Click to see summary of the data.

Summary of Data

PChar2 is a data frame that describes all 80 procedures and the various parameters that were also collected of interest (Post op scores/NDI/OLBD, surgeon, surgeon age/sex/glove size/height/weight, overall/L/R rula, and procedure length/category/difficulty).

Surg is a data frame that describes the surgeons and their baseline characteristics.

## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Warning: package 'patchwork' was built under R version 4.3.3

Notice that many surgeons report an OLBD of 0 and/or low NDI scores (OLBD_Total and NDI_Score columns). Only a few outliers express pain.

## # A tibble: 17 × 7
##    Training  Sex      Age Height Weight OLBD_Total NDI_Score
##    <chr>     <chr>  <dbl>  <dbl>  <dbl>      <dbl>     <dbl>
##  1 Attending Female    41   153     105          0         3
##  2 Resident  Female    26   138     115          0         1
##  3 Resident  Female    32   162     160          0         3
##  4 Resident  Female    28   160     150         10         5
##  5 Resident  Female    27   165      95          0         0
##  6 Attending Male      55   177     180          0         1
##  7 Attending Male      58   178     180          0         0
##  8 Attending Male      37   172     155          0         0
##  9 Resident  Male      31   190     175          0         0
## 10 Resident  Male      30   175     170          0         0
## 11 Resident  Male      35   171     166          0         1
## 12 Resident  Male      28   185.    165          0         1
## 13 Resident  Male      30   180     200          0         1
## 14 Resident  Male      34   178.    240         12        10
## 15 Resident  Male      29   178.    205          8        11
## 16 Resident  Male      29   183     175          4         6
## 17 Attending Male      56   182     250          0         0

Surgery characteristics (80 procedures)

Pchar2 is displayed along with a brief summary of the parameters.

## # A tibble: 6 × 28
##   Record_ID Length_surgery_min2 Length_surgery_min3 Category_Procedure POScores
##       <dbl> <chr>                             <dbl> <chr>                 <dbl>
## 1        15 0-60 mins                            47 Other                     1
## 2        16 0-60 mins                            47 Other                     1
## 3        19 61-180 mins                          90 Resection                 1
## 4        20 61-180 mins                         120 Resection                 0
## 5        21 61-180 mins                         120 Resection                 1
## 6        23 360+ mins                           400 Resection                 3
## # ℹ 23 more variables: Surgeon <dbl>, Difficulty <chr>, RULA <dbl>,
## #   RULA_sd <dbl>, RULA_count <int>, Sex <chr>, Height <dbl>, Weight <dbl>,
## #   Age <dbl>, Glove_size <dbl>, Training <chr>, NDI_Score <dbl>,
## #   OLBD_Total <dbl>, avg_RULA_L <dbl>, SD_RULA_L <dbl>, count_L <int>,
## #   avg_RULA_R <dbl>, SD_RULA_R <dbl>, count_R <int>, RULAWL <dbl>,
## #   RULAWR <dbl>, POPRaw <dbl>, RULAWB <dbl>
##    Record_ID      Length_surgery_min2 Length_surgery_min3 Category_Procedure
##  Min.   : 15.00   Length:80           Min.   : 20.00      Length:80         
##  1st Qu.: 39.75   Class :character    1st Qu.: 92.25      Class :character  
##  Median : 61.50   Mode  :character    Median :148.50      Mode  :character  
##  Mean   : 61.00                       Mean   :202.18                        
##  3rd Qu.: 83.25                       3rd Qu.:284.25                        
##  Max.   :103.00                       Max.   :848.00                        
##                                                                             
##     POScores         Surgeon        Difficulty             RULA      
##  Min.   :-1.000   Min.   : 1.000   Length:80          Min.   :2.000  
##  1st Qu.: 1.000   1st Qu.: 8.000   Class :character   1st Qu.:3.542  
##  Median : 1.000   Median : 9.000   Mode  :character   Median :4.118  
##  Mean   : 1.775   Mean   : 9.512                      Mean   :4.340  
##  3rd Qu.: 3.000   3rd Qu.:11.000                      3rd Qu.:5.025  
##  Max.   : 7.000   Max.   :17.000                      Max.   :7.000  
##                                                                      
##     RULA_sd         RULA_count        Sex                Height     
##  Min.   :0.0000   Min.   : 2.00   Length:80          Min.   :138.0  
##  1st Qu.:0.5164   1st Qu.: 6.00   Class :character   1st Qu.:171.0  
##  Median :0.8904   Median : 9.00   Mode  :character   Median :172.0  
##  Mean   :0.8573   Mean   :12.12                      Mean   :174.6  
##  3rd Qu.:1.1493   3rd Qu.:16.00                      3rd Qu.:182.0  
##  Max.   :1.9400   Max.   :58.00                      Max.   :190.0  
##                                                                     
##      Weight           Age         Glove_size      Training        
##  Min.   :105.0   Min.   :26.0   Min.   :6.000   Length:80         
##  1st Qu.:155.0   1st Qu.:31.0   1st Qu.:7.000   Class :character  
##  Median :166.0   Median :35.0   Median :7.000   Mode  :character  
##  Mean   :171.2   Mean   :38.8   Mean   :7.138                     
##  3rd Qu.:175.0   3rd Qu.:41.0   3rd Qu.:7.500                     
##  Max.   :250.0   Max.   :58.0   Max.   :8.000                     
##                                                                   
##    NDI_Score        OLBD_Total       avg_RULA_L      SD_RULA_L     
##  Min.   : 0.000   Min.   : 0.000   Min.   :2.000   Min.   :0.0000  
##  1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.:3.500   1st Qu.:0.5774  
##  Median : 1.000   Median : 0.000   Median :4.000   Median :0.9512  
##  Mean   : 1.188   Mean   : 0.725   Mean   :4.330   Mean   :0.9417  
##  3rd Qu.: 1.000   3rd Qu.: 0.000   3rd Qu.:5.033   3rd Qu.:1.2536  
##  Max.   :10.000   Max.   :12.000   Max.   :7.000   Max.   :2.0616  
##                                                    NA's   :7       
##     count_L         avg_RULA_R      SD_RULA_R         count_R      
##  Min.   : 1.000   Min.   :2.000   Min.   :0.0000   Min.   : 1.000  
##  1st Qu.: 3.000   1st Qu.:3.607   1st Qu.:0.7071   1st Qu.: 3.000  
##  Median : 4.500   Median :4.045   Median :1.0000   Median : 4.500  
##  Mean   : 6.062   Mean   :4.349   Mean   :0.9824   Mean   : 6.062  
##  3rd Qu.: 8.000   3rd Qu.:5.000   3rd Qu.:1.2111   3rd Qu.: 8.000  
##  Max.   :29.000   Max.   :7.000   Max.   :2.0817   Max.   :29.000  
##                                   NA's   :7                        
##      RULAWL         RULAWR         POPRaw          RULAWB    
##  Min.   :2.00   Min.   :2.00   Min.   :1.000   Min.   :2.00  
##  1st Qu.:4.00   1st Qu.:5.00   1st Qu.:1.000   1st Qu.:5.00  
##  Median :6.00   Median :6.00   Median :2.000   Median :6.00  
##  Mean   :5.40   Mean   :5.55   Mean   :2.538   Mean   :5.65  
##  3rd Qu.:6.25   3rd Qu.:7.00   3rd Qu.:4.000   3rd Qu.:7.00  
##  Max.   :7.00   Max.   :7.00   Max.   :8.000   Max.   :7.00  
## 

All surgeon characteristics

## # A tibble: 17 × 33
##       ID Name       Training Record   Age Sex   Height Weight `Glove size` NDI  
##    <dbl> <chr>      <chr>     <dbl> <dbl> <chr>  <dbl>  <dbl>        <dbl> <chr>
##  1     1 Patel      Attendi…      3    41 Fema…   153     105          6.5 The …
##  2     2 Goff       Resident      7    26 Fema…   138     115          6   I ha…
##  3     3 Sluder     Resident     10    32 Fema…   162     160          6.5 The …
##  4     4 Jan        Resident     12    28 Fema…   160     150          6.5 The …
##  5     5 Kapoor     Resident     53    27 Fema…   165      95          5.5 I ha…
##  6     6 Vasan      Attendi…      1    55 Male    177     180          7   I ha…
##  7     7 Krempl     Attendi…      4    58 Male    178     180          7   I ha…
##  8     8 Mhawej     Attendi…      5    37 Male    172     155          7   I ha…
##  9     9 Greene     Resident      6    31 Male    190     175          7.5 I ha…
## 10    10 Abbott     Resident      8    30 Male    175     170          7   I ha…
## 11    11 Hawsawi    Resident      9    35 Male    171     166          7   I ha…
## 12    12 Erickson   Resident     11    28 Male    185.    165          7.5 I ha…
## 13    13 Krutz      Resident     13    30 Male    180     200          7.5 I ha…
## 14    14 Klug       Resident     14    34 Male    178.    240          7   The …
## 15    15 Hasanjee   Resident     22    29 Male    178.    205          7.5 The …
## 16    16 Gupta      Resident     54    29 Male    183     175          7.5 The …
## 17    17 Sanclement Attendi…     25    56 Male    182     250          8   I ha…
## # ℹ 23 more variables: NDI_ADLS <chr>, NDI_LIFTING <chr>, NDI_READING <chr>,
## #   NDI_HEADACHES <chr>, NDI_CONCENTRATION <chr>, NDI_WORK <chr>,
## #   NDI_DRIVING <chr>, NDI_SLEEP <chr>, NDI_ACTIVITIES <chr>, NDI_Score <dbl>,
## #   `Pain baseline` <dbl>, OLBD <chr>, LookAfterSelf <chr>, Lifting <chr>,
## #   Walking <chr>, Sitting <chr>, Standing <chr>, Sleep <chr>, Social <chr>,
## #   Travel <chr>, Homemaking <chr>, OLBD_Sum <dbl>, OLBD_Total <dbl>
Click to see breakdown of pain scores by training and sex.

Breakdown of Pain Scores (NOTE: Goff’s data was excluded from plots due to missing survey) # Pain Scores A box-and-whisker plot of pain scores was constructed, including the overall trend and the breakdown by training level and sex.

## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

Why do the overall, “resident”, and “male” plots look similar?

Summary statistics were calculated for the post op pain score overall and for the subgroups of gender and training.

## # A tibble: 5 × 8
##   Group    Subgroup      n mean_Pain sd_Pain min_Pain max_Pain median_Pain
##   <chr>    <chr>     <int>     <dbl>   <dbl>    <dbl>    <dbl>       <dbl>
## 1 Overall  All          80      1.78    1.52       -1        7           1
## 2 Sex      Female       10      2.7     2.06        0        7           2
## 3 Sex      Male         70      1.64    1.39       -1        5           1
## 4 Training Attending    37      1.70    1.71        0        7           1
## 5 Training Resident     43      1.84    1.34       -1        5           1
## # A tibble: 2 × 7
##   Subgroup      n mean_Pain sd_Pain min_Pain max_Pain median_Pain
##   <chr>     <int>     <dbl>   <dbl>    <dbl>    <dbl>       <dbl>
## 1 Attending    37      1.70    1.71        0        7           1
## 2 Resident     43      1.84    1.34       -1        5           1
## # A tibble: 2 × 7
##   Subgroup     n mean_Pain sd_Pain min_Pain max_Pain median_Pain
##   <chr>    <int>     <dbl>   <dbl>    <dbl>    <dbl>       <dbl>
## 1 Female      10      2.7     2.06        0        7           2
## 2 Male        70      1.64    1.39       -1        5           1
Click to see breakdown of pain scores by surgery characteristics.

Other Pain Score Data (Surgery specific - length, category, and difficulty)

Summary of these surgery pain score by length, category, and difficulty.

## # A tibble: 4 × 7
##   Length_surgery_min2     n mean_pain median_pain sd_pain min_pain max_pain
##   <chr>               <int>     <dbl>       <dbl>   <dbl>    <dbl>    <dbl>
## 1 0-60 mins              13      1.69         1     1.11         1        4
## 2 181-360 mins           24      1.96         1     1.94         0        7
## 3 360+ mins               9      1.56         1     0.726        1        3
## 4 61-180 mins            34      1.74         1.5   1.50        -1        5
## # A tibble: 5 × 7
##   Category_Procedure        n mean_pain median_pain sd_pain min_pain max_pain
##   <chr>                 <int>     <dbl>       <dbl>   <dbl>    <dbl>    <dbl>
## 1 Endoscopic/Diagnostic     1      1              1   NA           1        1
## 2 LN/neck dissections       9      1.56           1    1.33        0        4
## 3 Other                     4      1.25           1    0.5         1        2
## 4 Reconstructive           17      1.71           1    1.86        0        5
## 5 Resection                49      1.90           1    1.50       -1        7
## # A tibble: 4 × 7
##   Difficulty                   n mean_pain median_pain sd_pain min_pain max_pain
##   <chr>                    <int>     <dbl>       <dbl>   <dbl>    <dbl>    <dbl>
## 1 Average                     43      1.74         1     1.27         0        4
## 2 Easier than average          7      1.14         1     0.900        0        3
## 3 More difficult than ave…    24      1.79         1.5   1.61        -1        5
## 4 Most difficult               6      2.67         2     2.88         0        7
Click to see breakdown of RULA Scores (n = 970) by training and sex.

Breakdown of RULA Scores by Individual Recordings (Using the 970 RULA Recordings)

A summary of RULA scores by sex and training was also found.

## # A tibble: 1 × 6
##       n  mean median    sd   min   max
##   <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1   970  4.35      4  1.39     0     7
## # A tibble: 2 × 7
##   Training      n  mean median    sd   min   max
##   <chr>     <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Attending   386  4.29      4  1.30     2     7
## 2 Resident    584  4.40      4  1.44     0     7
## # A tibble: 2 × 7
##   Sex        n  mean median    sd   min   max
##   <chr>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Female   102  4.10      4  1.29     2     7
## 2 Male     868  4.38      4  1.40     0     7
## # A tibble: 4 × 8
##   Training  Sex        n  mean median    sd   min   max
##   <chr>     <chr>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Attending Female    42  3.86      4  1.03     3     7
## 2 Attending Male     344  4.34      4  1.32     2     7
## 3 Resident  Female    60  4.27      4  1.44     2     7
## 4 Resident  Male     524  4.41      4  1.44     0     7
Click to see breakdown of RULA scores (n = 970) by procedure characteristics.

A breakdown by length, difficulty, and category of the RULA scores was constructed.

## # A tibble: 4 × 7
##   Length_surgery_min2     n  mean median    sd   min   max
##   <chr>               <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 0-60 mins              40  4.35      4  1.53     2     7
## 2 181-360 mins          388  4.39      4  1.38     2     7
## 3 360+ mins             284  4.34      4  1.35     0     7
## 4 61-180 mins           258  4.32      4  1.43     2     7
## # A tibble: 4 × 7
##   Difficulty                      n  mean median    sd   min   max
##   <chr>                       <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Average                       394  4.25      4  1.32     1     7
## 2 Easier than average            38  4.26      4  1.75     2     7
## 3 More difficult than average   414  4.52      4  1.45     0     7
## 4 Most difficult                124  4.14      4  1.22     2     7
## # A tibble: 5 × 7
##   Category_Procedure        n  mean median    sd   min   max
##   <chr>                 <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Endoscopic/Diagnostic     2  5         5 0         5     5
## 2 LN/neck dissections      94  3.97      4 1.16      1     7
## 3 Other                    20  3.35      3 0.489     3     4
## 4 Reconstructive          228  4.04      4 1.42      0     7
## 5 Resection               626  4.56      4 1.38      2     7
Click to see breakdown of average RULA Score per procedure (n = 80 surgeries) by training and sex.

Breakdown of RULA Scores by Average Score per Procedure (80 procedures from 970 recordings) by training and sex.

## # A tibble: 5 × 7
##   Group         n  mean median    sd   min   max
##   <fct>     <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Overall      80  4.34   4.12 1.07   2      7  
## 2 Attending    37  4.22   4.07 0.917  3      6.5
## 3 Resident     43  4.44   4.17 1.18   2      7  
## 4 Male         70  4.38   4.14 1.09   2      7  
## 5 Female       10  4.09   3.93 0.923  2.67   5.7
Click to see breakdown of average RULA Score (n = 80 surgeries) by length, category, and difficulty.

Breakdown of RULA Scores by Average Score per Procedure (80 procedures from 970 recordings) by length, category, and difficulty.

## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

## # A tibble: 4 × 7
##   Length_surgery_min2     n  mean median    sd   min   max
##   <chr>               <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 0-60 mins              13  4.25   4    1.45   2      7  
## 2 181-360 mins           24  4.40   4.24 0.926  2.71   6.5
## 3 360+ mins               9  4.18   3.85 0.698  3.5    5.5
## 4 61-180 mins            34  4.37   4.08 1.10   2.67   6.5
## # A tibble: 5 × 7
##   Category_Procedure        n  mean median     sd   min   max
##   <chr>                 <int> <dbl>  <dbl>  <dbl> <dbl> <dbl>
## 1 Endoscopic/Diagnostic     1  5      5    NA      5     5   
## 2 LN/neck dissections       9  4.03   3.75  0.706  3.4   5.7 
## 3 Other                     4  3.36   3.35  0.330  3     3.75
## 4 Reconstructive           17  4.19   4.07  0.984  2.67  6.17
## 5 Resection                49  4.51   4.56  1.14   2     7
## # A tibble: 4 × 7
##   Difficulty                      n  mean median    sd   min   max
##   <chr>                       <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Average                        43  4.21   4    1.04   2     6.5 
## 2 Easier than average             7  4.76   4    1.60   2.71  7   
## 3 More difficult than average    24  4.52   4.66 1.01   2.67  6.5 
## 4 Most difficult                  6  4.01   3.86 0.618  3.42  5.17
Click to see breakdown of worst RULA Score per procedure (n = 80 surgeries) by training and sex.

Breakdown of RULA Scores by Worst Score per Procedure (80 procedures from 970 recordings, worst score across both hands was used)

Inspired by a reviewer comment: From your RULA, you deviated from industrial use which typically uses the worst posture not a periodic sampling of posture (e.g. ever 30 minutes). This said, it is similar to those who have continuous monitoring of the neck, back and arms, but much less frequent.

## # A tibble: 5 × 6
##   Group         n  mean    sd median   IQR
##   <fct>     <int> <dbl> <dbl>  <dbl> <dbl>
## 1 Overall      80  5.65  1.30      6   2  
## 2 Attending    37  5.38  1.30      6   2  
## 3 Resident     43  5.88  1.28      6   2  
## 4 Male         70  5.69  1.31      6   2  
## 5 Female       10  5.4   1.26      5   2.5
Click to see breakdown of worst RULA Score (n = 80 surgeries) by procedure length, category, and difficulty.

Breakdown of RULA Scores by worst Score per Procedure (80 procedures from 970 recordings) by procedure length, category, and difficulty.

## # A tibble: 1 × 6
##       n  mean median    sd   min   max
##   <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1    80  5.65      6  1.30     2     7
## # A tibble: 4 × 7
##   Length_surgery_min2     n  mean median    sd   min   max
##   <chr>               <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 0-60 mins              13  4.54      4 1.71      2     7
## 2 181-360 mins           24  6.17      6 0.761     4     7
## 3 360+ mins               9  6.44      6 0.527     6     7
## 4 61-180 mins            34  5.5       5 1.29      3     7
## # A tibble: 5 × 7
##   Category_Procedure        n  mean median    sd   min   max
##   <chr>                 <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Endoscopic/Diagnostic     1  5         5 NA        5     5
## 2 LN/neck dissections       9  5.22      5  1.09     4     7
## 3 Other                     4  3.75      4  0.5      3     4
## 4 Reconstructive           17  5.88      6  1.27     3     7
## 5 Resection                49  5.82      6  1.29     2     7
## # A tibble: 4 × 7
##   Difficulty                      n  mean median    sd   min   max
##   <chr>                       <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 Average                        43  5.35      6 1.41      2     7
## 2 Easier than average             7  5.43      5 1.51      4     7
## 3 More difficult than average    24  6.12      6 0.992     4     7
## 4 Most difficult                  6  6.17      6 0.753     5     7
Bar graphs of mean rula and worst rula per procedure.

Bar charts for the curious.

.

Statistical Analysis

First are the results from the ANOVA test. Factorial ANOVA (FANOVA) was employed, as it allows individual dependent variables to be analyzed with respect to multiple groups of independent variables (procedure length, category, and duration in this case). Each outcome was examined individually.

FANOVAs for Average RULA Score, Worst RULA Score, and change in pain were all obtained.

Click to see a summary of the ANOVA results for average RULA score.

Displayed are the results from the ANOVA test for average RULA score. None of the p-values were significant across variables, their two-way interactions, or their 3-way interactions.

## Warning: package 'car' was built under R version 4.3.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.3.3
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## Warning: package 'effectsize' was built under R version 4.3.3
## Note: model has aliased coefficients
##       sums of squares computed by model comparison
## Anova Table (Type II tests)
## 
## Response: RULA
##                                                   Sum Sq Df F value  Pr(>F)  
## Length_surgery_min2                                1.041  3  0.2931 0.83017  
## Difficulty                                         4.032  2  1.7024 0.19285  
## Category_Procedure                                 8.154  4  1.7212 0.16038  
## Length_surgery_min2:Difficulty                     8.632  4  1.8222 0.13958  
## Length_surgery_min2:Category_Procedure             1.101  5  0.1859 0.96660  
## Difficulty:Category_Procedure                      2.621  4  0.5532 0.69756  
## Length_surgery_min2:Difficulty:Category_Procedure  3.827  1  3.2318 0.07839 .
## Residuals                                         58.030 49                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # Effect Size for ANOVA (Type I)
## 
## Parameter                                         | Eta2 (partial) |       95% CI
## ---------------------------------------------------------------------------------
## Length_surgery_min2                               |           0.02 | [0.00, 1.00]
## Difficulty                                        |           0.05 | [0.00, 1.00]
## Category_Procedure                                |           0.11 | [0.00, 1.00]
## Length_surgery_min2:Difficulty                    |           0.12 | [0.00, 1.00]
## Length_surgery_min2:Category_Procedure            |           0.05 | [0.00, 1.00]
## Difficulty:Category_Procedure                     |           0.04 | [0.00, 1.00]
## Length_surgery_min2:Difficulty:Category_Procedure |           0.06 | [0.00, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].
## Warning: not plotting observations with leverage one:
##   2, 18, 23, 24, 27, 44, 59, 60, 67, 69

Click to see a summary of the ANOVA results for worst RULA score.

Displayed are the results from the ANOVA test for worst RULA score. Similar to the case for average RULA score, none of the p-values were significant across variables, their two-way interactions, or their 3-way interactions.

## Note: model has aliased coefficients
##       sums of squares computed by model comparison
## Anova Table (Type II tests)
## 
## Response: RULAWB
##                                                   Sum Sq Df F value  Pr(>F)  
## Length_surgery_min2                               13.006  3  2.7517 0.05251 .
## Difficulty                                         2.821  2  0.8952 0.41512  
## Category_Procedure                                 8.332  4  1.3222 0.27493  
## Length_surgery_min2:Difficulty                     7.585  4  1.2036 0.32122  
## Length_surgery_min2:Category_Procedure             0.438  5  0.0556 0.99791  
## Difficulty:Category_Procedure                      4.518  4  0.7170 0.58442  
## Length_surgery_min2:Difficulty:Category_Procedure  1.296  1  0.8229 0.36878  
## Residuals                                         77.200 49                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # Effect Size for ANOVA (Type I)
## 
## Parameter                                         | Eta2 (partial) |       95% CI
## ---------------------------------------------------------------------------------
## Length_surgery_min2                               |           0.26 | [0.07, 1.00]
## Difficulty                                        |           0.03 | [0.00, 1.00]
## Category_Procedure                                |           0.09 | [0.00, 1.00]
## Length_surgery_min2:Difficulty                    |           0.08 | [0.00, 1.00]
## Length_surgery_min2:Category_Procedure            |           0.03 | [0.00, 1.00]
## Difficulty:Category_Procedure                     |           0.06 | [0.00, 1.00]
## Length_surgery_min2:Difficulty:Category_Procedure |           0.02 | [0.00, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].
## Warning: not plotting observations with leverage one:
##   2, 18, 23, 24, 27, 44, 59, 60, 67, 69

Click to a summary of the ANOVA results for change in pain.

Displayed are the results from the ANOVA test for change in pain. None of the p-values were significant across variables, their two-way interactions, or their 3-way interactions.

## Note: model has aliased coefficients
##       sums of squares computed by model comparison
## Anova Table (Type II tests)
## 
## Response: POScores
##                                                   Sum Sq Df F value  Pr(>F)  
## Length_surgery_min2                                1.647  3  0.2708 0.84618  
## Difficulty                                         2.262  2  0.5579 0.57600  
## Category_Procedure                                 3.494  4  0.4308 0.78569  
## Length_surgery_min2:Difficulty                     2.040  4  0.2515 0.90738  
## Length_surgery_min2:Category_Procedure            12.627  5  1.2455 0.30253  
## Difficulty:Category_Procedure                      7.091  4  0.8743 0.48616  
## Length_surgery_min2:Difficulty:Category_Procedure  6.756  1  3.3321 0.07404 .
## Residuals                                         99.350 49                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # Effect Size for ANOVA (Type I)
## 
## Parameter                                         | Eta2 (partial) |       95% CI
## ---------------------------------------------------------------------------------
## Length_surgery_min2                               |       2.40e-03 | [0.00, 1.00]
## Difficulty                                        |           0.03 | [0.00, 1.00]
## Category_Procedure                                |           0.03 | [0.00, 1.00]
## Length_surgery_min2:Difficulty                    |           0.02 | [0.00, 1.00]
## Length_surgery_min2:Category_Procedure            |           0.12 | [0.00, 1.00]
## Difficulty:Category_Procedure                     |           0.07 | [0.00, 1.00]
## Length_surgery_min2:Difficulty:Category_Procedure |           0.06 | [0.00, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].
## Warning: not plotting observations with leverage one:
##   2, 18, 23, 24, 27, 44, 59, 60, 67, 69

Next are the results from the linear regression modeling. Separate simple regression was employed due to collinearity. The predictors employed for this model were Age, Height, Weight, and Glove Size.

Click to a summary of the linear regression results for average RULA score.

Displayed are the results from the linear regression test on average RULA score. None of the p-values were significant across variables.

## Warning: package 'broom' was built under R version 4.3.3
## $Age
## # A tibble: 2 × 7
##   term        estimate std.error statistic  p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
## 1 (Intercept)   4.80      0.491      9.79  3.16e-15   3.83      5.78  
## 2 Age          -0.0120    0.0123    -0.976 3.32e- 1  -0.0364    0.0124
## 
## $Height
## # A tibble: 2 × 7
##   term        estimate std.error statistic p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 (Intercept)   1.37      2.02       0.679   0.499 -2.65       5.40  
## 2 Height        0.0170    0.0116     1.47    0.146 -0.00603    0.0400
## 
## $Weight
## # A tibble: 2 × 7
##   term        estimate std.error statistic       p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>         <dbl>    <dbl>     <dbl>
## 1 (Intercept)  4.12      0.635       6.48  0.00000000763  2.85      5.38   
## 2 Weight       0.00131   0.00364     0.360 0.720         -0.00594   0.00856
## 
## $Glove_size
## # A tibble: 2 × 7
##   term        estimate std.error statistic p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 (Intercept)    3.17      2.05      1.55    0.125   -0.902     7.24 
## 2 Glove_size     0.164     0.286     0.573   0.568   -0.405     0.733
Click to see a summary of the linear regression results for worst RULA score.

Displayed are the results from the linear regression test on worst RULA score. None of the p-values were significant across variables.

## $Age
## # A tibble: 2 × 7
##   term        estimate std.error statistic  p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
## 1 (Intercept)  6.01       0.602      9.97  1.43e-15   4.81      7.21  
## 2 Age         -0.00922    0.0151    -0.612 5.42e- 1  -0.0392    0.0208
## 
## $Height
## # A tibble: 2 × 7
##   term        estimate std.error statistic p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 (Intercept)   2.94      2.49        1.18   0.241  -2.02      7.89  
## 2 Height        0.0155    0.0142      1.09   0.278  -0.0128    0.0439
## 
## $Weight
## # A tibble: 2 × 7
##   term        estimate std.error statistic       p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>         <dbl>    <dbl>     <dbl>
## 1 (Intercept)  5.22      0.776       6.72  0.00000000269  3.67       6.76  
## 2 Weight       0.00253   0.00445     0.569 0.571         -0.00633    0.0114
## 
## $Glove_size
## # A tibble: 2 × 7
##   term        estimate std.error statistic p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 (Intercept)    4.71      2.51      1.88   0.0641   -0.282     9.69 
## 2 Glove_size     0.132     0.350     0.377  0.707    -0.565     0.830
Click to see a summary of the linear regression results for change in pain score.

Displayed are the results from the linear regression test on change in pain score. Statistical significance was found in age, weight, and glove size (height was not found to be significant), albeit with low effect size. All three were found to correlate negatively with change in pain score.

## $Age
## # A tibble: 2 × 7
##   term        estimate std.error statistic      p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>        <dbl>    <dbl>     <dbl>
## 1 (Intercept)   4.06      0.651       6.23 0.0000000219   2.76      5.35  
## 2 Age          -0.0588    0.0163     -3.61 0.000535      -0.0912   -0.0264
## 
## $Height
## # A tibble: 2 × 7
##   term        estimate std.error statistic p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 (Intercept)   4.19      2.91       1.44    0.154  -1.60      9.98  
## 2 Height       -0.0138    0.0166    -0.832   0.408  -0.0469    0.0193
## 
## $Weight
## # A tibble: 2 × 7
##   term        estimate std.error statistic       p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>         <dbl>    <dbl>     <dbl>
## 1 (Intercept)   5.22     0.814        6.42 0.00000000990   3.60      6.84  
## 2 Weight       -0.0201   0.00467     -4.31 0.0000466      -0.0294   -0.0108
## 
## $Glove_size
## # A tibble: 2 × 7
##   term        estimate std.error statistic p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 (Intercept)    8.42      2.82       2.99 0.00378     2.81    14.0  
## 2 Glove_size    -0.931     0.395     -2.36 0.0208     -1.72    -0.146

Finally are the results from the binary variables, sex and training level. A test for normality was conducted and either a t-test or a wilcoxen signed rank test was used pending the normality of the data.

Click to see a summary of sex and training influence for average RULA score.

Displayed are the results from shapiro-wilks test for normality. Only Average RULA - Female, Post op - Female, and average - resident were normal in distribution.

P-values were adjusted with bonferroni correction (factor of 15). RULA = Average RULA score, RULAWB = Worst RULA Score collected bilaterally (both hands), and POScore = difference in pain score from baseline.

To summarize, significance was identified in worst rula score for the overall, male, and both resident and attending subgroups. Significance was also found in post-op pain change from baseline in overall, male, female, and both resident and attending subgroups (same as for worst rula score).

Significance was identified in average RULA score for the female and resident subgroups.

## 
## Attaching package: 'rstatix'
## The following objects are masked from 'package:effectsize':
## 
##     cohens_d, eta_squared
## The following object is masked from 'package:stats':
## 
##     filter
## 
##  Shapiro-Wilk normality test
## 
## data:  PChar2$RULA
## W = 0.96587, p-value = 0.03107
## 
##  Shapiro-Wilk normality test
## 
## data:  PChar2$RULAWB
## W = 0.86426, p-value = 5.037e-07
## 
##  Shapiro-Wilk normality test
## 
## data:  PChar2$POScores
## W = 0.89725, p-value = 9.34e-06
## PChar2$Sex: Female
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.96937, p-value = 0.8849
## 
## ------------------------------------------------------------ 
## PChar2$Sex: Male
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.9626, p-value = 0.03492
## PChar2$Sex: Female
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.83805, p-value = 0.04181
## 
## ------------------------------------------------------------ 
## PChar2$Sex: Male
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.85069, p-value = 7.046e-07
## PChar2$Sex: Female
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.91103, p-value = 0.2881
## 
## ------------------------------------------------------------ 
## PChar2$Sex: Male
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.89069, p-value = 1.696e-05
## PChar2$Training: Attending
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.92643, p-value = 0.0174
## 
## ------------------------------------------------------------ 
## PChar2$Training: Resident
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.97172, p-value = 0.3618
## PChar2$Training: Attending
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.88974, p-value = 0.001547
## 
## ------------------------------------------------------------ 
## PChar2$Training: Resident
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.81832, p-value = 9.132e-06
## PChar2$Training: Attending
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.85075, p-value = 0.0001638
## 
## ------------------------------------------------------------ 
## PChar2$Training: Resident
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.83877, p-value = 2.758e-05
## Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
## dplyr 1.1.0.
## ℹ Please use `reframe()` instead.
## ℹ When switching from `summarise()` to `reframe()`, remember that `reframe()`
##   always returns an ungrouped data frame and adjust accordingly.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
## dplyr 1.1.0.
## ℹ Please use `reframe()` instead.
## ℹ When switching from `summarise()` to `reframe()`, remember that `reframe()`
##   always returns an ungrouped data frame and adjust accordingly.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## # A tibble: 15 × 4
##    Outcome                    Group     `Shapiro–Wilk W`   `p value`
##    <chr>                      <chr>                <dbl>       <dbl>
##  1 Average RULA score         Overall              0.966 0.0311     
##  2 Worst RULA score           Overall              0.864 0.000000504
##  3 Post-operative pain change Overall              0.897 0.00000934 
##  4 Average RULA score         Female               0.969 0.885      
##  5 Worst RULA score           Female               0.838 0.0418     
##  6 Post-operative pain change Female               0.911 0.288      
##  7 Average RULA score         Male                 0.963 0.0349     
##  8 Worst RULA score           Male                 0.851 0.000000705
##  9 Post-operative pain change Male                 0.891 0.0000170  
## 10 Average RULA score         Attending            0.926 0.0174     
## 11 Worst RULA score           Attending            0.890 0.00155    
## 12 Post-operative pain change Attending            0.851 0.000164   
## 13 Average RULA score         Resident             0.972 0.362      
## 14 Worst RULA score           Resident             0.818 0.00000913 
## 15 Post-operative pain change Resident             0.839 0.0000276

After checking normality, either a t-test or a wilcoxen signed rank test is used.

T-test results:

## 
##  One Sample t-test
## 
## data:  PChar2$RULA[PChar2$Sex == "Female"]
## t = 14.01, df = 9, p-value = 2.038e-07
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  3.428915 4.749418
## sample estimates:
## mean of x 
##  4.089167
## 
##  One Sample t-test
## 
## data:  PChar2$POScores[PChar2$Sex == "Female"]
## t = 4.1498, df = 9, p-value = 0.002485
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  1.228148 4.171852
## sample estimates:
## mean of x 
##       2.7
## 
##  One Sample t-test
## 
## data:  PChar2$RULA[PChar2$Training == "Resident"]
## t = 24.693, df = 42, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  4.078273 4.804206
## sample estimates:
## mean of x 
##   4.44124

Wilcoxen results:

## # A tibble: 15 × 6
##    Outcome  Group         n     W     p_value      p_adj
##    <chr>    <chr>     <int> <dbl>       <dbl>      <dbl>
##  1 RULA     Overall      80 0.966 0.0311      0.466     
##  2 RULA     Female       10 0.969 0.885       1         
##  3 RULA     Male         70 0.963 0.0349      0.524     
##  4 RULA     Attending    37 0.926 0.0174      0.261     
##  5 RULA     Resident     43 0.972 0.362       1         
##  6 RULAWB   Overall      80 0.864 0.000000504 0.00000756
##  7 RULAWB   Female       10 0.838 0.0418      0.627     
##  8 RULAWB   Male         70 0.851 0.000000705 0.0000106 
##  9 RULAWB   Attending    37 0.890 0.00155     0.0232    
## 10 RULAWB   Resident     43 0.818 0.00000913  0.000137  
## 11 POScores Overall      80 0.897 0.00000934  0.000140  
## 12 POScores Female       10 0.911 0.288       1         
## 13 POScores Male         70 0.891 0.0000170   0.000254  
## 14 POScores Attending    37 0.851 0.000164    0.00246   
## 15 POScores Resident     43 0.839 0.0000276   0.000414

.

P-values were adjusted with bonferroni correction (factor of 15). RULA = Average RULA score, RULAWB = Worst RULA Score collected bilaterally (both hands), and POScore = difference in pain score from baseline.

To summarize, significance was identified in worst rula score for the overall, male, and both resident and attending subgroups. Significance was also found in post-op pain change from baseline in overall, male, female, and both resident and attending subgroups (same as for worst rula score).

Significance was identified in average RULA score for the female and resident subgroups.

Click to a table of breakdown of parameters by underlying demographics.

Displayed is a table summarizing the results, with descriptive statistics only. RULA = Average RULA score, RULAWB = Worst RULA Score collected bilaterally (both hands), and POScore = difference in pain score from baseline.

## # A tibble: 9 × 10
##   Training  Sex    Avg_RULA_Mean Avg_RULA_SD Worst_RULA_Mean Worst_RULA_SD
##   <chr>     <chr>          <dbl>       <dbl>           <dbl>         <dbl>
## 1 All       All             4.34       1.07             5.65          1.30
## 2 All       Female          4.09       0.923            5.4           1.26
## 3 All       Male            4.38       1.09             5.69          1.31
## 4 Attending All             4.22       0.917            5.38          1.30
## 5 Attending Female          3.95       0.647            5             1.22
## 6 Attending Male            4.26       0.953            5.44          1.32
## 7 Resident  All             4.44       1.18             5.88          1.28
## 8 Resident  Female          4.23       1.20             5.8           1.30
## 9 Resident  Male            4.47       1.19             5.89          1.29
## # ℹ 4 more variables: PostOpPainChange_Mean <dbl>, PostOpPainChange_SD <dbl>,
## #   PostOpPainRaw_Mean <dbl>, PostOpPainRaw_SD <dbl>