Análise do impacto de investimento usando a matriz insumo-produto.
Código construído com base em
Vale,V.A. e Perobelli, F. S. (2020), Análise de Insumo-produto: teoria e aplicações no R, Curitiba, PR: Edição Independente, 2020. Disponível em (NEDUR) http://www.nedur.ufpr.br/portal/publicacoes/livros/ip-r/ e LATES https://www.ufjf.br/lates/publicacoes/livros/ip-r/.
# Definição do Diretório de Trabalho
#setwd("C:/Users/R-VALE/Insumo-Produto")
# Verificar o diretório de trabalho
#getwd()
# Remover todos objetos do Environment
#rm(list = ls())
install.packages("openxlsx")
install.packages("flextable")
install.packages("knitr")
install.packages("kableExtra")
install.packages("dplyr")
install.packages("ggplot2")
install.packages("scales")
install.packages("ggrepel")
install.packages("tibble")
install.packages("gridExtra")
# Leitura dos pacotes
library(openxlsx)
library(knitr)
library(kableExtra)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
## group_rows
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(scales)
library(ggrepel)
library(tibble)
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
library(flextable)
##
## Attaching package: 'flextable'
## The following objects are masked from 'package:kableExtra':
##
## as_image, footnote
Matriz de Insumo-Produto (MIP) 2015 do Brasil disponibilizada pelo IBGE com abertura para 12 atividades produtivas (setores). Os cálculos podem ser facilmente replicados com outras matrizes de insumo-produto, inclusive com a MIP brasileira com 67 atividades produtivas.
# Importando doados com o pacote openxls
Z = read.xlsx("MIP2015_12s.xlsx", sheet = "Z", colNames = FALSE) # Consumo intermediário
y = read.xlsx("MIP2015_12s.xlsx", sheet = "y", colNames = FALSE) # Demanda final
x = read.xlsx("MIP2015_12s.xlsx", sheet = "x", colNames = FALSE) # VB da Produção (VBP)
v = read.xlsx("MIP2015_12s.xlsx", sheet = "v", colNames = FALSE) # Valor adicionado
r = read.xlsx("MIP2015_12s.xlsx", sheet = "r", colNames = FALSE) # Remunerações
e = read.xlsx("MIP2015_12s.xlsx", sheet = "e", colNames = FALSE) # Pessoal ocupado
c = read.xlsx("MIP2015_12s.xlsx", sheet = "c", colNames = FALSE) # Consumo das famílias
sp = read.xlsx("MIP2015_12s.xlsx", sheet = "sp", colNames = FALSE) # Setor de Pagamentos
Setores = read.xlsx("MIP2015_12s.xlsx", sheet = "set", colNames = FALSE) # Setores
# Classe dos objetos
class(Z) # Verificar classe do objeto Z
## [1] "data.frame"
class(y) # Verificar classe do objeto y
## [1] "data.frame"
# Mudar classe dos objetos
Z = data.matrix(Z) # Consumo intermediário
y = data.matrix(y) # Demanda final
x = data.matrix(x) # Valor Bruto da Produção
x = as.vector(x) # Valor Bruto da Produção
v = data.matrix(v) # Valor adicionado
r = data.matrix(r) # Remunerações
e = data.matrix(e) # Pessoal ocupado
c = data.matrix(c) # Consumo das famílas
sp = data.matrix(sp) # Setor de Pagamentos
# Salvar base de dados no formato RData
save(Z, y, x, v, r, e, c, sp, Setores, file = "MIP2015_12s.RData")
# Importação de dados no formato RData
load("MIP2015_12s.RData")
A = Z %*% diag(1 / x) # Matriz de coeficientes técnicos
A # Matriz de coeficientes técnicos
## [,1] [,2] [,3] [,4] [,5] [,6]
## 1 4.053431e-02 0.0005246369 0.0764492534 0.0004633725 0.002559273 0.0091478919
## 2 1.102888e-03 0.0544009633 0.0420777813 0.0149135188 0.011187753 0.0001890271
## 3 2.064230e-01 0.1108945052 0.2730694834 0.0759925493 0.205220303 0.0573808439
## 4 2.330124e-02 0.0108076054 0.0154556049 0.2757595679 0.001162759 0.0175890682
## 5 5.926945e-04 0.0125710963 0.0009171252 0.0127611368 0.093540153 0.0010353060
## 6 5.939513e-02 0.0312098980 0.0789023217 0.0201625275 0.057717650 0.0275047815
## 7 1.999363e-02 0.0837831375 0.0493231465 0.0186085348 0.011904719 0.0503422095
## 8 2.015810e-04 0.0038789881 0.0056297325 0.0065432923 0.002253644 0.0131079208
## 9 1.525339e-02 0.0222417825 0.0175588983 0.0216950729 0.014284850 0.0235984415
## 10 3.645757e-05 0.0013583593 0.0018308430 0.0042946036 0.001680581 0.0338135746
## 11 3.691960e-03 0.0929645727 0.0458518255 0.0506329264 0.023313871 0.0799177956
## 12 7.414102e-04 0.0048640577 0.0027987040 0.0045944450 0.001172534 0.0041072929
## [,7] [,8] [,9] [,10] [,11]
## 1 0.0005683193 0.0002397377 6.256554e-05 5.501254e-05 0.0043313175
## 2 0.0002836057 0.0002885543 7.855493e-05 6.278740e-04 0.0002062247
## 3 0.1825349810 0.0279488999 9.685629e-03 9.289329e-03 0.0711063547
## 4 0.0057399609 0.0072395728 4.112766e-03 1.259522e-03 0.0166493955
## 5 0.0031402527 0.0163693755 2.982811e-03 2.920853e-03 0.0035603285
## 6 0.0469936940 0.0249873104 5.934150e-03 3.260666e-03 0.0321010426
## 7 0.1125305307 0.0096395434 1.421525e-02 8.538736e-04 0.0183127869
## 8 0.0076419524 0.1209578864 3.927254e-02 1.419554e-03 0.0379995553
## 9 0.0247778800 0.0291164305 1.240729e-01 3.790436e-02 0.0170013436
## 10 0.0067321513 0.0122305450 9.615042e-03 2.742154e-03 0.0174985177
## 11 0.0576725848 0.1405865936 1.018015e-01 7.998258e-03 0.0903391523
## 12 0.0038896420 0.0063169808 4.482879e-03 3.771107e-04 0.0041638989
## [,12]
## 1 0.0015679301
## 2 0.0002943657
## 3 0.0258993452
## 4 0.0172561462
## 5 0.0139242494
## 6 0.0133143660
## 7 0.0117725258
## 8 0.0173315988
## 9 0.0446279563
## 10 0.0036050269
## 11 0.0782021425
## 12 0.0034693898
n = length(x) # Número de setores
I = diag(n) # Matriz identidade
I # Matriz identidade
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 1 0 0 0 0 0 0 0 0 0 0 0
## [2,] 0 1 0 0 0 0 0 0 0 0 0 0
## [3,] 0 0 1 0 0 0 0 0 0 0 0 0
## [4,] 0 0 0 1 0 0 0 0 0 0 0 0
## [5,] 0 0 0 0 1 0 0 0 0 0 0 0
## [6,] 0 0 0 0 0 1 0 0 0 0 0 0
## [7,] 0 0 0 0 0 0 1 0 0 0 0 0
## [8,] 0 0 0 0 0 0 0 1 0 0 0 0
## [9,] 0 0 0 0 0 0 0 0 1 0 0 0
## [10,] 0 0 0 0 0 0 0 0 0 1 0 0
## [11,] 0 0 0 0 0 0 0 0 0 0 1 0
## [12,] 0 0 0 0 0 0 0 0 0 0 0 1
B = solve(I - A) # Matriz inversa de Leontief
B # Matriz inversa de Leontief
## 1 2 3 4 5 6
## [1,] 1.070422587 0.020220639 0.119541085 0.01695088 0.032572083 0.020604755
## [2,] 0.017117985 1.068456656 0.066637159 0.03073724 0.029213540 0.006456716
## [3,] 0.338341626 0.228313297 1.475314987 0.19010756 0.354863612 0.125413219
## [4,] 0.046079029 0.028026440 0.043749839 1.39072595 0.015664875 0.032800699
## [5,] 0.002713328 0.017113531 0.004714078 0.02154187 1.105148396 0.003373673
## [6,] 0.098930568 0.067164118 0.139921088 0.05446153 0.102701710 1.049128186
## [7,] 0.052696808 0.122595743 0.103237504 0.04969012 0.046313509 0.071664588
## [8,] 0.008162795 0.016809713 0.020076865 0.01991403 0.011802612 0.024247868
## [9,] 0.032710787 0.042425099 0.044850572 0.04621991 0.033160500 0.039227220
## [10,] 0.005778595 0.008308725 0.011105795 0.01120964 0.008089475 0.039152423
## [11,] 0.043049349 0.144534269 0.111835546 0.10775512 0.068080015 0.114687333
## [12,] 0.003040183 0.007680536 0.006544965 0.00834081 0.003651577 0.005982250
## 7 8 9 10 11 12
## [1,] 0.027928857 0.008637801 0.004569083 0.0017161391 0.016687791 0.007821476
## [2,] 0.015300439 0.004881639 0.002445668 0.0016108868 0.007044501 0.004034943
## [3,] 0.324263851 0.086666173 0.045038597 0.0188388377 0.137938888 0.067116259
## [4,] 0.022581877 0.020132759 0.012474430 0.0031276448 0.032043358 0.029658522
## [5,] 0.006093483 0.022494708 0.005937902 0.0036518813 0.006546596 0.017247958
## [6,] 0.089774219 0.047266968 0.019363532 0.0064763712 0.054238044 0.027236678
## [7,] 1.155888289 0.026338243 0.026436167 0.0038121827 0.037013131 0.023482726
## [8,] 0.020720816 1.150184985 0.058744055 0.0046578953 0.052660116 0.028402123
## [9,] 0.046931531 0.048274077 1.150137925 0.0448298029 0.031618875 0.058561901
## [10,] 0.014228941 0.020123836 0.015366774 1.0038390836 0.023276126 0.007794733
## [11,] 0.109769989 0.196536643 0.145252952 0.0168317906 1.128525475 0.107207543
## [12,] 0.006805594 0.009027533 0.006548314 0.0008037355 0.006157929 1.004950809
# Visualização de elementos específicos da matriz A e B
A[1, 1]
## 1
## 0.04053431
A[2, 1]
## 2
## 0.001102888
B[1, 1]
## 1
## 1.070423
B[2, 1]
## 1
## 0.01711798
hc = c / sum(r) # Coeficientes de consumo
hr = r / x # Coeficientes de remuneração do trabalho (renda)
hr = t(hr) # Coeficientes de remuneração do trabalho (renda) transposto
AF = matrix(NA, ncol = n + 1, nrow = n + 1) # Criação da matriz A do modelo fechado
AF = rbind(cbind(A, hc), cbind(hr, 0)) # Matriz de coeficientes técnicos
AF # Matriz de coeficientes técnicos
##
## 1 4.053431e-02 0.0005246369 0.0764492534 0.0004633725 0.002559273 0.0091478919
## 2 1.102888e-03 0.0544009633 0.0420777813 0.0149135188 0.011187753 0.0001890271
## 3 2.064230e-01 0.1108945052 0.2730694834 0.0759925493 0.205220303 0.0573808439
## 4 2.330124e-02 0.0108076054 0.0154556049 0.2757595679 0.001162759 0.0175890682
## 5 5.926945e-04 0.0125710963 0.0009171252 0.0127611368 0.093540153 0.0010353060
## 6 5.939513e-02 0.0312098980 0.0789023217 0.0201625275 0.057717650 0.0275047815
## 7 1.999363e-02 0.0837831375 0.0493231465 0.0186085348 0.011904719 0.0503422095
## 8 2.015810e-04 0.0038789881 0.0056297325 0.0065432923 0.002253644 0.0131079208
## 9 1.525339e-02 0.0222417825 0.0175588983 0.0216950729 0.014284850 0.0235984415
## 10 3.645757e-05 0.0013583593 0.0018308430 0.0042946036 0.001680581 0.0338135746
## 11 3.691960e-03 0.0929645727 0.0458518255 0.0506329264 0.023313871 0.0799177956
## 12 7.414102e-04 0.0048640577 0.0027987040 0.0045944450 0.001172534 0.0041072929
## X1 1.040461e-01 0.1258418946 0.1418226807 0.1017991459 0.200233114 0.3131173559
##
## 1 0.0005683193 0.0002397377 6.256554e-05 5.501254e-05 0.0043313175
## 2 0.0002836057 0.0002885543 7.855493e-05 6.278740e-04 0.0002062247
## 3 0.1825349810 0.0279488999 9.685629e-03 9.289329e-03 0.0711063547
## 4 0.0057399609 0.0072395728 4.112766e-03 1.259522e-03 0.0166493955
## 5 0.0031402527 0.0163693755 2.982811e-03 2.920853e-03 0.0035603285
## 6 0.0469936940 0.0249873104 5.934150e-03 3.260666e-03 0.0321010426
## 7 0.1125305307 0.0096395434 1.421525e-02 8.538736e-04 0.0183127869
## 8 0.0076419524 0.1209578864 3.927254e-02 1.419554e-03 0.0379995553
## 9 0.0247778800 0.0291164305 1.240729e-01 3.790436e-02 0.0170013436
## 10 0.0067321513 0.0122305450 9.615042e-03 2.742154e-03 0.0174985177
## 11 0.0576725848 0.1405865936 1.018015e-01 7.998258e-03 0.0903391523
## 12 0.0038896420 0.0063169808 4.482879e-03 3.771107e-04 0.0041638989
## X1 0.2599952119 0.2322935748 2.492869e-01 1.229647e-02 0.3610414874
## X1
## 1 0.0015679301 0.0355377729
## 2 0.0002943657 0.0005673371
## 3 0.0258993452 0.3091105074
## 4 0.0172561462 0.0385672335
## 5 0.0139242494 0.0005120007
## 6 0.0133143660 0.2160913501
## 7 0.0117725258 0.0482781193
## 8 0.0173315988 0.0381995070
## 9 0.0446279563 0.0976598582
## 10 0.0036050269 0.1686937659
## 11 0.0782021425 0.2283419503
## 12 0.0034693898 0.0106970178
## X1 0.6605820953 0.0000000000
IF = diag(n + 1) # Matriz identidade (n+1)x(n+1)
IF # Matriz identidade (n+1)x(n+1)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## [1,] 1 0 0 0 0 0 0 0 0 0 0 0 0
## [2,] 0 1 0 0 0 0 0 0 0 0 0 0 0
## [3,] 0 0 1 0 0 0 0 0 0 0 0 0 0
## [4,] 0 0 0 1 0 0 0 0 0 0 0 0 0
## [5,] 0 0 0 0 1 0 0 0 0 0 0 0 0
## [6,] 0 0 0 0 0 1 0 0 0 0 0 0 0
## [7,] 0 0 0 0 0 0 1 0 0 0 0 0 0
## [8,] 0 0 0 0 0 0 0 1 0 0 0 0 0
## [9,] 0 0 0 0 0 0 0 0 1 0 0 0 0
## [10,] 0 0 0 0 0 0 0 0 0 1 0 0 0
## [11,] 0 0 0 0 0 0 0 0 0 0 1 0 0
## [12,] 0 0 0 0 0 0 0 0 0 0 0 1 0
## [13,] 0 0 0 0 0 0 0 0 0 0 0 0 1
BF = solve(IF - AF) # Matriz inversa de Leontief no modelo fechado
BF # Matriz inversa de Leontief
## 1 2 3 4 5 6
## 1.106383315 0.06533606 0.174707114 0.05743221 0.08710409 0.085750406
## 0.028557533 1.08280843 0.084186149 0.04361484 0.04656084 0.027180346
## 0.571976599 0.52142584 1.833725801 0.45311264 0.70915521 0.548661110
## 0.082336886 0.07351463 0.099371683 1.43154176 0.07064746 0.098484622
## 0.005924269 0.02114190 0.009639865 0.02515645 1.11001757 0.009190542
## 0.222689713 0.22242922 0.329775437 0.19377837 0.29037406 1.273327484
## 0.102629922 0.18524057 0.179838057 0.10590029 0.12203369 0.162122302
## 0.039910157 0.05663915 0.068779326 0.05565234 0.05994533 0.081760680
## 0.098099729 0.12446042 0.145161342 0.11982885 0.13231840 0.157684365
## 0.084925565 0.10760452 0.132522250 0.10030612 0.12811049 0.182533305
## 0.190256231 0.32921631 0.337660206 0.27346729 0.29130927 0.381364029
## 0.010261235 0.01673989 0.017622515 0.01646962 0.01460181 0.019063746
## X1 0.416046161 0.52196102 0.638241105 0.46834707 0.63090580 0.753699921
## 7 8 9 10 11 12
## 0.09467580 0.06855661 0.06170450 0.007481185 0.08967488 0.12149546
## 0.03653346 0.02394255 0.02062114 0.003444819 0.03026259 0.04019603
## 0.75791528 0.47595554 0.41624440 0.056294042 0.61213216 0.80565017
## 0.08988033 0.08054665 0.07008193 0.008940325 0.10563351 0.14427174
## 0.01205333 0.02784487 0.01103954 0.004166644 0.01306363 0.02739793
## 0.31948439 0.25347804 0.21599553 0.026316826 0.30542370 0.41844663
## 1.24856948 0.10953825 0.10577130 0.011817213 0.13835903 0.18132424
## 0.07964731 1.20308336 0.10918516 0.009747476 0.11709561 0.12875741
## 0.16830038 0.15722703 1.25402971 0.055312635 0.16433444 0.26526020
## 0.16113416 0.15200081 0.14111770 1.016527535 0.18391544 0.25798297
## 0.38300166 0.44181702 0.37913938 0.040431271 1.42730144 0.57253717
## 0.02020864 0.02105946 0.01802132 0.001961379 0.02081401 1.02777698
## X1 0.77222605 0.69322818 0.66102582 0.066698465 0.84442106 1.31514643
## X1
## 0.15040265
## 0.04784493
## 0.97715814
## 0.15164536
## 0.01342948
## 0.51761196
## 0.20884095
## 0.13278061
## 0.27348361
## 0.33102539
## 0.61568010
## 0.03020143
## X1 1.74007722
# Visualização de elementos específicosda matriz B
BF[1, 1]
## [1] 1.106383
F = diag(1 / x) %*% Z # Matriz de coeficientes técnicos pelo lado da oferta
F # Matriz de coeficientes técnicos pelo lado da oferta
## X1 X2 X3 X4 X5
## [1,] 4.053431e-02 0.0002855602 0.443377883 0.0003132171 0.0033802953
## [2,] 2.026249e-03 0.0544009633 0.448347591 0.0185206635 0.0271482680
## [3,] 3.559241e-02 0.0104075383 0.273069483 0.0088569751 0.0467366500
## [4,] 3.447179e-02 0.0087026810 0.132608572 0.2757595679 0.0022720223
## [5,] 4.487381e-04 0.0051805264 0.004027090 0.0065308020 0.0935401535
## [6,] 2.583138e-02 0.0073880179 0.199015719 0.0059273009 0.0331545772
## [7,] 1.893793e-02 0.0431952694 0.270951993 0.0119142899 0.0148935413
## [8,] 2.753559e-04 0.0028840446 0.044599839 0.0060416597 0.0040660068
## [9,] 1.270817e-02 0.0100861417 0.084842752 0.0122177999 0.0157191993
## [10,] 3.196997e-05 0.0006483476 0.009311215 0.0025456152 0.0019464890
## [11,] 1.202181e-03 0.0164766530 0.086590482 0.0111445096 0.0100268650
## [12,] 2.938671e-04 0.0010493730 0.006433542 0.0012309506 0.0006138409
## X6 X7 X8 X9 X10
## [1,] 0.021034113 0.0006000005 0.0001755059 0.0000750963 6.273461e-05
## [2,] 0.000798525 0.0005500921 0.0003881003 0.0001732280 1.315465e-03
## [3,] 0.022749368 0.0332280251 0.0035279237 0.0020045197 1.826540e-03
## [4,] 0.059831629 0.0089650548 0.0078406668 0.0073030138 2.124889e-03
## [5,] 0.001802328 0.0025100696 0.0090729669 0.0027106343 2.521838e-03
## [6,] 0.027504782 0.0215772258 0.0079555751 0.0030976950 1.617144e-03
## [7,] 0.109641823 0.1125305307 0.0066842473 0.0161613882 9.223164e-04
## [8,] 0.041170083 0.0110206771 0.1209578864 0.0643897912 2.211272e-03
## [9,] 0.045206742 0.0217941560 0.0177586558 0.1240729036 3.601235e-02
## [10,] 0.068178704 0.0062325755 0.0078515525 0.0101201963 2.742154e-03
## [11,] 0.059835569 0.0198262860 0.0335128918 0.0397878317 2.969981e-03
## [12,] 0.003743271 0.0016276507 0.0018329777 0.0021327142 1.704538e-04
## X11 X12
## [1,] 0.013301704 0.003955800
## [2,] 0.001163561 0.001364445
## [3,] 0.037652593 0.011266671
## [4,] 0.075643312 0.064407471
## [5,] 0.008278264 0.026597534
## [6,] 0.042874909 0.014609149
## [7,] 0.053269975 0.028133131
## [8,] 0.159408148 0.059729791
## [9,] 0.043499794 0.093806153
## [10,] 0.047124092 0.007975733
## [11,] 0.090339152 0.064244953
## [12,] 0.005068504 0.003469390
G = solve(I - F) # Matriz inversa de Ghosh
G # Matriz inversa de Ghosh
## [,1] [,2] [,3] [,4] [,5] [,6]
## X1 1.070422587 0.011006105 0.69329484 0.011457967 0.043021303 0.047377336
## X2 0.031449509 1.068456656 0.71003291 0.038171677 0.070889750 0.027275710
## X3 0.058338419 0.021427386 1.47531499 0.022157145 0.080816255 0.049721671
## X4 0.068169190 0.022567920 0.37537215 1.390725949 0.030609046 0.111576078
## X5 0.002054302 0.007052456 0.02069948 0.011024541 1.105148396 0.005873110
## X6 0.043025638 0.015899113 0.35292366 0.016010389 0.058994637 1.049128186
## X7 0.049914314 0.063205512 0.56712536 0.031814566 0.057941071 0.156080478
## X8 0.011150225 0.012498095 0.15905284 0.018387351 0.021294180 0.076159045
## X9 0.027252585 0.019238816 0.21671325 0.026029209 0.036490164 0.075146269
## X10 0.005067301 0.003965771 0.05648133 0.006644482 0.009369423 0.078943486
## X11 0.014017783 0.025616651 0.21119974 0.023717333 0.029279956 0.085868007
## X12 0.001205014 0.001657001 0.01504529 0.002234682 0.001911661 0.005452054
## [,7] [,8] [,9] [,10] [,11] [,12]
## X1 0.029485762 0.006323513 0.005484188 0.001957032 0.051249084 0.01973315
## X2 0.029677295 0.006565717 0.005393144 0.003374984 0.039746486 0.01870278
## X3 0.059027849 0.010939667 0.009321104 0.003704238 0.073042091 0.02919675
## X4 0.035269885 0.021804360 0.022150770 0.005276522 0.145582809 0.11069855
## X5 0.004870649 0.012468023 0.005396079 0.003153001 0.015221757 0.03294635
## X6 0.041219969 0.015049075 0.010107987 0.003211989 0.072441609 0.02988537
## X7 1.155888289 0.018263451 0.030055404 0.004117750 0.107667313 0.05611732
## X8 0.029882078 1.150184985 0.096314565 0.007255711 0.220909208 0.09788208
## X9 0.041280090 0.029443263 1.150137925 0.042592100 0.080900345 0.12309474
## X10 0.013173047 0.012918750 0.016174113 1.003839084 0.062683382 0.01724501
## X11 0.037735975 0.046850209 0.056770276 0.006250123 1.128525475 0.08807359
## X12 0.002847853 0.002619490 0.003115338 0.000363288 0.007495736 1.00495081
MP = colSums(B)
MP
## 1 2 3 4 5 6 7 8
## 1.719044 1.771649 2.147529 1.947655 1.811262 1.532739 1.840288 1.640565
## 9 10 11 12
## 1.492315 1.110196 1.533751 1.383516
MPT = colSums(BF[, 1:n])
MPT
## 1 2 3 4 5 6 7 8
## 2.959997 3.328518 4.051231 3.344608 3.693084 3.780823 4.143630 3.708278
## 9 10 11 12
## 3.463977 1.309140 4.052431 5.306243
MPTT = colSums(BF[1:n, 1:n])
MPTT
## 1 2 3 4 5 6 7 8
## 2.543951 2.806557 3.412990 2.876261 3.062178 3.027123 3.371404 3.015050
## 9 10 11 12
## 2.802952 1.242441 3.208010 3.991097
MultProd= cbind(Setores, MP, MPT, MPTT)
MultProd = as.data.frame(MultProd)
colnames(MultProd) = c("Setores", "MP", "MPT", "MPTT")
MultProd$MP = as.numeric(as.character(MultProd$MP))
MultProd$MPT = as.numeric(as.character(MultProd$MPT))
MultProd$MPTT = as.numeric(as.character(MultProd$MPTT))
flextable(MultProd) #%>%
Setores | MP | MPT | MPTT |
|---|---|---|---|
Agro | 1.719044 | 2.959997 | 2.543951 |
Ind.Extr | 1.771649 | 3.328518 | 2.806557 |
Ind.Tran | 2.147529 | 4.051231 | 3.412990 |
SIUP | 1.947655 | 3.344608 | 2.876261 |
Cons | 1.811262 | 3.693084 | 3.062178 |
Com | 1.532739 | 3.780823 | 3.027123 |
Transp | 1.840288 | 4.143630 | 3.371404 |
Info | 1.640565 | 3.708278 | 3.015050 |
Finan | 1.492315 | 3.463977 | 2.802952 |
Imob | 1.110196 | 1.309140 | 1.242441 |
Otrs.Serv | 1.533751 | 4.052431 | 3.208010 |
Adm | 1.383516 | 5.306243 | 3.991097 |
#align(align = "center", part = "all" ) #%>%
#set_caption(caption = "Multiplicadores de Produção")
#%>%
#footnote(value = as_paragraph("Fonte: elaboração própria com dados da MIP do IBGE (2015)."), #ref_symbols = "")
kable(MultProd, caption = "Multiplicadores de Produção", align = "lccc") %>%
kable_styling(bootstrap_options = "striped", full_width = FALSE) #%>%
| Setores | MP | MPT | MPTT |
|---|---|---|---|
| Agro | 1.719044 | 2.959997 | 2.543951 |
| Ind.Extr | 1.771649 | 3.328518 | 2.806557 |
| Ind.Tran | 2.147530 | 4.051231 | 3.412990 |
| SIUP | 1.947655 | 3.344608 | 2.876261 |
| Cons | 1.811262 | 3.693084 | 3.062178 |
| Com | 1.532739 | 3.780823 | 3.027123 |
| Transp | 1.840288 | 4.143630 | 3.371404 |
| Info | 1.640565 | 3.708278 | 3.015050 |
| Finan | 1.492315 | 3.463977 | 2.802952 |
| Imob | 1.110196 | 1.309140 | 1.242441 |
| Otrs.Serv | 1.533751 | 4.052431 | 3.208010 |
| Adm | 1.383516 | 5.306243 | 3.991097 |
#footnote(general = "elaboração própria com dados da MIP do IBGE (2015).",
#general_title = "Fonte:", footnote_as_chunk = TRUE, title_format = c("bold"))
# Multiplicador Total de Produção do Setor 1:
# Efeito Total no modelo fechado
format(round(sum(BF[,1]), digits = 4), nsmall = 4)
## [1] "2.9600"
# Efeito Total no modelo aberto
format(round(sum(B[,1]), digits = 4), nsmall = 4)
## [1] "1.7190"
# Efeito Induzido
format(round(sum(BF[,1]) - sum(B[,1]), digits = 4), nsmall = 4)
## [1] "1.2410"
# Efeito Direto
format(round(sum(A[,1]), digits = 4), nsmall = 4)
## [1] "0.3713"
# Efeito Indireto
format(round(sum(B[,1]) - sum(A[,1]), digits = 4), nsmall = 4)
## [1] "1.3478"
#Multiplicador Total de Produção Truncado do Setor 1:
# Efeito Total no modelo fechado
format(round(sum(BF[1:n,1]), digits = 4), nsmall = 4)
## [1] "2.5440"
# Efeito Total no modelo aberto
format(round(sum(B[,1]), digits = 4), nsmall = 4)
## [1] "1.7190"
# Efeito Induzido
format(round(sum(BF[1:n,1]) - sum(B[,1]), digits = 4), nsmall = 4)
## [1] "0.8249"
# Efeito Direto
format(round(sum(A[,1]), digits = 4), nsmall = 4)
## [1] "0.3713"
# Efeito Indireto
format(round(sum(B[,1]) - sum(A[,1]), digits = 4), nsmall = 4)
## [1] "1.3478"
ggplot(MultProd, aes(x = factor(Setores, levels = unique(Setores)), y = MP)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Simples de Produção") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015)."
) +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MP, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0, 2.5),
breaks = seq(from = 0.0, to = 2.5, by = 0.5))
ggplot(MultProd, aes(x = factor(Setores, levels = unique(Setores)), y = MPT)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Totais de Produção") +
labs(subtitle = "2015",caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MPT, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0, 5.5),
breaks = seq(from = 0.0, to = 5.5, by = 0.5))
ggplot(MultProd, aes(x = factor(Setores, levels = unique(Setores)), y = MPTT)) +
geom_col() +
theme_bw() +
theme(plot.background = element_rect(fill = "#e6f2ff", colour = "#e6f2ff")) +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Totais de Produção Truncados") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MPTT, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0, 4.5),
breaks = seq(from = 0.0, to = 4.5, by = 0.5))
ce = e / x
ce = as.vector(ce)
Cehat = diag(ce)
E = Cehat %*% B
ME = colSums(E)
ME
## 1 2 3 4 5 6 7 8
## 34.101037 8.451915 15.374493 8.348028 21.242773 22.473178 17.071567 10.674351
## 9 10 11 12
## 6.687006 1.560459 26.034161 13.211106
MEI = ME / ce
MEI
## 1 2 3 4 5 6 7 8
## 1.242638 7.658824 3.806716 3.987779 1.554648 1.310717 1.827595 2.771608
## 9 10 11 12
## 3.202383 2.042665 1.264451 1.428829
EF = Cehat %*% BF[1:n, 1:n]
MET = colSums(EF)
MET = colSums(EF)
MEII = MET / ce
MEII
## 1 2 3 4 5 6 7 8
## 1.536640 16.831101 6.871265 8.326354 2.450048 2.163178 3.430779 6.262196
## 9 10 11 12
## 9.341304 3.735805 2.059785 4.187166
MultEmp = cbind(Setores, ME, MEI, MET, MEII)
MultEmp = as.data.frame(MultEmp)
colnames(MultEmp) = c("Setores", "ME", "MEI", "MET", "MEII")
MultEmp$ME = as.numeric(as.character(MultEmp$ME))
MultEmp$MEI = as.numeric(as.character(MultEmp$MEI))
MultEmp$MET = as.numeric(as.character(MultEmp$MET))
MultEmp$MEII = as.numeric(as.character(MultEmp$MEII))
flextable(MultEmp) # %>%
Setores | ME | MEI | MET | MEII |
|---|---|---|---|---|
Agro | 34.101037 | 1.242638 | 42.169181 | 1.536640 |
Ind.Extr | 8.451915 | 7.658824 | 18.574004 | 16.831101 |
Ind.Tran | 15.374493 | 3.806716 | 27.751536 | 6.871265 |
SIUP | 8.348028 | 3.987779 | 17.430413 | 8.326354 |
Cons | 21.242773 | 1.554648 | 33.477565 | 2.450048 |
Com | 22.473178 | 1.310717 | 37.089247 | 2.163178 |
Transp | 17.071567 | 1.827595 | 32.046902 | 3.430779 |
Info | 10.674351 | 2.771608 | 24.117726 | 6.262196 |
Finan | 6.687006 | 3.202383 | 19.505899 | 9.341304 |
Imob | 1.560459 | 2.042665 | 2.853904 | 3.735805 |
Otrs.Serv | 26.034161 | 1.264451 | 42.409532 | 2.059785 |
Adm | 13.211106 | 1.428829 | 38.714983 | 4.187166 |
#align(align = "center", part = "all" ) %>%
#set_caption(caption = "Multiplicadores de Emprego") %>%
#footnote(value = as_paragraph(c("Fonte: elaboração própria com dados da MIP do IBGE (2015).", #"Nota: ME e MET por 1.000.000 R$.")),
#ref_symbols = c("", ""))
flextable(MultEmp) #%>%
Setores | ME | MEI | MET | MEII |
|---|---|---|---|---|
Agro | 34.101037 | 1.242638 | 42.169181 | 1.536640 |
Ind.Extr | 8.451915 | 7.658824 | 18.574004 | 16.831101 |
Ind.Tran | 15.374493 | 3.806716 | 27.751536 | 6.871265 |
SIUP | 8.348028 | 3.987779 | 17.430413 | 8.326354 |
Cons | 21.242773 | 1.554648 | 33.477565 | 2.450048 |
Com | 22.473178 | 1.310717 | 37.089247 | 2.163178 |
Transp | 17.071567 | 1.827595 | 32.046902 | 3.430779 |
Info | 10.674351 | 2.771608 | 24.117726 | 6.262196 |
Finan | 6.687006 | 3.202383 | 19.505899 | 9.341304 |
Imob | 1.560459 | 2.042665 | 2.853904 | 3.735805 |
Otrs.Serv | 26.034161 | 1.264451 | 42.409532 | 2.059785 |
Adm | 13.211106 | 1.428829 | 38.714983 | 4.187166 |
#align(align = "center", part = "all" ) %>%
#set_caption(caption = "Multiplicadores de Emprego") %>%
#footnote(value = as_paragraph(c("Fonte: elaboração própria com dados da MIP do IBGE (2015).", #"Nota: ME e MET por 1.000.000 R$.")),
#ref_symbols = c("", ""))
kable(MultEmp, caption = "Multiplicadores de Emprego", align = "lcccc") #%>%
| Setores | ME | MEI | MET | MEII |
|---|---|---|---|---|
| Agro | 34.101037 | 1.242638 | 42.169181 | 1.536640 |
| Ind.Extr | 8.451915 | 7.658824 | 18.574004 | 16.831101 |
| Ind.Tran | 15.374493 | 3.806716 | 27.751535 | 6.871265 |
| SIUP | 8.348028 | 3.987779 | 17.430413 | 8.326354 |
| Cons | 21.242773 | 1.554648 | 33.477565 | 2.450048 |
| Com | 22.473178 | 1.310717 | 37.089247 | 2.163178 |
| Transp | 17.071567 | 1.827595 | 32.046902 | 3.430779 |
| Info | 10.674351 | 2.771608 | 24.117726 | 6.262196 |
| Finan | 6.687006 | 3.202383 | 19.505899 | 9.341304 |
| Imob | 1.560459 | 2.042665 | 2.853904 | 3.735805 |
| Otrs.Serv | 26.034161 | 1.264451 | 42.409532 | 2.059785 |
| Adm | 13.211106 | 1.428829 | 38.714983 | 4.187166 |
#kable_styling(bootstrap_options = "striped", full_width = FALSE) %>%
#footnote(general = "elaboração própria com dados da MIP do IBGE (2015).",
#general_title = "Fonte:",
#alphabet = "ME e MET por 1,000,000 R$.",
#alphabet_title = "Nota:",
#footnote_as_chunk = TRUE, title_format = c("bold"))
Os Multiplicadores de Emprego do Setor 1 (Agro), por exemplo, podem ser interpretados como: - Multiplicador Simples de Emprego (ME): uma variação de demanda de R$1.000.000 no Setor 1 (Agro) gera 34,101 empregos na economia. - Multiplicador de Emprego (Tipo I) (MEI): para cada emprego gerado diretamente no Setor 1 (Agro), tem-se um efeito multiplicador de 1,2426 na economia. - Multiplicador Total de Emprego Truncado (MET): uma variação de demanda de R$1.000.000 no Setor 1 (Agro) gera 42,1692 empregos na economia, incluindo o efeito induzido (apenas nos 𝑛𝑛 setores produtivos). - Multiplicador de Emprego (Tipo II) (MEII): para cada emprego gerado diretamente no Setor 1 (Agro), tem-se um efeito multiplicador de 1,5366 na economia, incluindo o efeito induzido (apenas nos 𝑛𝑛 setores produtivos).
ggplot(MultEmp, aes(x = factor(Setores, levels = unique(Setores)), y = ME)
) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Simples de Emprego") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).\nNota: por 1,000,000 R$.") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(ME, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,35),
breaks = seq(from = 0.0, to = 35.0, by = 5))
ggplot(MultEmp, aes(x = factor(Setores, levels = unique(Setores)), y = MEI
)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores de Emprego (Tipo I)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MEI, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,8),
breaks = seq(from = 0.0, to = 8, by = 1))
ggplot(MultEmp, aes(x = factor(Setores, levels = unique(Setores)), y = MET
)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Totais de Emprego (truncados)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015
).\nNota: por 1,000,000 R$.") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MET, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,45),
breaks = seq(from = 0, to = 45, by = 5))
ggplot(MultEmp, aes(x = factor(Setores, levels = unique(Setores)), y = MEII)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores de Emprego (Tipo II)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MEII, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,20),
breaks = seq(from = 0, to = 20, by = 5))
cr = r / x
cr = as.vector(cr)
Crhat = diag(cr)
R = Crhat %*% B
MR = colSums(R)
MR
## 1 2 3 4 5 6 7
## 0.23909638 0.29996428 0.36678896 0.26915304 0.36257345 0.43314165 0.44378838
## 8 9 10 11 12
## 0.39838932 0.37988304 0.03833075 0.48527792 0.75579774
MRI = MR / cr
MRI
## 1 2 3 4 5 6 7 8
## 2.297985 2.383660 2.586250 2.643962 1.810757 1.383320 1.706910 1.715025
## 9 10 11 12
## 1.523879 3.117216 1.344106 1.144139
RF = Crhat %*% BF[1:n, 1:n]
MRT = colSums(RF)
MRT
## 1 2 3 4 5 6 7
## 0.41604616 0.52196102 0.63824110 0.46834707 0.63090580 0.75369992 0.77222605
## 8 9 10 11 12
## 0.69322818 0.66102582 0.06669846 0.84442106 1.31514643
MRII = MRT / cr
MRII
## 1 2 3 4 5 6 7 8
## 3.998671 4.147752 4.500275 4.600697 3.150856 2.407084 2.970155 2.984276
## 9 10 11 12
## 2.651667 5.424196 2.338848 1.990890
MultRen = cbind(Setores, MR, MRI, MRT, MRII)
MultRen = as.data.frame(MultRen)
colnames(MultRen) = c("Setores", "MR", "MRI", "MRT", "MRII")
MultRen$MR = as.numeric(as.character(MultRen$MR))
MultRen$MRI = as.numeric(as.character(MultRen$MRI))
MultRen$MRT = as.numeric(as.character(MultRen$MRT))
MultRen$MRII = as.numeric(as.character(MultRen$MRII))
flextable(MultRen)
Setores | MR | MRI | MRT | MRII |
|---|---|---|---|---|
Agro | 0.23909638 | 2.297985 | 0.41604616 | 3.998671 |
Ind.Extr | 0.29996428 | 2.383660 | 0.52196102 | 4.147752 |
Ind.Tran | 0.36678896 | 2.586250 | 0.63824110 | 4.500275 |
SIUP | 0.26915304 | 2.643962 | 0.46834707 | 4.600697 |
Cons | 0.36257345 | 1.810757 | 0.63090580 | 3.150856 |
Com | 0.43314165 | 1.383320 | 0.75369992 | 2.407084 |
Transp | 0.44378838 | 1.706910 | 0.77222605 | 2.970155 |
Info | 0.39838932 | 1.715025 | 0.69322818 | 2.984276 |
Finan | 0.37988304 | 1.523879 | 0.66102582 | 2.651667 |
Imob | 0.03833075 | 3.117216 | 0.06669846 | 5.424196 |
Otrs.Serv | 0.48527792 | 1.344106 | 0.84442106 | 2.338848 |
Adm | 0.75579774 | 1.144139 | 1.31514643 | 1.990890 |
#%>%
#align(align = "center", part = "all" ) %>%
#set_caption(caption = "Multiplicadores de Renda") %>%
#footnote(value = as_paragraph("Fonte: elaboração própria com dados da MIP do IBGE (2015)."),
#ref_symbols = "")
kable(MultRen, caption = "Multiplicadores de Renda", align = "lcccc") %>% kable_styling(bootstrap_options = "striped", full_width = FALSE)
| Setores | MR | MRI | MRT | MRII |
|---|---|---|---|---|
| Agro | 0.2390964 | 2.297985 | 0.4160462 | 3.998670 |
| Ind.Extr | 0.2999643 | 2.383660 | 0.5219610 | 4.147752 |
| Ind.Tran | 0.3667890 | 2.586250 | 0.6382411 | 4.500275 |
| SIUP | 0.2691530 | 2.643962 | 0.4683471 | 4.600697 |
| Cons | 0.3625734 | 1.810757 | 0.6309058 | 3.150856 |
| Com | 0.4331417 | 1.383320 | 0.7536999 | 2.407084 |
| Transp | 0.4437884 | 1.706910 | 0.7722261 | 2.970155 |
| Info | 0.3983893 | 1.715025 | 0.6932282 | 2.984276 |
| Finan | 0.3798830 | 1.523879 | 0.6610258 | 2.651667 |
| Imob | 0.0383307 | 3.117215 | 0.0666985 | 5.424196 |
| Otrs.Serv | 0.4852779 | 1.344106 | 0.8444211 | 2.338848 |
| Adm | 0.7557977 | 1.144139 | 1.3151464 | 1.990890 |
#%>%
#footnote(general = "elaboração própria com dados da MIP do IBGE (2015).",
#general_title = "Fonte:",
#footnote_as_chunk = TRUE, title_format = c("bold"))
Os Multiplicadores de Renda do Setor 1 (Agro), por exemplo, podem ser interpretados como: - Multiplicador Simples de Renda (MR): uma variação de demanda de R$1,00 no Setor 1 (Agro) gera R$0,2391 de renda na economia. - Multiplicador de Renda (Tipo I) (MRI): para cada unidade de renda gerada diretamente no Setor 1 (Agro), tem-se um efeito multiplicador de R$2,298 na economia. - Multiplicador Total de Renda Truncado (MRT): uma variação de demanda de R$1,00 no Setor 1 (Agro) gera R$0,416 de renda na economia, incluindo o efeito induzido (apenas nos 𝑛𝑛 setores produtivos). - Multiplicador de Renda (Tipo II) (MRII): para cada unidade de renda gerada diretamente no Setor 1 (Agro), tem-se um efeito multiplicador de R$3,9987 na economia, incluindo o efeito induzido (apenas nos 𝑛𝑛 setores produtivos).
ggplot(MultRen, aes(x = factor(Setores, levels = unique(Setores)), y = MR)
) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Simples de Renda") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MR, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,1),
breaks = seq(from = 0, to = 1, by = 0.25))
ggplot(MultRen, aes(x = factor(Setores, levels = unique(Setores)), y = MRI)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores de Renda (Tipo I)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MRI, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,3.5),
breaks = seq(from = 0, to = 3.5, by = 0.5))
ggplot(MultRen, aes(x = factor(Setores, levels = unique(Setores)), y = MRT)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores Totais de Renda (truncados)") +
labs(subtitle = "2015",
caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MRT, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,1.5),
breaks = seq(from = 0, to = 1.5, by = 0.25))
Multiplicadores de Renda (Tipo II)
ggplot(MultRen, aes(x = factor(Setores, levels = unique(Setores)), y = MRII)) +
geom_col() +
theme_bw() +
xlab("Setores") +
ylab(" ") +
ggtitle("Multiplicadores de Renda (Tipo II)") +
labs(subtitle = "2015", caption = "Fonte: elaboração própria com dados da MIP do IBGE (2015).") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0)) +
geom_text(aes(label = round(MRII, digits = 2)), vjust = -0.5, size = 3) +
scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
limits = c(0,6),
breaks = seq(from = 0, to = 6, by = 0.5))