# install.packages(c("lessR", "table1", "simpleboot", "boot", "gapminder", "ggfortify", "DescTools", "epiDisplay", "BMA", "ggplot2", "gridExtra", "metafor", "MatchIt", "cobalt"), dependencies = T)
df = read.csv("D:\\NCKH GS Tuan\\Stroke Data.csv")
dim(df)
## [1] 5110 12
head(df, 10)
## id gender age hypertension heart.disease ever.married work.type
## 1 67 Female 17 0 0 No Private
## 2 77 Female 13 0 0 No children
## 3 84 Male 55 0 0 Yes Private
## 4 91 Female 42 0 0 No Private
## 5 99 Female 31 0 0 No Private
## 6 121 Female 38 0 0 Yes Private
## 7 129 Female 24 0 0 No Private
## 8 132 Female 80 0 0 Yes Govt_job
## 9 156 Female 33 0 0 Yes Private
## 10 163 Female 20 0 0 No Private
## Residence.type glucose.level bmi smoking stroke
## 1 Urban 92.97 NA formerly smoked 0
## 2 Rural 85.81 18.6 Unknown 0
## 3 Urban 89.17 31.5 never smoked 0
## 4 Urban 98.53 18.5 never smoked 0
## 5 Urban 108.89 52.3 Unknown 0
## 6 Urban 91.44 NA Unknown 0
## 7 Urban 97.55 26.2 never smoked 0
## 8 Urban 84.86 NA Unknown 0
## 9 Rural 86.97 42.2 never smoked 0
## 10 Rural 94.67 28.8 Unknown 0
tail(df)
## id gender age hypertension heart.disease ever.married work.type
## 5105 72882 Male 47 0 0 Yes Private
## 5106 72911 Female 57 1 0 Yes Private
## 5107 72914 Female 19 0 0 No Private
## 5108 72915 Female 45 0 0 Yes Private
## 5109 72918 Female 53 1 0 Yes Private
## 5110 72940 Female 2 0 0 No children
## Residence.type glucose.level bmi smoking stroke
## 5105 Rural 75.30 25.0 formerly smoked 0
## 5106 Rural 129.54 60.9 smokes 0
## 5107 Urban 90.57 24.2 Unknown 0
## 5108 Urban 172.33 45.3 formerly smoked 0
## 5109 Urban 62.55 30.3 Unknown 1
## 5110 Urban 102.92 17.6 Unknown 0
summary(df)
## id gender age hypertension
## Min. : 67 Length:5110 Min. : 0.08 Min. :0.00000
## 1st Qu.:17741 Class :character 1st Qu.:25.00 1st Qu.:0.00000
## Median :36932 Mode :character Median :45.00 Median :0.00000
## Mean :36518 Mean :43.23 Mean :0.09746
## 3rd Qu.:54682 3rd Qu.:61.00 3rd Qu.:0.00000
## Max. :72940 Max. :82.00 Max. :1.00000
##
## heart.disease ever.married work.type Residence.type
## Min. :0.00000 Length:5110 Length:5110 Length:5110
## 1st Qu.:0.00000 Class :character Class :character Class :character
## Median :0.00000 Mode :character Mode :character Mode :character
## Mean :0.05401
## 3rd Qu.:0.00000
## Max. :1.00000
##
## glucose.level bmi smoking stroke
## Min. : 55.12 Min. :10.30 Length:5110 Min. :0.00000
## 1st Qu.: 77.25 1st Qu.:23.50 Class :character 1st Qu.:0.00000
## Median : 91.89 Median :28.10 Mode :character Median :0.00000
## Mean :106.15 Mean :28.89 Mean :0.04873
## 3rd Qu.:114.09 3rd Qu.:33.10 3rd Qu.:0.00000
## Max. :271.74 Max. :97.60 Max. :1.00000
## NA's :201
check lại các dữ liệu: age: min=0.08? bmi max: 97.60? bmi missing (NA’s):201?
Mã hoá biến gender (Female/Male/Other) thành biến sex với giá trị 0/1/2 (0= Male; 1= Female; 2= Other)
df$sex[df$gender == "Female"] = 0
df$sex[df$gender == "Male"] = 1
df$sex[df$gender == "Other"] = 2
head(df)
## id gender age hypertension heart.disease ever.married work.type
## 1 67 Female 17 0 0 No Private
## 2 77 Female 13 0 0 No children
## 3 84 Male 55 0 0 Yes Private
## 4 91 Female 42 0 0 No Private
## 5 99 Female 31 0 0 No Private
## 6 121 Female 38 0 0 Yes Private
## Residence.type glucose.level bmi smoking stroke sex
## 1 Urban 92.97 NA formerly smoked 0 0
## 2 Rural 85.81 18.6 Unknown 0 0
## 3 Urban 89.17 31.5 never smoked 0 1
## 4 Urban 98.53 18.5 never smoked 0 0
## 5 Urban 108.89 52.3 Unknown 0 0
## 6 Urban 91.44 NA Unknown 0 0
table(df$sex, df$gender)
##
## Female Male
## 0 2994 0
## 1 0 2116
Nếu bmi < 18.5 thì bmi_cat = “Underweight” Nếu 18.5 bmi <
25.0 thì bmi_cat = “Normal”
Nếu 25.0 bmi < 30 thì bmi_cat = “Overweight” Nếu bmi ≥ 30.0 thì bmi
= “Obese”
df$bmi_cat[df$bmi < 18.5] = "Underweight"
df$bmi_cat[df$bmi>= 18.5 & df$bmi< 25] = "Normal"
df$bmi_cat[df$bmi>=25 & df$bmi< 30] = "Overweight"
df$bmi_cat[df$bmi >= 30] = "Obese"
table(df$bmi_cat)
##
## Normal Obese Overweight Underweight
## 1243 1920 1409 337
df$stroke1 = as.factor(df$stroke)
table(df$stroke1, df$stroke)
##
## 0 1
## 0 4861 0
## 1 0 249
head(df)
## id gender age hypertension heart.disease ever.married work.type
## 1 67 Female 17 0 0 No Private
## 2 77 Female 13 0 0 No children
## 3 84 Male 55 0 0 Yes Private
## 4 91 Female 42 0 0 No Private
## 5 99 Female 31 0 0 No Private
## 6 121 Female 38 0 0 Yes Private
## Residence.type glucose.level bmi smoking stroke sex bmi_cat stroke1
## 1 Urban 92.97 NA formerly smoked 0 0 <NA> 0
## 2 Rural 85.81 18.6 Unknown 0 0 Normal 0
## 3 Urban 89.17 31.5 never smoked 0 1 Obese 0
## 4 Urban 98.53 18.5 never smoked 0 0 Normal 0
## 5 Urban 108.89 52.3 Unknown 0 0 Obese 0
## 6 Urban 91.44 NA Unknown 0 0 <NA> 0
Biến stroke1 khác biết stroke ra sao?
Stroke là biến liên tục –> tính được mean, SD… –> ko hợp lý.
Stroke1 là biến phân loại –> tính % cho mỗi loại.
6.1 Mô tả đặc điểm tuổi (age), giới tính (gender), bệnh cao huyết áp (hypertension), bệnh tim (heart_disease), tình trạng gia đình (ever_married), việc làm (work_type), nơi ở (Residence_type), nồng độ đường huyết (avg_glucose_level), chỉ số khối cơ thể (bmi), và tình trạng hút thuốc (smoking_status) theo tình trạng đột quị (stroke)
library(table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
table1(~ age + gender + hypertension + heart.disease + ever.married + work.type + Residence.type + glucose.level + bmi + smoking | stroke, data = df)
## Warning in table1.formula(~age + gender + hypertension + heart.disease + :
## Terms to the right of '|' in formula 'x' define table columns and are expected
## to be factors with meaningful labels.
| 0 (N=4861) |
1 (N=249) |
Overall (N=5110) |
|
|---|---|---|---|
| age | |||
| Mean (SD) | 42.0 (22.3) | 67.7 (12.7) | 43.2 (22.6) |
| Median [Min, Max] | 43.0 [0.0800, 82.0] | 71.0 [1.32, 82.0] | 45.0 [0.0800, 82.0] |
| gender | |||
| Female | 2853 (58.7%) | 141 (56.6%) | 2994 (58.6%) |
| Male | 2008 (41.3%) | 108 (43.4%) | 2116 (41.4%) |
| hypertension | |||
| Mean (SD) | 0.0889 (0.285) | 0.265 (0.442) | 0.0975 (0.297) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| heart.disease | |||
| Mean (SD) | 0.0471 (0.212) | 0.189 (0.392) | 0.0540 (0.226) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| ever.married | |||
| No | 1728 (35.5%) | 29 (11.6%) | 1757 (34.4%) |
| Yes | 3133 (64.5%) | 220 (88.4%) | 3353 (65.6%) |
| work.type | |||
| children | 685 (14.1%) | 2 (0.8%) | 687 (13.4%) |
| Govt_job | 624 (12.8%) | 33 (13.3%) | 657 (12.9%) |
| Never_worked | 22 (0.5%) | 0 (0%) | 22 (0.4%) |
| Private | 2776 (57.1%) | 149 (59.8%) | 2925 (57.2%) |
| Self-employed | 754 (15.5%) | 65 (26.1%) | 819 (16.0%) |
| Residence.type | |||
| Rural | 2400 (49.4%) | 114 (45.8%) | 2514 (49.2%) |
| Urban | 2461 (50.6%) | 135 (54.2%) | 2596 (50.8%) |
| glucose.level | |||
| Mean (SD) | 105 (43.8) | 133 (61.9) | 106 (45.3) |
| Median [Min, Max] | 91.5 [55.1, 268] | 105 [56.1, 272] | 91.9 [55.1, 272] |
| bmi | |||
| Mean (SD) | 28.8 (7.91) | 30.5 (6.33) | 28.9 (7.85) |
| Median [Min, Max] | 28.0 [10.3, 97.6] | 29.7 [16.9, 56.6] | 28.1 [10.3, 97.6] |
| Missing | 161 (3.3%) | 40 (16.1%) | 201 (3.9%) |
| smoking | |||
| formerly smoked | 815 (16.8%) | 70 (28.1%) | 885 (17.3%) |
| never smoked | 1802 (37.1%) | 90 (36.1%) | 1892 (37.0%) |
| smokes | 747 (15.4%) | 42 (16.9%) | 789 (15.4%) |
| Unknown | 1497 (30.8%) | 47 (18.9%) | 1544 (30.2%) |
table1(~ hypertension + as.factor(hypertension) + heart.disease + as.factor(heart.disease) | stroke, data = df)
## Warning in table1.formula(~hypertension + as.factor(hypertension) +
## heart.disease + : Terms to the right of '|' in formula 'x' define table columns
## and are expected to be factors with meaningful labels.
| 0 (N=4861) |
1 (N=249) |
Overall (N=5110) |
|
|---|---|---|---|
| hypertension | |||
| Mean (SD) | 0.0889 (0.285) | 0.265 (0.442) | 0.0975 (0.297) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| as.factor(hypertension) | |||
| 0 | 4429 (91.1%) | 183 (73.5%) | 4612 (90.3%) |
| 1 | 432 (8.9%) | 66 (26.5%) | 498 (9.7%) |
| heart.disease | |||
| Mean (SD) | 0.0471 (0.212) | 0.189 (0.392) | 0.0540 (0.226) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| as.factor(heart.disease) | |||
| 0 | 4632 (95.3%) | 202 (81.1%) | 4834 (94.6%) |
| 1 | 229 (4.7%) | 47 (18.9%) | 276 (5.4%) |