1048
## (Intercept)-Dasypus_novemcinctus -0.4172 1.0041 2062
## (Intercept)-Lynx_rufus 2.2045 1.0218 850
## (Intercept)-Didelphis_virginiana -0.9065 1.0106 1615
## (Intercept)-Sylvilagus_floridanus 0.2631 1.0054 1644
## (Intercept)-Meleagris_gallopavo 0.6945 1.0086 1263
## (Intercept)-Sciurus_carolinensis -0.9793 1.0051 1331
## Cogon_Patch_Size-Canis_latrans 4.5579 1.0038 1474
## Cogon_Patch_Size-Procyon_lotor 1.5511 1.0006 1885
## Cogon_Patch_Size-Dasypus_novemcinctus 2.2003 1.0026 1641
## Cogon_Patch_Size-Lynx_rufus 2.6798 1.0099 1063
## Cogon_Patch_Size-Didelphis_virginiana 3.5636 1.0001 1914
## Cogon_Patch_Size-Sylvilagus_floridanus 1.6287 1.0073 1289
## Cogon_Patch_Size-Meleagris_gallopavo 3.1388 1.0199 1417
## Cogon_Patch_Size-Sciurus_carolinensis 1.6907 1.0048 1620
## Veg_shannon_index-Canis_latrans 3.0114 1.0150 2298
## Veg_shannon_index-Procyon_lotor 2.6018 1.0073 2333
## Veg_shannon_index-Dasypus_novemcinctus 1.7979 1.0029 2997
## Veg_shannon_index-Lynx_rufus 3.0109 1.0103 1664
## Veg_shannon_index-Didelphis_virginiana 2.9789 1.0047 2180
## Veg_shannon_index-Sylvilagus_floridanus 2.6857 1.0084 2380
## Veg_shannon_index-Meleagris_gallopavo 3.3819 1.0123 1603
## Veg_shannon_index-Sciurus_carolinensis 1.7579 1.0011 2251
## total_shrub_cover-Canis_latrans 2.0775 1.0085 1907
## total_shrub_cover-Procyon_lotor -0.3393 1.0052 1435
## total_shrub_cover-Dasypus_novemcinctus 0.8687 1.0053 1117
## total_shrub_cover-Lynx_rufus 0.2559 1.0190 674
## total_shrub_cover-Didelphis_virginiana 0.1861 1.0032 1034
## total_shrub_cover-Sylvilagus_floridanus 0.8373 1.0020 1202
## total_shrub_cover-Meleagris_gallopavo -0.4765 1.0038 749
## total_shrub_cover-Sciurus_carolinensis 0.7607 1.0015 845
## Avg_Cogongrass_Cover-Canis_latrans 2.6275 1.0015 1116
## Avg_Cogongrass_Cover-Procyon_lotor 2.0732 1.0064 1108
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.6285 1.0008 1075
## Avg_Cogongrass_Cover-Lynx_rufus 2.6069 1.0005 950
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.9796 1.0026 1177
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.7596 1.0068 1284
## Avg_Cogongrass_Cover-Meleagris_gallopavo 2.1611 1.0049 1073
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.6381 1.0021 1114
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 6.2220 1.0108 635
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 6.5185 1.0072 407
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 3.0641 1.0030 1929
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 7.5195 1.0018 556
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 2.4430 1.0079 1538
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 3.2953 1.0097 1299
## I(Avg_Cogongrass_Cover^2)-Meleagris_gallopavo 2.8557 1.0157 407
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 3.5995 1.0065 1845
## Tree_Density-Canis_latrans -0.9242 1.0053 995
## Tree_Density-Procyon_lotor -0.2675 1.0005 979
## Tree_Density-Dasypus_novemcinctus -1.3730 1.0116 705
## Tree_Density-Lynx_rufus 2.9219 1.0195 755
## Tree_Density-Didelphis_virginiana 0.2523 1.0050 1593
## Tree_Density-Sylvilagus_floridanus -0.1986 1.0056 1332
## Tree_Density-Meleagris_gallopavo 0.0596 1.0073 1478
## Tree_Density-Sciurus_carolinensis 0.5432 1.0105 1378
## Avg_Canopy_Cover-Canis_latrans 1.7109 1.0075 2135
## Avg_Canopy_Cover-Procyon_lotor 3.3859 1.0034 3756
## Avg_Canopy_Cover-Dasypus_novemcinctus 4.6101 1.0052 1508
## Avg_Canopy_Cover-Lynx_rufus 4.4928 1.0112 946
## Avg_Canopy_Cover-Didelphis_virginiana 7.2506 1.0133 954
## Avg_Canopy_Cover-Sylvilagus_floridanus 9.2178 1.0261 591
## Avg_Canopy_Cover-Meleagris_gallopavo 5.7340 1.0241 1155
## Avg_Canopy_Cover-Sciurus_carolinensis 7.8324 1.0246 513
## avg_veg_height-Canis_latrans 1.1657 1.0008 2009
## avg_veg_height-Procyon_lotor 1.4063 1.0019 2153
## avg_veg_height-Dasypus_novemcinctus 2.0941 1.0065 1790
## avg_veg_height-Lynx_rufus 1.1454 1.0171 1149
## avg_veg_height-Didelphis_virginiana 1.2288 1.0024 1640
## avg_veg_height-Sylvilagus_floridanus 1.2557 1.0037 1888
## avg_veg_height-Meleagris_gallopavo 1.7625 1.0147 1296
## avg_veg_height-Sciurus_carolinensis 2.3468 1.0046 1661
## CWD_presence-Canis_latrans 2.1110 1.0208 2482
## CWD_presence-Procyon_lotor 0.7307 1.0036 3649
## CWD_presence-Dasypus_novemcinctus 0.8557 1.0011 4120
## CWD_presence-Lynx_rufus 1.7313 1.0127 2397
## CWD_presence-Didelphis_virginiana 1.3706 1.0007 3510
## CWD_presence-Sylvilagus_floridanus 0.7193 1.0014 3196
## CWD_presence-Meleagris_gallopavo 1.2353 1.0010 3016
## CWD_presence-Sciurus_carolinensis 1.3031 1.0047 2863
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat
## (Intercept)-Canis_latrans -2.5541 0.1931 -2.9508 -2.5478 -2.1846 1.0036
## (Intercept)-Procyon_lotor -2.2234 0.1605 -2.5417 -2.2206 -1.9150 1.0013
## (Intercept)-Dasypus_novemcinctus -1.7244 0.1894 -2.1041 -1.7223 -1.3597 1.0012
## (Intercept)-Lynx_rufus -3.4780 0.3410 -4.1709 -3.4687 -2.8371 1.0218
## (Intercept)-Didelphis_virginiana -2.5413 0.3014 -3.1347 -2.5377 -1.9566 1.0026
## (Intercept)-Sylvilagus_floridanus -3.0602 0.2675 -3.6104 -3.0548 -2.5587 1.0070
## (Intercept)-Meleagris_gallopavo -3.3863 0.4974 -4.3909 -3.3747 -2.4271 1.0058
## (Intercept)-Sciurus_carolinensis -2.7125 0.3435 -3.4154 -2.7058 -2.0562 1.0001
## shrub_cover-Canis_latrans -0.2847 0.2308 -0.7296 -0.2866 0.1713 1.0060
## shrub_cover-Procyon_lotor 0.2960 0.1592 -0.0261 0.2976 0.6029 1.0005
## shrub_cover-Dasypus_novemcinctus 1.0640 0.3173 0.4398 1.0660 1.6764 1.0040
## shrub_cover-Lynx_rufus 0.0521 0.3793 -0.7115 0.0608 0.7633 1.0270
## shrub_cover-Didelphis_virginiana 1.1790 0.3820 0.4675 1.1641 1.9643 1.0007
## shrub_cover-Sylvilagus_floridanus 0.5959 0.3871 -0.1702 0.5969 1.3505 1.0022
## shrub_cover-Meleagris_gallopavo -0.3438 0.4479 -1.2474 -0.3392 0.5296 1.0039
## shrub_cover-Sciurus_carolinensis 1.1347 0.4248 0.3127 1.1308 1.9696 1.0024
## veg_height-Canis_latrans -0.5477 0.1832 -0.9134 -0.5452 -0.2001 1.0035
## veg_height-Procyon_lotor 0.3759 0.1225 0.1346 0.3763 0.6132 1.0006
## veg_height-Dasypus_novemcinctus 0.2979 0.1410 0.0242 0.2955 0.5789 1.0005
## veg_height-Lynx_rufus 0.1814 0.2369 -0.2969 0.1885 0.6287 1.0013
## veg_height-Didelphis_virginiana 0.5354 0.2531 0.0601 0.5310 1.0445 1.0028
## veg_height-Sylvilagus_floridanus 0.1741 0.2459 -0.3128 0.1726 0.6583 1.0057
## veg_height-Meleagris_gallopavo -0.0845 0.4249 -0.9145 -0.0907 0.7658 1.0084
## veg_height-Sciurus_carolinensis 0.1866 0.2310 -0.2584 0.1833 0.6508 1.0001
## week-Canis_latrans 0.4611 0.2495 -0.0062 0.4550 0.9752 1.0008
## week-Procyon_lotor 0.1605 0.1982 -0.2222 0.1584 0.5521 1.0008
## week-Dasypus_novemcinctus 0.0615 0.2130 -0.3669 0.0626 0.4773 1.0002
## week-Lynx_rufus 0.2943 0.3024 -0.2713 0.2834 0.9176 1.0048
## week-Didelphis_virginiana 0.0472 0.3162 -0.6055 0.0559 0.6374 1.0067
## week-Sylvilagus_floridanus 0.0431 0.2972 -0.5780 0.0521 0.5969 1.0045
## week-Meleagris_gallopavo -0.0963 0.3557 -0.8727 -0.0733 0.5357 1.0036
## week-Sciurus_carolinensis 0.5554 0.3343 -0.0426 0.5340 1.2712 1.0027
## I(week^2)-Canis_latrans -0.1966 0.1051 -0.4109 -0.1947 0.0033 1.0023
## I(week^2)-Procyon_lotor -0.1120 0.0884 -0.2869 -0.1117 0.0592 1.0003
## I(week^2)-Dasypus_novemcinctus -0.1545 0.1003 -0.3594 -0.1531 0.0410 1.0006
## I(week^2)-Lynx_rufus -0.2130 0.1482 -0.5306 -0.2044 0.0568 1.0053
## I(week^2)-Didelphis_virginiana -0.3805 0.2198 -0.9078 -0.3524 -0.0291 1.0121
## I(week^2)-Sylvilagus_floridanus -0.1583 0.1485 -0.4633 -0.1541 0.1221 1.0015
## I(week^2)-Meleagris_gallopavo -0.3856 0.2576 -0.9980 -0.3497 0.0091 1.0170
## I(week^2)-Sciurus_carolinensis -0.2049 0.1394 -0.4917 -0.1998 0.0540 1.0025
## ESS
## (Intercept)-Canis_latrans 4422
## (Intercept)-Procyon_lotor 5340
## (Intercept)-Dasypus_novemcinctus 3312
## (Intercept)-Lynx_rufus 1286
## (Intercept)-Didelphis_virginiana 2305
## (Intercept)-Sylvilagus_floridanus 3385
## (Intercept)-Meleagris_gallopavo 728
## (Intercept)-Sciurus_carolinensis 1587
## shrub_cover-Canis_latrans 2888
## shrub_cover-Procyon_lotor 6408
## shrub_cover-Dasypus_novemcinctus 1656
## shrub_cover-Lynx_rufus 1059
## shrub_cover-Didelphis_virginiana 1955
## shrub_cover-Sylvilagus_floridanus 1896
## shrub_cover-Meleagris_gallopavo 896
## shrub_cover-Sciurus_carolinensis 1444
## veg_height-Canis_latrans 3255
## veg_height-Procyon_lotor 5803
## veg_height-Dasypus_novemcinctus 5815
## veg_height-Lynx_rufus 2408
## veg_height-Didelphis_virginiana 3842
## veg_height-Sylvilagus_floridanus 2309
## veg_height-Meleagris_gallopavo 862
## veg_height-Sciurus_carolinensis 2902
## week-Canis_latrans 5896
## week-Procyon_lotor 7090
## week-Dasypus_novemcinctus 8538
## week-Lynx_rufus 3835
## week-Didelphis_virginiana 4777
## week-Sylvilagus_floridanus 4720
## week-Meleagris_gallopavo 2729
## week-Sciurus_carolinensis 4690
## I(week^2)-Canis_latrans 6170
## I(week^2)-Procyon_lotor 6757
## I(week^2)-Dasypus_novemcinctus 8135
## I(week^2)-Lynx_rufus 2907
## I(week^2)-Didelphis_virginiana 1636
## I(week^2)-Sylvilagus_floridanus 3420
## I(week^2)-Meleagris_gallopavo 1023
## I(week^2)-Sciurus_carolinensis 5179
##
## Spatial Covariance:
## Mean SD 2.5% 50% 97.5% Rhat ESS
## sigma.sq-Canis_latrans 1.3631 2.8473 0.1869 0.6691 7.0159 1.1008 482
## sigma.sq-Procyon_lotor 1.9926 3.9521 0.1954 0.8564 12.2273 1.0482 608
## sigma.sq-Dasypus_novemcinctus 1.2526 2.2427 0.1855 0.6644 6.4541 1.0119 936
## sigma.sq-Lynx_rufus 1.2906 2.6640 0.1863 0.6787 5.8990 1.1330 696
## sigma.sq-Didelphis_virginiana 0.8976 1.2904 0.1808 0.5763 3.6257 1.0496 1170
## sigma.sq-Sylvilagus_floridanus 0.8951 1.3789 0.1748 0.5742 3.4420 1.0962 1044
## sigma.sq-Meleagris_gallopavo 1.1048 2.2481 0.1877 0.6189 4.8550 1.0632 837
## sigma.sq-Sciurus_carolinensis 1.0052 1.9125 0.1764 0.5803 4.4879 1.1605 1084
## phi-Canis_latrans 0.0051 0.0028 0.0005 0.0051 0.0098 1.0118 774
## phi-Procyon_lotor 0.0051 0.0028 0.0003 0.0052 0.0098 1.0040 818
## phi-Dasypus_novemcinctus 0.0050 0.0029 0.0003 0.0051 0.0098 1.0034 658
## phi-Lynx_rufus 0.0048 0.0029 0.0003 0.0047 0.0097 1.0075 798
## phi-Didelphis_virginiana 0.0051 0.0028 0.0003 0.0051 0.0097 1.0118 1029
## phi-Sylvilagus_floridanus 0.0050 0.0029 0.0003 0.0050 0.0097 1.0335 816
## phi-Meleagris_gallopavo 0.0050 0.0028 0.0004 0.0050 0.0097 1.0145 931
## phi-Sciurus_carolinensis 0.0051 0.0029 0.0003 0.0052 0.0098 1.0093 744
names(ms_fullQ_fullQ)
## [1] "rhat" "beta.comm.samples" "alpha.comm.samples"
## [4] "tau.sq.beta.samples" "tau.sq.alpha.samples" "beta.samples"
## [7] "alpha.samples" "theta.samples" "z.samples"
## [10] "psi.samples" "like.samples" "w.samples"
## [13] "X.p" "X.p.re" "X.re"
## [16] "ESS" "X" "y"
## [19] "call" "n.samples" "x.names"
## [22] "sp.names" "x.p.names" "theta.names"
## [25] "type" "coords" "cov.model.indx"
## [28] "n.post" "n.thin" "n.burn"
## [31] "n.chains" "pRE" "psiRE"
## [34] "run.time"
str(ms_fullQ_fullQ$beta.samples)
## 'mcmc' num [1:14000, 1:80] -0.0978 -2.6144 0.083 -1.8878 -1.6931 ...
## - attr(*, "mcpar")= num [1:3] 1 14000 1
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:80] "(Intercept)-Canis_latrans" "(Intercept)-Procyon_lotor" "(Intercept)-Dasypus_novemcinctus" "(Intercept)-Lynx_rufus" ...
mean(ms_fullQ_fullQ$beta.samples[, 5] > 0) # effect of ? on occupancy
## [1] 0.0015
MCMCplot(ms_fullQ_fullQ$beta.samples, ref_ovl = TRUE, ci = c(50, 95)) # Occupancy
MCMCplot(ms_fullQ_fullQ$alpha.samples, ref_ovl = TRUE, ci = c(50, 95)) # Detection
## Occupancy
# Total number of parameters
n_params <- ncol(ms_fullQ_fullQ$beta.samples)
# Choose how many parameters to plot at a time
chunk_size <- 10
# Split and plot
for (i in seq(1, n_params, by = chunk_size)) {
end <- min(i + chunk_size - 1, n_params)
param_names <- colnames(ms_fullQ_fullQ$beta.samples)[i:end]
# Set filename
file_name <- paste0("MCMCplot_Occupancy_Params_", i, "_to_", end, ".png")
# Save plot to PNG
png(filename = file_name, width = 1200, height = 800, res = 150)
MCMCplot(ms_fullQ_fullQ$beta.samples[, param_names],
ref_ovl = TRUE,
ci = c(50, 95),
main = paste0("Occupancy Parameters: ", i, " to ", end))
dev.off()
}
## Detection
# Number of parameters
n_params <- ncol(ms_fullQ_fullQ$alpha.samples)
# Number of parameters to plot at a time
chunk_size <- 10
# Split and plot
for (i in seq(1, n_params, by = chunk_size)) {
end <- min(i + chunk_size - 1, n_params)
param_names <- colnames(ms_fullQ_fullQ$alpha.samples)[i:end]
# Set filename
file_name <- paste0("MCMCplot_Detection_Params_", i, "_to_", end, ".png")
# Save plot to PNG
png(filename = file_name, width = 1200, height = 800, res = 150)
MCMCplot(ms_fullQ_fullQ$alpha.samples[, param_names],
ref_ovl = TRUE,
ci = c(50, 95),
main = paste0("Detection Parameters: ", i, " to ", end))
dev.off()
}
x_seq <- seq(-2, 2, length.out = 100)
X_pred <- cbind(
1, # intercept
0, # Cogon_Patch_Size
0, # Veg_shannon_index
0, # total_shrub_cover
x_seq, # Avg_Cogongrass_Cover
x_seq^2, # quadratic term
0, # Tree_Density
0, # Avg_Canopy_Cover
0, # avg_veg_height
0 # CWD_presence
)
beta_comm <- ms_fullQ_fullQ$beta.comm.samples
eta <- beta_comm %*% t(X_pred) # iterations × x_seq
psi <- plogis(eta)
psi_mean <- apply(psi, 2, mean)
psi_low <- apply(psi, 2, quantile, 0.025)
psi_high <- apply(psi, 2, quantile, 0.975)
plot_df <- data.frame(
Avg_Cogongrass_Cover = x_seq,
mean = psi_mean,
low = psi_low,
high = psi_high
)
ggplot(plot_df, aes(x = Avg_Cogongrass_Cover, y = mean)) +
geom_ribbon(aes(ymin = low, ymax = high), alpha = 0.25) +
geom_line(size = 1.2) +
labs(
x = "Average Cogongrass Cover (standardized)",
y = "Occupancy Probability (ψ)",
title = "Community-level occupancy response to cogongrass cover"
) +
theme_classic(base_size = 14)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.