Análise de Insumo-produto: teoria e aplicações no R

Análise do impacto de investimento usando a matriz insumo-produto.

Código construído com base em

Vale,V.A. e Perobelli, F. S. (2020), Análise de Insumo-produto: teoria e aplicações no R, Curitiba, PR: Edição Independente, 2020. Disponível em (NEDUR) http://www.nedur.ufpr.br/portal/publicacoes/livros/ip-r/ e LATES https://www.ufjf.br/lates/publicacoes/livros/ip-r/.

Passos iniciais

# Definição do Diretório de Trabalho 
  #setwd("C:/Users/R-VALE/Insumo-Produto")
# Verificar o diretório de trabalho
  #getwd()
# Remover todos objetos do Environment
  #rm(list = ls())
   install.packages("openxlsx")
   install.packages("flextable")
   install.packages("knitr")
   install.packages("kableExtra")
   install.packages("dplyr")
   install.packages("ggplot2")
   install.packages("scales")
   install.packages("ggrepel")
   install.packages("tibble")
   install.packages("gridExtra")
  # Leitura dos pacotes
  library(openxlsx)
  library(knitr) 
  library(kableExtra)
  library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
## 
##     group_rows
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
  library(ggplot2)
  library(scales)
  library(ggrepel)
  library(tibble)
  library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
  library(flextable)
## 
## Attaching package: 'flextable'
## The following objects are masked from 'package:kableExtra':
## 
##     as_image, footnote

Base de Dados

Descrição

Matriz de Insumo-Produto (MIP) 2015 do Brasil disponibilizada pelo IBGE com abertura para 12 atividades produtivas (setores). Os cálculos podem ser facilmente replicados com outras matrizes de insumo-produto, inclusive com a MIP brasileira com 67 atividades produtivas.

Importando dados

    # Importando doados com o pacote openxls
    Z = read.xlsx("MIP2015_12s.xlsx", sheet = "Z", colNames = FALSE) # Consumo intermediário 
    y = read.xlsx("MIP2015_12s.xlsx", sheet = "y", colNames = FALSE) # Demanda final
    x = read.xlsx("MIP2015_12s.xlsx", sheet = "x", colNames = FALSE) # VB da Produção (VBP)
    v = read.xlsx("MIP2015_12s.xlsx", sheet = "v", colNames = FALSE) # Valor adicionado
    r = read.xlsx("MIP2015_12s.xlsx", sheet = "r", colNames = FALSE) # Remunerações
    e = read.xlsx("MIP2015_12s.xlsx", sheet = "e", colNames = FALSE) # Pessoal ocupado
    c = read.xlsx("MIP2015_12s.xlsx", sheet = "c", colNames = FALSE) # Consumo das famílias
    sp = read.xlsx("MIP2015_12s.xlsx", sheet = "sp", colNames = FALSE) # Setor de Pagamentos
    Setores = read.xlsx("MIP2015_12s.xlsx", sheet = "set", colNames = FALSE) # Setores

Preparação dos Objetos

# Classe dos objetos
    
    class(Z) # Verificar classe do objeto Z
## [1] "data.frame"
    class(y) # Verificar classe do objeto y
## [1] "data.frame"
    # Mudar classe dos objetos
    Z = data.matrix(Z) # Consumo intermediário
    y = data.matrix(y) # Demanda final
    x = data.matrix(x) # Valor Bruto da Produção
    x = as.vector(x)   # Valor Bruto da Produção
    v = data.matrix(v) # Valor adicionado
    r = data.matrix(r) # Remunerações
    e = data.matrix(e) # Pessoal ocupado
    c = data.matrix(c) # Consumo das famílas
    sp = data.matrix(sp) # Setor de Pagamentos

Exportando dados

    # Salvar base de dados no formato RData
    save(Z, y, x, v, r, e, c, sp, Setores, file = "MIP2015_12s.RData")
    
    # Importação de dados no formato RData
    load("MIP2015_12s.RData")

Insumo-Produto

Modelo aberto

    A = Z %*% diag(1 / x) # Matriz de coeficientes técnicos
    A # Matriz de coeficientes técnicos
##            [,1]         [,2]         [,3]         [,4]        [,5]         [,6]
## 1  4.053431e-02 0.0005246369 0.0764492534 0.0004633725 0.002559273 0.0091478919
## 2  1.102888e-03 0.0544009633 0.0420777813 0.0149135188 0.011187753 0.0001890271
## 3  2.064230e-01 0.1108945052 0.2730694834 0.0759925493 0.205220303 0.0573808439
## 4  2.330124e-02 0.0108076054 0.0154556049 0.2757595679 0.001162759 0.0175890682
## 5  5.926945e-04 0.0125710963 0.0009171252 0.0127611368 0.093540153 0.0010353060
## 6  5.939513e-02 0.0312098980 0.0789023217 0.0201625275 0.057717650 0.0275047815
## 7  1.999363e-02 0.0837831375 0.0493231465 0.0186085348 0.011904719 0.0503422095
## 8  2.015810e-04 0.0038789881 0.0056297325 0.0065432923 0.002253644 0.0131079208
## 9  1.525339e-02 0.0222417825 0.0175588983 0.0216950729 0.014284850 0.0235984415
## 10 3.645757e-05 0.0013583593 0.0018308430 0.0042946036 0.001680581 0.0338135746
## 11 3.691960e-03 0.0929645727 0.0458518255 0.0506329264 0.023313871 0.0799177956
## 12 7.414102e-04 0.0048640577 0.0027987040 0.0045944450 0.001172534 0.0041072929
##            [,7]         [,8]         [,9]        [,10]        [,11]
## 1  0.0005683193 0.0002397377 6.256554e-05 5.501254e-05 0.0043313175
## 2  0.0002836057 0.0002885543 7.855493e-05 6.278740e-04 0.0002062247
## 3  0.1825349810 0.0279488999 9.685629e-03 9.289329e-03 0.0711063547
## 4  0.0057399609 0.0072395728 4.112766e-03 1.259522e-03 0.0166493955
## 5  0.0031402527 0.0163693755 2.982811e-03 2.920853e-03 0.0035603285
## 6  0.0469936940 0.0249873104 5.934150e-03 3.260666e-03 0.0321010426
## 7  0.1125305307 0.0096395434 1.421525e-02 8.538736e-04 0.0183127869
## 8  0.0076419524 0.1209578864 3.927254e-02 1.419554e-03 0.0379995553
## 9  0.0247778800 0.0291164305 1.240729e-01 3.790436e-02 0.0170013436
## 10 0.0067321513 0.0122305450 9.615042e-03 2.742154e-03 0.0174985177
## 11 0.0576725848 0.1405865936 1.018015e-01 7.998258e-03 0.0903391523
## 12 0.0038896420 0.0063169808 4.482879e-03 3.771107e-04 0.0041638989
##           [,12]
## 1  0.0015679301
## 2  0.0002943657
## 3  0.0258993452
## 4  0.0172561462
## 5  0.0139242494
## 6  0.0133143660
## 7  0.0117725258
## 8  0.0173315988
## 9  0.0446279563
## 10 0.0036050269
## 11 0.0782021425
## 12 0.0034693898
    n = length(x) # Número de setores
    I = diag(n) # Matriz identidade
    I # Matriz identidade
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
##  [1,]    1    0    0    0    0    0    0    0    0     0     0     0
##  [2,]    0    1    0    0    0    0    0    0    0     0     0     0
##  [3,]    0    0    1    0    0    0    0    0    0     0     0     0
##  [4,]    0    0    0    1    0    0    0    0    0     0     0     0
##  [5,]    0    0    0    0    1    0    0    0    0     0     0     0
##  [6,]    0    0    0    0    0    1    0    0    0     0     0     0
##  [7,]    0    0    0    0    0    0    1    0    0     0     0     0
##  [8,]    0    0    0    0    0    0    0    1    0     0     0     0
##  [9,]    0    0    0    0    0    0    0    0    1     0     0     0
## [10,]    0    0    0    0    0    0    0    0    0     1     0     0
## [11,]    0    0    0    0    0    0    0    0    0     0     1     0
## [12,]    0    0    0    0    0    0    0    0    0     0     0     1
    B = solve(I - A) # Matriz inversa de Leontief
    B # Matriz inversa de Leontief
##                 1           2           3          4           5           6
##  [1,] 1.070422587 0.020220639 0.119541085 0.01695088 0.032572083 0.020604755
##  [2,] 0.017117985 1.068456656 0.066637159 0.03073724 0.029213540 0.006456716
##  [3,] 0.338341626 0.228313297 1.475314987 0.19010756 0.354863612 0.125413219
##  [4,] 0.046079029 0.028026440 0.043749839 1.39072595 0.015664875 0.032800699
##  [5,] 0.002713328 0.017113531 0.004714078 0.02154187 1.105148396 0.003373673
##  [6,] 0.098930568 0.067164118 0.139921088 0.05446153 0.102701710 1.049128186
##  [7,] 0.052696808 0.122595743 0.103237504 0.04969012 0.046313509 0.071664588
##  [8,] 0.008162795 0.016809713 0.020076865 0.01991403 0.011802612 0.024247868
##  [9,] 0.032710787 0.042425099 0.044850572 0.04621991 0.033160500 0.039227220
## [10,] 0.005778595 0.008308725 0.011105795 0.01120964 0.008089475 0.039152423
## [11,] 0.043049349 0.144534269 0.111835546 0.10775512 0.068080015 0.114687333
## [12,] 0.003040183 0.007680536 0.006544965 0.00834081 0.003651577 0.005982250
##                 7           8           9           10          11          12
##  [1,] 0.027928857 0.008637801 0.004569083 0.0017161391 0.016687791 0.007821476
##  [2,] 0.015300439 0.004881639 0.002445668 0.0016108868 0.007044501 0.004034943
##  [3,] 0.324263851 0.086666173 0.045038597 0.0188388377 0.137938888 0.067116259
##  [4,] 0.022581877 0.020132759 0.012474430 0.0031276448 0.032043358 0.029658522
##  [5,] 0.006093483 0.022494708 0.005937902 0.0036518813 0.006546596 0.017247958
##  [6,] 0.089774219 0.047266968 0.019363532 0.0064763712 0.054238044 0.027236678
##  [7,] 1.155888289 0.026338243 0.026436167 0.0038121827 0.037013131 0.023482726
##  [8,] 0.020720816 1.150184985 0.058744055 0.0046578953 0.052660116 0.028402123
##  [9,] 0.046931531 0.048274077 1.150137925 0.0448298029 0.031618875 0.058561901
## [10,] 0.014228941 0.020123836 0.015366774 1.0038390836 0.023276126 0.007794733
## [11,] 0.109769989 0.196536643 0.145252952 0.0168317906 1.128525475 0.107207543
## [12,] 0.006805594 0.009027533 0.006548314 0.0008037355 0.006157929 1.004950809
    # Visualização de elementos específicos da matriz A e B
    A[1, 1]
##          1 
## 0.04053431
    A[2, 1]
##           2 
## 0.001102888
    B[1, 1]
##        1 
## 1.070423
    B[2, 1]
##          1 
## 0.01711798

Modelo fechado

    hc = c / sum(r) # Coeficientes de consumo
    hr = r / x # Coeficientes de remuneração do trabalho (renda)
    hr = t(hr) # Coeficientes de remuneração do trabalho (renda) transposto
    AF = matrix(NA, ncol = n + 1, nrow = n + 1)  # Criação da matriz A do modelo fechado
    AF = rbind(cbind(A, hc), cbind(hr, 0)) # Matriz de coeficientes técnicos
    AF # Matriz de coeficientes técnicos
##                                                                                
## 1  4.053431e-02 0.0005246369 0.0764492534 0.0004633725 0.002559273 0.0091478919
## 2  1.102888e-03 0.0544009633 0.0420777813 0.0149135188 0.011187753 0.0001890271
## 3  2.064230e-01 0.1108945052 0.2730694834 0.0759925493 0.205220303 0.0573808439
## 4  2.330124e-02 0.0108076054 0.0154556049 0.2757595679 0.001162759 0.0175890682
## 5  5.926945e-04 0.0125710963 0.0009171252 0.0127611368 0.093540153 0.0010353060
## 6  5.939513e-02 0.0312098980 0.0789023217 0.0201625275 0.057717650 0.0275047815
## 7  1.999363e-02 0.0837831375 0.0493231465 0.0186085348 0.011904719 0.0503422095
## 8  2.015810e-04 0.0038789881 0.0056297325 0.0065432923 0.002253644 0.0131079208
## 9  1.525339e-02 0.0222417825 0.0175588983 0.0216950729 0.014284850 0.0235984415
## 10 3.645757e-05 0.0013583593 0.0018308430 0.0042946036 0.001680581 0.0338135746
## 11 3.691960e-03 0.0929645727 0.0458518255 0.0506329264 0.023313871 0.0799177956
## 12 7.414102e-04 0.0048640577 0.0027987040 0.0045944450 0.001172534 0.0041072929
## X1 1.040461e-01 0.1258418946 0.1418226807 0.1017991459 0.200233114 0.3131173559
##                                                                    
## 1  0.0005683193 0.0002397377 6.256554e-05 5.501254e-05 0.0043313175
## 2  0.0002836057 0.0002885543 7.855493e-05 6.278740e-04 0.0002062247
## 3  0.1825349810 0.0279488999 9.685629e-03 9.289329e-03 0.0711063547
## 4  0.0057399609 0.0072395728 4.112766e-03 1.259522e-03 0.0166493955
## 5  0.0031402527 0.0163693755 2.982811e-03 2.920853e-03 0.0035603285
## 6  0.0469936940 0.0249873104 5.934150e-03 3.260666e-03 0.0321010426
## 7  0.1125305307 0.0096395434 1.421525e-02 8.538736e-04 0.0183127869
## 8  0.0076419524 0.1209578864 3.927254e-02 1.419554e-03 0.0379995553
## 9  0.0247778800 0.0291164305 1.240729e-01 3.790436e-02 0.0170013436
## 10 0.0067321513 0.0122305450 9.615042e-03 2.742154e-03 0.0174985177
## 11 0.0576725848 0.1405865936 1.018015e-01 7.998258e-03 0.0903391523
## 12 0.0038896420 0.0063169808 4.482879e-03 3.771107e-04 0.0041638989
## X1 0.2599952119 0.2322935748 2.492869e-01 1.229647e-02 0.3610414874
##                           X1
## 1  0.0015679301 0.0355377729
## 2  0.0002943657 0.0005673371
## 3  0.0258993452 0.3091105074
## 4  0.0172561462 0.0385672335
## 5  0.0139242494 0.0005120007
## 6  0.0133143660 0.2160913501
## 7  0.0117725258 0.0482781193
## 8  0.0173315988 0.0381995070
## 9  0.0446279563 0.0976598582
## 10 0.0036050269 0.1686937659
## 11 0.0782021425 0.2283419503
## 12 0.0034693898 0.0106970178
## X1 0.6605820953 0.0000000000
    IF = diag(n + 1) # Matriz identidade (n+1)x(n+1)
    IF # Matriz identidade (n+1)x(n+1)
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
##  [1,]    1    0    0    0    0    0    0    0    0     0     0     0     0
##  [2,]    0    1    0    0    0    0    0    0    0     0     0     0     0
##  [3,]    0    0    1    0    0    0    0    0    0     0     0     0     0
##  [4,]    0    0    0    1    0    0    0    0    0     0     0     0     0
##  [5,]    0    0    0    0    1    0    0    0    0     0     0     0     0
##  [6,]    0    0    0    0    0    1    0    0    0     0     0     0     0
##  [7,]    0    0    0    0    0    0    1    0    0     0     0     0     0
##  [8,]    0    0    0    0    0    0    0    1    0     0     0     0     0
##  [9,]    0    0    0    0    0    0    0    0    1     0     0     0     0
## [10,]    0    0    0    0    0    0    0    0    0     1     0     0     0
## [11,]    0    0    0    0    0    0    0    0    0     0     1     0     0
## [12,]    0    0    0    0    0    0    0    0    0     0     0     1     0
## [13,]    0    0    0    0    0    0    0    0    0     0     0     0     1
    BF = solve(IF - AF) # Matriz inversa de Leontief no modelo fechado
    BF # Matriz inversa de Leontief
##              1          2           3          4          5           6
##    1.106383315 0.06533606 0.174707114 0.05743221 0.08710409 0.085750406
##    0.028557533 1.08280843 0.084186149 0.04361484 0.04656084 0.027180346
##    0.571976599 0.52142584 1.833725801 0.45311264 0.70915521 0.548661110
##    0.082336886 0.07351463 0.099371683 1.43154176 0.07064746 0.098484622
##    0.005924269 0.02114190 0.009639865 0.02515645 1.11001757 0.009190542
##    0.222689713 0.22242922 0.329775437 0.19377837 0.29037406 1.273327484
##    0.102629922 0.18524057 0.179838057 0.10590029 0.12203369 0.162122302
##    0.039910157 0.05663915 0.068779326 0.05565234 0.05994533 0.081760680
##    0.098099729 0.12446042 0.145161342 0.11982885 0.13231840 0.157684365
##    0.084925565 0.10760452 0.132522250 0.10030612 0.12811049 0.182533305
##    0.190256231 0.32921631 0.337660206 0.27346729 0.29130927 0.381364029
##    0.010261235 0.01673989 0.017622515 0.01646962 0.01460181 0.019063746
## X1 0.416046161 0.52196102 0.638241105 0.46834707 0.63090580 0.753699921
##             7          8          9          10         11         12
##    0.09467580 0.06855661 0.06170450 0.007481185 0.08967488 0.12149546
##    0.03653346 0.02394255 0.02062114 0.003444819 0.03026259 0.04019603
##    0.75791528 0.47595554 0.41624440 0.056294042 0.61213216 0.80565017
##    0.08988033 0.08054665 0.07008193 0.008940325 0.10563351 0.14427174
##    0.01205333 0.02784487 0.01103954 0.004166644 0.01306363 0.02739793
##    0.31948439 0.25347804 0.21599553 0.026316826 0.30542370 0.41844663
##    1.24856948 0.10953825 0.10577130 0.011817213 0.13835903 0.18132424
##    0.07964731 1.20308336 0.10918516 0.009747476 0.11709561 0.12875741
##    0.16830038 0.15722703 1.25402971 0.055312635 0.16433444 0.26526020
##    0.16113416 0.15200081 0.14111770 1.016527535 0.18391544 0.25798297
##    0.38300166 0.44181702 0.37913938 0.040431271 1.42730144 0.57253717
##    0.02020864 0.02105946 0.01802132 0.001961379 0.02081401 1.02777698
## X1 0.77222605 0.69322818 0.66102582 0.066698465 0.84442106 1.31514643
##            X1
##    0.15040265
##    0.04784493
##    0.97715814
##    0.15164536
##    0.01342948
##    0.51761196
##    0.20884095
##    0.13278061
##    0.27348361
##    0.33102539
##    0.61568010
##    0.03020143
## X1 1.74007722
    # Visualização de elementos específicosda matriz B
    BF[1, 1]
## [1] 1.106383

Modelo pelo lado da oferta

    F = diag(1 / x) %*% Z # Matriz de coeficientes técnicos pelo lado da oferta
    F # Matriz de coeficientes técnicos pelo lado da oferta
##                 X1           X2          X3           X4           X5
##  [1,] 4.053431e-02 0.0002855602 0.443377883 0.0003132171 0.0033802953
##  [2,] 2.026249e-03 0.0544009633 0.448347591 0.0185206635 0.0271482680
##  [3,] 3.559241e-02 0.0104075383 0.273069483 0.0088569751 0.0467366500
##  [4,] 3.447179e-02 0.0087026810 0.132608572 0.2757595679 0.0022720223
##  [5,] 4.487381e-04 0.0051805264 0.004027090 0.0065308020 0.0935401535
##  [6,] 2.583138e-02 0.0073880179 0.199015719 0.0059273009 0.0331545772
##  [7,] 1.893793e-02 0.0431952694 0.270951993 0.0119142899 0.0148935413
##  [8,] 2.753559e-04 0.0028840446 0.044599839 0.0060416597 0.0040660068
##  [9,] 1.270817e-02 0.0100861417 0.084842752 0.0122177999 0.0157191993
## [10,] 3.196997e-05 0.0006483476 0.009311215 0.0025456152 0.0019464890
## [11,] 1.202181e-03 0.0164766530 0.086590482 0.0111445096 0.0100268650
## [12,] 2.938671e-04 0.0010493730 0.006433542 0.0012309506 0.0006138409
##                X6           X7           X8           X9          X10
##  [1,] 0.021034113 0.0006000005 0.0001755059 0.0000750963 6.273461e-05
##  [2,] 0.000798525 0.0005500921 0.0003881003 0.0001732280 1.315465e-03
##  [3,] 0.022749368 0.0332280251 0.0035279237 0.0020045197 1.826540e-03
##  [4,] 0.059831629 0.0089650548 0.0078406668 0.0073030138 2.124889e-03
##  [5,] 0.001802328 0.0025100696 0.0090729669 0.0027106343 2.521838e-03
##  [6,] 0.027504782 0.0215772258 0.0079555751 0.0030976950 1.617144e-03
##  [7,] 0.109641823 0.1125305307 0.0066842473 0.0161613882 9.223164e-04
##  [8,] 0.041170083 0.0110206771 0.1209578864 0.0643897912 2.211272e-03
##  [9,] 0.045206742 0.0217941560 0.0177586558 0.1240729036 3.601235e-02
## [10,] 0.068178704 0.0062325755 0.0078515525 0.0101201963 2.742154e-03
## [11,] 0.059835569 0.0198262860 0.0335128918 0.0397878317 2.969981e-03
## [12,] 0.003743271 0.0016276507 0.0018329777 0.0021327142 1.704538e-04
##               X11         X12
##  [1,] 0.013301704 0.003955800
##  [2,] 0.001163561 0.001364445
##  [3,] 0.037652593 0.011266671
##  [4,] 0.075643312 0.064407471
##  [5,] 0.008278264 0.026597534
##  [6,] 0.042874909 0.014609149
##  [7,] 0.053269975 0.028133131
##  [8,] 0.159408148 0.059729791
##  [9,] 0.043499794 0.093806153
## [10,] 0.047124092 0.007975733
## [11,] 0.090339152 0.064244953
## [12,] 0.005068504 0.003469390
    G = solve(I - F) # Matriz inversa de Ghosh
    G # Matriz inversa de Ghosh
##            [,1]        [,2]       [,3]        [,4]        [,5]        [,6]
## X1  1.070422587 0.011006105 0.69329484 0.011457967 0.043021303 0.047377336
## X2  0.031449509 1.068456656 0.71003291 0.038171677 0.070889750 0.027275710
## X3  0.058338419 0.021427386 1.47531499 0.022157145 0.080816255 0.049721671
## X4  0.068169190 0.022567920 0.37537215 1.390725949 0.030609046 0.111576078
## X5  0.002054302 0.007052456 0.02069948 0.011024541 1.105148396 0.005873110
## X6  0.043025638 0.015899113 0.35292366 0.016010389 0.058994637 1.049128186
## X7  0.049914314 0.063205512 0.56712536 0.031814566 0.057941071 0.156080478
## X8  0.011150225 0.012498095 0.15905284 0.018387351 0.021294180 0.076159045
## X9  0.027252585 0.019238816 0.21671325 0.026029209 0.036490164 0.075146269
## X10 0.005067301 0.003965771 0.05648133 0.006644482 0.009369423 0.078943486
## X11 0.014017783 0.025616651 0.21119974 0.023717333 0.029279956 0.085868007
## X12 0.001205014 0.001657001 0.01504529 0.002234682 0.001911661 0.005452054
##            [,7]        [,8]        [,9]       [,10]       [,11]      [,12]
## X1  0.029485762 0.006323513 0.005484188 0.001957032 0.051249084 0.01973315
## X2  0.029677295 0.006565717 0.005393144 0.003374984 0.039746486 0.01870278
## X3  0.059027849 0.010939667 0.009321104 0.003704238 0.073042091 0.02919675
## X4  0.035269885 0.021804360 0.022150770 0.005276522 0.145582809 0.11069855
## X5  0.004870649 0.012468023 0.005396079 0.003153001 0.015221757 0.03294635
## X6  0.041219969 0.015049075 0.010107987 0.003211989 0.072441609 0.02988537
## X7  1.155888289 0.018263451 0.030055404 0.004117750 0.107667313 0.05611732
## X8  0.029882078 1.150184985 0.096314565 0.007255711 0.220909208 0.09788208
## X9  0.041280090 0.029443263 1.150137925 0.042592100 0.080900345 0.12309474
## X10 0.013173047 0.012918750 0.016174113 1.003839084 0.062683382 0.01724501
## X11 0.037735975 0.046850209 0.056770276 0.006250123 1.128525475 0.08807359
## X12 0.002847853 0.002619490 0.003115338 0.000363288 0.007495736 1.00495081

Insumo-Produto

Multiplicadores

Multiplicadores de produção

MP = colSums(B)
MP
##        1        2        3        4        5        6        7        8 
## 1.719044 1.771649 2.147529 1.947655 1.811262 1.532739 1.840288 1.640565 
##        9       10       11       12 
## 1.492315 1.110196 1.533751 1.383516
MPT = colSums(BF[, 1:n])
MPT
##        1        2        3        4        5        6        7        8 
## 2.959997 3.328518 4.051231 3.344608 3.693084 3.780823 4.143630 3.708278 
##        9       10       11       12 
## 3.463977 1.309140 4.052431 5.306243
MPTT = colSums(BF[1:n, 1:n])
MPTT
##        1        2        3        4        5        6        7        8 
## 2.543951 2.806557 3.412990 2.876261 3.062178 3.027123 3.371404 3.015050 
##        9       10       11       12 
## 2.802952 1.242441 3.208010 3.991097
MultProd= cbind(Setores, MP, MPT, MPTT)
MultProd = as.data.frame(MultProd)
colnames(MultProd) = c("Setores", "MP", "MPT", "MPTT")
MultProd$MP = as.numeric(as.character(MultProd$MP))
MultProd$MPT = as.numeric(as.character(MultProd$MPT))
MultProd$MPTT = as.numeric(as.character(MultProd$MPTT))
flextable(MultProd) #%>%

Setores

MP

MPT

MPTT

Agro

1.719044

2.959997

2.543951

Ind.Extr

1.771649

3.328518

2.806557

Ind.Tran

2.147529

4.051231

3.412990

SIUP

1.947655

3.344608

2.876261

Cons

1.811262

3.693084

3.062178

Com

1.532739

3.780823

3.027123

Transp

1.840288

4.143630

3.371404

Info

1.640565

3.708278

3.015050

Finan

1.492315

3.463977

2.802952

Imob

1.110196

1.309140

1.242441

Otrs.Serv

1.533751

4.052431

3.208010

Adm

1.383516

5.306243

3.991097

#align(align = "center", part = "all" ) #%>%
#set_caption(caption = "Multiplicadores de Produção")
#%>%
#footnote(value = as_paragraph("Fonte: elaboração própria com dados da MIP do IBGE (2015)."), #ref_symbols = "")
kable(MultProd, caption = "Multiplicadores de Produção", align = "lccc") %>%
kable_styling(bootstrap_options = "striped", full_width = FALSE) #%>%
Multiplicadores de Produção
Setores MP MPT MPTT
Agro 1.719044 2.959997 2.543951
Ind.Extr 1.771649 3.328518 2.806557
Ind.Tran 2.147530 4.051231 3.412990
SIUP 1.947655 3.344608 2.876261
Cons 1.811262 3.693084 3.062178
Com 1.532739 3.780823 3.027123
Transp 1.840288 4.143630 3.371404
Info 1.640565 3.708278 3.015050
Finan 1.492315 3.463977 2.802952
Imob 1.110196 1.309140 1.242441
Otrs.Serv 1.533751 4.052431 3.208010
Adm 1.383516 5.306243 3.991097
#footnote(general = "elaboração própria com dados da MIP do IBGE (2015).",
#general_title = "Fonte:", footnote_as_chunk = TRUE, title_format = c("bold"))
# Multiplicador Total de Produção do Setor 1:
# Efeito Total no modelo fechado
format(round(sum(BF[,1]), digits = 4), nsmall = 4)
## [1] "2.9600"
# Efeito Total no modelo aberto
format(round(sum(B[,1]), digits = 4), nsmall = 4)
## [1] "1.7190"
# Efeito Induzido
format(round(sum(BF[,1]) - sum(B[,1]), digits = 4), nsmall = 4)
## [1] "1.2410"
# Efeito Direto
format(round(sum(A[,1]), digits = 4), nsmall = 4)
## [1] "0.3713"
# Efeito Indireto
format(round(sum(B[,1]) - sum(A[,1]), digits = 4), nsmall = 4)
## [1] "1.3478"
#Multiplicador Total de Produção Truncado do Setor 1:
# Efeito Total no modelo fechado
format(round(sum(BF[1:n,1]), digits = 4), nsmall = 4)
## [1] "2.5440"
# Efeito Total no modelo aberto
format(round(sum(B[,1]), digits = 4), nsmall = 4)
## [1] "1.7190"
# Efeito Induzido
format(round(sum(BF[1:n,1]) - sum(B[,1]), digits = 4), nsmall = 4)
## [1] "0.8249"
# Efeito Direto
format(round(sum(A[,1]), digits = 4), nsmall = 4)
## [1] "0.3713"
# Efeito Indireto
format(round(sum(B[,1]) - sum(A[,1]), digits = 4), nsmall = 4)
## [1] "1.3478"
ggplot(MultProd, aes(x = factor(Setores, levels = unique(Setores)), y = MP)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Simples de Produção") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015)."
) +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MP, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0, 2.5),
breaks = seq(from = 0.0, to = 2.5, by = 0.5))

ggplot(MultProd, aes(x = factor(Setores, levels = unique(Setores)), y = MPT)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Totais de Produção") +
labs(subtitle = "2015",caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MPT, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0, 5.5),
breaks = seq(from = 0.0, to = 5.5, by = 0.5))

ggplot(MultProd, aes(x = factor(Setores, levels = unique(Setores)), y = MPTT)) +
geom_col() +
theme_bw() +
theme(plot.background = element_rect(fill = "#e6f2ff", colour = "#e6f2ff")) +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Totais de Produção Truncados") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MPTT, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0, 4.5),
breaks = seq(from = 0.0, to = 4.5, by = 0.5))

ce = e / x
ce = as.vector(ce)
Cehat = diag(ce)
E = Cehat %*% B 
ME = colSums(E)
ME
##         1         2         3         4         5         6         7         8 
## 34.101037  8.451915 15.374493  8.348028 21.242773 22.473178 17.071567 10.674351 
##         9        10        11        12 
##  6.687006  1.560459 26.034161 13.211106
MEI = ME / ce
MEI
##        1        2        3        4        5        6        7        8 
## 1.242638 7.658824 3.806716 3.987779 1.554648 1.310717 1.827595 2.771608 
##        9       10       11       12 
## 3.202383 2.042665 1.264451 1.428829
EF = Cehat %*% BF[1:n, 1:n]
MET = colSums(EF)
MET = colSums(EF)
MEII = MET / ce
MEII
##         1         2         3         4         5         6         7         8 
##  1.536640 16.831101  6.871265  8.326354  2.450048  2.163178  3.430779  6.262196 
##         9        10        11        12 
##  9.341304  3.735805  2.059785  4.187166
MultEmp = cbind(Setores, ME, MEI, MET, MEII)
MultEmp = as.data.frame(MultEmp)
colnames(MultEmp) = c("Setores", "ME", "MEI", "MET", "MEII")
MultEmp$ME = as.numeric(as.character(MultEmp$ME))
MultEmp$MEI = as.numeric(as.character(MultEmp$MEI))
MultEmp$MET = as.numeric(as.character(MultEmp$MET))
MultEmp$MEII = as.numeric(as.character(MultEmp$MEII))
flextable(MultEmp) # %>%

Setores

ME

MEI

MET

MEII

Agro

34.101037

1.242638

42.169181

1.536640

Ind.Extr

8.451915

7.658824

18.574004

16.831101

Ind.Tran

15.374493

3.806716

27.751536

6.871265

SIUP

8.348028

3.987779

17.430413

8.326354

Cons

21.242773

1.554648

33.477565

2.450048

Com

22.473178

1.310717

37.089247

2.163178

Transp

17.071567

1.827595

32.046902

3.430779

Info

10.674351

2.771608

24.117726

6.262196

Finan

6.687006

3.202383

19.505899

9.341304

Imob

1.560459

2.042665

2.853904

3.735805

Otrs.Serv

26.034161

1.264451

42.409532

2.059785

Adm

13.211106

1.428829

38.714983

4.187166

#align(align = "center", part = "all" ) %>%
#set_caption(caption = "Multiplicadores de Emprego") %>%
#footnote(value = as_paragraph(c("Fonte: elaboração própria com dados da MIP do IBGE (2015).", #"Nota: ME e MET por 1.000.000 R$.")),
#ref_symbols = c("", ""))
flextable(MultEmp) #%>%

Setores

ME

MEI

MET

MEII

Agro

34.101037

1.242638

42.169181

1.536640

Ind.Extr

8.451915

7.658824

18.574004

16.831101

Ind.Tran

15.374493

3.806716

27.751536

6.871265

SIUP

8.348028

3.987779

17.430413

8.326354

Cons

21.242773

1.554648

33.477565

2.450048

Com

22.473178

1.310717

37.089247

2.163178

Transp

17.071567

1.827595

32.046902

3.430779

Info

10.674351

2.771608

24.117726

6.262196

Finan

6.687006

3.202383

19.505899

9.341304

Imob

1.560459

2.042665

2.853904

3.735805

Otrs.Serv

26.034161

1.264451

42.409532

2.059785

Adm

13.211106

1.428829

38.714983

4.187166

#align(align = "center", part = "all" ) %>%
#set_caption(caption = "Multiplicadores de Emprego") %>%
#footnote(value = as_paragraph(c("Fonte: elaboração própria com dados da MIP do IBGE (2015).", #"Nota: ME e MET por 1.000.000 R$.")),
#ref_symbols = c("", ""))
kable(MultEmp, caption = "Multiplicadores de Emprego", align = "lcccc") #%>%
Multiplicadores de Emprego
Setores ME MEI MET MEII
Agro 34.101037 1.242638 42.169181 1.536640
Ind.Extr 8.451915 7.658824 18.574004 16.831101
Ind.Tran 15.374493 3.806716 27.751535 6.871265
SIUP 8.348028 3.987779 17.430413 8.326354
Cons 21.242773 1.554648 33.477565 2.450048
Com 22.473178 1.310717 37.089247 2.163178
Transp 17.071567 1.827595 32.046902 3.430779
Info 10.674351 2.771608 24.117726 6.262196
Finan 6.687006 3.202383 19.505899 9.341304
Imob 1.560459 2.042665 2.853904 3.735805
Otrs.Serv 26.034161 1.264451 42.409532 2.059785
Adm 13.211106 1.428829 38.714983 4.187166
#kable_styling(bootstrap_options = "striped", full_width = FALSE) %>%
#footnote(general = "elaboração própria com dados da MIP do IBGE (2015).",
#general_title = "Fonte:",
#alphabet = "ME e MET por 1,000,000 R$.",
#alphabet_title = "Nota:",
#footnote_as_chunk = TRUE, title_format = c("bold"))

Interpretações

Os Multiplicadores de Emprego do Setor 1 (Agro), por exemplo, podem ser interpretados como: - Multiplicador Simples de Emprego (ME): uma variação de demanda de R$1.000.000 no Setor 1 (Agro) gera 34,101 empregos na economia. - Multiplicador de Emprego (Tipo I) (MEI): para cada emprego gerado diretamente no Setor 1 (Agro), tem-se um efeito multiplicador de 1,2426 na economia. - Multiplicador Total de Emprego Truncado (MET): uma variação de demanda de R$1.000.000 no Setor 1 (Agro) gera 42,1692 empregos na economia, incluindo o efeito induzido (apenas nos 𝑛𝑛 setores produtivos). - Multiplicador de Emprego (Tipo II) (MEII): para cada emprego gerado diretamente no Setor 1 (Agro), tem-se um efeito multiplicador de 1,5366 na economia, incluindo o efeito induzido (apenas nos 𝑛𝑛 setores produtivos).

Multiplicadores Simples de Emprego

ggplot(MultEmp, aes(x = factor(Setores, levels = unique(Setores)), y = ME)
) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Simples de Emprego") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).\nNota: por 1,000,000 R$.") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(ME, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,35),
breaks = seq(from = 0.0, to = 35.0, by = 5))

Multiplicadores de Emprego (Tipo I)

ggplot(MultEmp, aes(x = factor(Setores, levels = unique(Setores)), y = MEI
)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores de Emprego (Tipo I)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MEI, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,8),
breaks = seq(from = 0.0, to = 8, by = 1))

Multiplicadores Totais de Emprego (truncados)

ggplot(MultEmp, aes(x = factor(Setores, levels = unique(Setores)), y = MET
)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Totais de Emprego (truncados)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015
).\nNota: por 1,000,000 R$.") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MET, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,45),
breaks = seq(from = 0, to = 45, by = 5))

Multiplicadores de Emprego (Tipo II)

ggplot(MultEmp, aes(x = factor(Setores, levels = unique(Setores)), y = MEII)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores de Emprego (Tipo II)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MEII, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,20),
breaks = seq(from = 0, to = 20, by = 5))

Multiplicadores de Renda

cr = r / x
cr = as.vector(cr)
Crhat = diag(cr)
R = Crhat %*% B
MR = colSums(R)
MR
##          1          2          3          4          5          6          7 
## 0.23909638 0.29996428 0.36678896 0.26915304 0.36257345 0.43314165 0.44378838 
##          8          9         10         11         12 
## 0.39838932 0.37988304 0.03833075 0.48527792 0.75579774
MRI = MR / cr
MRI
##        1        2        3        4        5        6        7        8 
## 2.297985 2.383660 2.586250 2.643962 1.810757 1.383320 1.706910 1.715025 
##        9       10       11       12 
## 1.523879 3.117216 1.344106 1.144139
RF = Crhat %*% BF[1:n, 1:n]
MRT = colSums(RF)
MRT
##          1          2          3          4          5          6          7 
## 0.41604616 0.52196102 0.63824110 0.46834707 0.63090580 0.75369992 0.77222605 
##          8          9         10         11         12 
## 0.69322818 0.66102582 0.06669846 0.84442106 1.31514643
MRII = MRT / cr
MRII
##        1        2        3        4        5        6        7        8 
## 3.998671 4.147752 4.500275 4.600697 3.150856 2.407084 2.970155 2.984276 
##        9       10       11       12 
## 2.651667 5.424196 2.338848 1.990890
MultRen = cbind(Setores, MR, MRI, MRT, MRII)
MultRen = as.data.frame(MultRen)
colnames(MultRen) = c("Setores", "MR", "MRI", "MRT", "MRII")
MultRen$MR = as.numeric(as.character(MultRen$MR))
MultRen$MRI = as.numeric(as.character(MultRen$MRI))
MultRen$MRT = as.numeric(as.character(MultRen$MRT))
MultRen$MRII = as.numeric(as.character(MultRen$MRII))
flextable(MultRen)

Setores

MR

MRI

MRT

MRII

Agro

0.23909638

2.297985

0.41604616

3.998671

Ind.Extr

0.29996428

2.383660

0.52196102

4.147752

Ind.Tran

0.36678896

2.586250

0.63824110

4.500275

SIUP

0.26915304

2.643962

0.46834707

4.600697

Cons

0.36257345

1.810757

0.63090580

3.150856

Com

0.43314165

1.383320

0.75369992

2.407084

Transp

0.44378838

1.706910

0.77222605

2.970155

Info

0.39838932

1.715025

0.69322818

2.984276

Finan

0.37988304

1.523879

0.66102582

2.651667

Imob

0.03833075

3.117216

0.06669846

5.424196

Otrs.Serv

0.48527792

1.344106

0.84442106

2.338848

Adm

0.75579774

1.144139

1.31514643

1.990890

#%>%
#align(align = "center", part = "all" ) %>%
#set_caption(caption = "Multiplicadores de Renda") %>%
#footnote(value = as_paragraph("Fonte: elaboração própria com dados da MIP do IBGE (2015)."),
#ref_symbols = "")
kable(MultRen, caption = "Multiplicadores de Renda", align = "lcccc") %>% kable_styling(bootstrap_options = "striped", full_width = FALSE) 
Multiplicadores de Renda
Setores MR MRI MRT MRII
Agro 0.2390964 2.297985 0.4160462 3.998670
Ind.Extr 0.2999643 2.383660 0.5219610 4.147752
Ind.Tran 0.3667890 2.586250 0.6382411 4.500275
SIUP 0.2691530 2.643962 0.4683471 4.600697
Cons 0.3625734 1.810757 0.6309058 3.150856
Com 0.4331417 1.383320 0.7536999 2.407084
Transp 0.4437884 1.706910 0.7722261 2.970155
Info 0.3983893 1.715025 0.6932282 2.984276
Finan 0.3798830 1.523879 0.6610258 2.651667
Imob 0.0383307 3.117215 0.0666985 5.424196
Otrs.Serv 0.4852779 1.344106 0.8444211 2.338848
Adm 0.7557977 1.144139 1.3151464 1.990890
#%>%
#footnote(general = "elaboração própria com dados da MIP do IBGE (2015).",
#general_title = "Fonte:",
#footnote_as_chunk = TRUE, title_format = c("bold"))

Interpretações

Os Multiplicadores de Renda do Setor 1 (Agro), por exemplo, podem ser interpretados como: - Multiplicador Simples de Renda (MR): uma variação de demanda de R$1,00 no Setor 1 (Agro) gera R$0,2391 de renda na economia. - Multiplicador de Renda (Tipo I) (MRI): para cada unidade de renda gerada diretamente no Setor 1 (Agro), tem-se um efeito multiplicador de R$2,298 na economia. - Multiplicador Total de Renda Truncado (MRT): uma variação de demanda de R$1,00 no Setor 1 (Agro) gera R$0,416 de renda na economia, incluindo o efeito induzido (apenas nos 𝑛𝑛 setores produtivos). - Multiplicador de Renda (Tipo II) (MRII): para cada unidade de renda gerada diretamente no Setor 1 (Agro), tem-se um efeito multiplicador de R$3,9987 na economia, incluindo o efeito induzido (apenas nos 𝑛𝑛 setores produtivos).

Multiplicadores Simples de Renda

ggplot(MultRen, aes(x = factor(Setores, levels = unique(Setores)), y = MR)
) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Simples de Renda") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MR, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,1),
breaks = seq(from = 0, to = 1, by = 0.25))

Multiplicadores de Renda (Tipo I)

ggplot(MultRen, aes(x = factor(Setores, levels = unique(Setores)), y = MRI)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores de Renda (Tipo I)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MRI, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,3.5),
breaks = seq(from = 0, to = 3.5, by = 0.5))

Multiplicadores Totais de Renda (truncados)

ggplot(MultRen, aes(x = factor(Setores, levels = unique(Setores)), y = MRT)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Totais de Renda (truncados)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MRT, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,1.5),
breaks = seq(from = 0, to = 1.5, by = 0.25))

Multiplicadores de Renda (Tipo II)

ggplot(MultRen, aes(x = factor(Setores, levels = unique(Setores)), y = MRII)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores de Renda (Tipo II)") +
labs(subtitle = "2015", caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MRII, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,6),
breaks = seq(from = 0, to = 6, by = 0.5))