SP.DYN.LE00.IN Life expectancy at birth, total (years)
NY.GDP.PCAP.CD GDP per capital (current US$)
FP.CPI.TOTL.ZG Inflation, consumer prices (annual %)
NE.GDI.TOTL.ZS Gross capital formation (% of GDP)
library(WDI)
data <- WDI(indicator =c("SP.DYN.LE00.IN", "NY.GDP.PCAP.CD" , "FP.CPI.TOTL.ZG", "NE.GDI.TOTL.ZS"))
write_csv(data, "development_indicator,csv")
library(tidyverse)
df<- read.csv("development_indicators.csv")
ekstra <- WDI_data$country
dfekstra <- left_join(df, ekstra)
## Joining with `by = join_by(country, iso2c, iso3c)`
df_ulkeler <- dfekstra %>% filter(region != "Aggregates")
df_ulkeler_temiz <- df_ulkeler %>% filter(!is.na(SP.DYN.LE00.IN),
!is.na(NY.GDP.PCAP.CD),
!is.na(FP.CPI.TOTL.ZG),
!is.na(NE.GDI.TOTL.ZS))
unique(df_ulkeler_temiz$region)
## [1] "South Asia" "Europe & Central Asia"
## [3] "Middle East & North Africa" "Sub-Saharan Africa"
## [5] "Latin America & Caribbean" "East Asia & Pacific"
## [7] "North America"
df_avrupa_ca <- df_ulkeler_temiz %>% filter(region == "Europe & Central Asia" )
df_2000 <- df_ulkeler %>% filter(year == 2000)
df_2005 <- df_ulkeler %>% filter(year == 2005)
df_2010 <- df_ulkeler %>% filter(year == 2010)
df_2015 <- df_ulkeler %>% filter(year == 2015)
df_2020 <- df_ulkeler %>% filter(year == 2020)
df_2023 <- df_ulkeler %>% filter(year == 2023)
df_2000 <- df_2000 %>% filter(!is.na(SP.DYN.LE00.IN))
df_2000 <- df_2000 %>% filter(!is.na(NY.GDP.PCAP.CD))
df_2000 <- df_2000 %>% filter(!is.na(FP.CPI.TOTL.ZG))
df_2000 <- df_2000 %>% filter(!is.na(NE.GDI.TOTL.ZS))
df_2005 <- df_2005 %>% filter(!is.na(SP.DYN.LE00.IN))
df_2005 <- df_2005 %>% filter(!is.na(NY.GDP.PCAP.CD))
df_2005 <- df_2005 %>% filter(!is.na(FP.CPI.TOTL.ZG))
df_2005 <- df_2005 %>% filter(!is.na(NE.GDI.TOTL.ZS))
df_2010 <- df_2010 %>% filter(!is.na(SP.DYN.LE00.IN))
df_2010 <- df_2010 %>% filter(!is.na(NY.GDP.PCAP.CD))
df_2010 <- df_2010 %>% filter(!is.na(FP.CPI.TOTL.ZG))
df_2010 <- df_2010 %>% filter(!is.na(NE.GDI.TOTL.ZS))
df_2015 <- df_2015 %>% filter(!is.na(SP.DYN.LE00.IN))
df_2015 <- df_2015 %>% filter(!is.na(NY.GDP.PCAP.CD))
df_2015 <- df_2015 %>% filter(!is.na(FP.CPI.TOTL.ZG))
df_2015 <- df_2015 %>% filter(!is.na(NE.GDI.TOTL.ZS))
df_2020 <- df_2020 %>% filter(!is.na(SP.DYN.LE00.IN))
df_2020 <- df_2020 %>% filter(!is.na(NY.GDP.PCAP.CD))
df_2020 <- df_2020 %>% filter(!is.na(FP.CPI.TOTL.ZG))
df_2020 <- df_2020 %>% filter(!is.na(NE.GDI.TOTL.ZS))
df_2023 <- df_2023 %>% filter(!is.na(SP.DYN.LE00.IN))
df_2023 <- df_2023 %>% filter(!is.na(NY.GDP.PCAP.CD))
df_2023 <- df_2023 %>% filter(!is.na(FP.CPI.TOTL.ZG))
df_2023 <- df_2023 %>% filter(!is.na(NE.GDI.TOTL.ZS))
df_ulkeler_temiz <- df_ulkeler %>% filter(!is.na(SP.DYN.LE00.IN),
!is.na(NY.GDP.PCAP.CD),
!is.na(FP.CPI.TOTL.ZG),
!is.na(NE.GDI.TOTL.ZS))
nrow(df_ulkeler)
## [1] 13910
nrow(df_ulkeler_temiz)
## [1] 6901
nrow(df_avrupa_ca)
## [1] 1921
nrow(df_2000)
## [1] 137
nrow(df_2005)
## [1] 145
nrow(df_2010)
## [1] 159
nrow(df_2015)
## [1] 165
nrow(df_2020)
## [1] 159
nrow(df_2023)
## [1] 153
ggplot(df_2000, aes( x = NY.GDP.PCAP.CD, y = SP.DYN.LE00.IN)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia - 2000", x ="GDP per capita", y = "life expertancy" )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2000 <- lm( SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2000)
summary(regresyon_2000)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2000)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.871 -3.892 2.039 5.214 10.956
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.435e+01 7.178e-01 89.651 <2e-16 ***
## NY.GDP.PCAP.CD 5.263e-04 5.383e-05 9.777 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.803 on 135 degrees of freedom
## Multiple R-squared: 0.4146, Adjusted R-squared: 0.4102
## F-statistic: 95.6 on 1 and 135 DF, p-value: < 2.2e-16
alpha_2000 <- coef(regresyon_2000)[1]
beta_2000 <- coef(regresyon_2000)[2]
r2_2000 <- summary(regresyon_2000)$r.squared
pval_2000 <- summary(regresyon_2000)$coefficients[2, 4]
alpha_2000
## (Intercept)
## 64.3542
beta_2000
## NY.GDP.PCAP.CD
## 0.0005262704
r2_2000
## [1] 0.4145637
pval_2000
## [1] 2.126566e-17
result_IC_2000 <- data.frame(year = 2000, Intercept = alpha_2000, Beta_x = beta_2000, R2 = r2_2000, p_value = pval_2000 )
summary(regresyon_2000)$r.squared
## [1] 0.4145637
ggplot(df_2005, aes( x = NY.GDP.PCAP.CD, y = SP.DYN.LE00.IN)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia - 2005", x ="GDP per capita", y = "life expertancy" )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2005 <- lm( SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2005)
summary(regresyon_2005)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2005)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.357 -4.353 2.005 5.181 11.799
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.546e+01 6.828e-01 95.86 <2e-16 ***
## NY.GDP.PCAP.CD 3.447e-04 3.423e-05 10.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.682 on 143 degrees of freedom
## Multiple R-squared: 0.4149, Adjusted R-squared: 0.4108
## F-statistic: 101.4 on 1 and 143 DF, p-value: < 2.2e-16
alpha_2005 <- coef(regresyon_2005)[1]
beta_2005 <- coef(regresyon_2005)[2]
r2_2005 <- summary(regresyon_2005)$r.squared
pval_2005 <- summary(regresyon_2005)$coefficients[2, 4]
alpha_2005
## (Intercept)
## 65.45685
beta_2005
## NY.GDP.PCAP.CD
## 0.0003446787
r2_2005
## [1] 0.414928
pval_2005
## [1] 2.322018e-18
result_IC_2005 <- data.frame(year = 2005, Intercept = alpha_2005, Beta_x = beta_2005, R2 = r2_2005, p_value = pval_2005 )
summary(regresyon_2005)$r.squared
## [1] 0.414928
2010
ggplot(df_2010, aes( x = NY.GDP.PCAP.CD, y = SP.DYN.LE00.IN)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia - 2010", x ="GDP per capita", y = "life expertancy" )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2010 <- lm( SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2010)
summary(regresyon_2010)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2010)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.363 -3.593 1.671 4.866 10.634
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.659e+01 6.647e-01 100.18 <2e-16 ***
## NY.GDP.PCAP.CD 2.860e-04 2.758e-05 10.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.742 on 157 degrees of freedom
## Multiple R-squared: 0.4065, Adjusted R-squared: 0.4027
## F-statistic: 107.5 on 1 and 157 DF, p-value: < 2.2e-16
alpha_2010 <- coef(regresyon_2010)[1]
beta_2010 <- coef(regresyon_2010)[2]
r2_2010 <- summary(regresyon_2010)$r.squared
pval_2010 <- summary(regresyon_2010)$coefficients[2, 4]
alpha_2010
## (Intercept)
## 66.59385
beta_2010
## NY.GDP.PCAP.CD
## 0.0002859601
r2_2010
## [1] 0.4065073
pval_2010
## [1] 1.614248e-19
result_IC_2010 <- data.frame(year = 2010, Intercept = alpha_2005, Beta_x = beta_2010, R2 = r2_2010, p_value = pval_2010 )
summary(regresyon_2010)$r.squared
## [1] 0.4065073
ggplot(df_2015, aes( x = NY.GDP.PCAP.CD, y = SP.DYN.LE00.IN)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia - 2015", x ="GDP per capita", y = "life expertancy" )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2015 <- lm( SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2015)
summary(regresyon_2015)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2015)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28.676 -4.030 1.452 4.477 9.053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.813e+01 6.166e-01 110.49 <2e-16 ***
## NY.GDP.PCAP.CD 2.795e-04 2.550e-05 10.96 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.301 on 163 degrees of freedom
## Multiple R-squared: 0.4244, Adjusted R-squared: 0.4208
## F-statistic: 120.2 on 1 and 163 DF, p-value: < 2.2e-16
alpha_2015 <- coef(regresyon_2015)[1]
beta_2015 <- coef(regresyon_2015)[2]
r2_2015 <- summary(regresyon_2015)$r.squared
pval_2015 <- summary(regresyon_2015)$coefficients[2, 4]
alpha_2015
## (Intercept)
## 68.13099
beta_2015
## NY.GDP.PCAP.CD
## 0.000279537
r2_2015
## [1] 0.4243542
pval_2015
## [1] 2.694468e-21
result_IC_2015 <- data.frame(year = 2015, Intercept = alpha_2015, Beta_x = beta_2015, R2 = r2_2015, p_value = pval_2015 )
summary(regresyon_2015)$r.squared
## [1] 0.4243542
ggplot(df_2020, aes( x = NY.GDP.PCAP.CD, y = SP.DYN.LE00.IN)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia - 2020", x ="GDP per capita", y = "life expertancy" )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2020 <- lm( SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2020)
summary(regresyon_2020)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2020)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.340 -3.023 1.135 3.683 8.015
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.882e+01 5.259e-01 130.86 <2e-16 ***
## NY.GDP.PCAP.CD 2.543e-04 2.074e-05 12.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.291 on 157 degrees of freedom
## Multiple R-squared: 0.4891, Adjusted R-squared: 0.4858
## F-statistic: 150.3 on 1 and 157 DF, p-value: < 2.2e-16
alpha_2020 <- coef(regresyon_2020)[1]
beta_2020 <- coef(regresyon_2020)[2]
r2_2020 <- summary(regresyon_2020)$r.squared
pval_2020 <- summary(regresyon_2020)$coefficients[2, 4]
alpha_2020
## (Intercept)
## 68.81819
beta_2020
## NY.GDP.PCAP.CD
## 0.000254286
r2_2020
## [1] 0.4890613
pval_2020
## [1] 1.15547e-24
result_IC_2020 <- data.frame(year = 2020, Intercept = alpha_2020, Beta_x = beta_2020, R2 = r2_2020, p_value = pval_2020 )
summary(regresyon_2000)$r.squared
## [1] 0.4145637
ggplot(df_2023, aes( x = NY.GDP.PCAP.CD, y = SP.DYN.LE00.IN)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia - 2023", x ="GDP per capita", y = "life expertancy" )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2023 <- lm( SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2023)
summary(regresyon_2023)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD, data = df_2023)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.539 -3.342 1.054 3.771 8.158
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.042e+01 5.219e-01 134.93 <2e-16 ***
## NY.GDP.PCAP.CD 1.954e-04 1.667e-05 11.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.073 on 151 degrees of freedom
## Multiple R-squared: 0.4766, Adjusted R-squared: 0.4731
## F-statistic: 137.5 on 1 and 151 DF, p-value: < 2.2e-16
alpha_2023 <- coef(regresyon_2023)[1]
beta_2023 <- coef(regresyon_2023)[2]
r2_2023 <- summary(regresyon_2023)$r.squared
pval_2023 <- summary(regresyon_2023)$coefficients[2, 4]
alpha_2023
## (Intercept)
## 70.42278
beta_2023
## NY.GDP.PCAP.CD
## 0.0001954325
r2_2023
## [1] 0.4765511
pval_2023
## [1] 5.554169e-23
result_IC_2023 <- data.frame(year = 2023, Intercept = alpha_2005, Beta_x = beta_2023, R2 = r2_2023, p_value = pval_2023 )
summary(regresyon_2023)$r.squared
## [1] 0.4765511
katsayi_tablosu_IC <- rbind(result_IC_2000, result_IC_2005, result_IC_2010,result_IC_2015, result_IC_2020, result_IC_2023)
katsayi_tablosu_IC
## year Intercept Beta_x R2 p_value
## (Intercept) 2000 64.35420 0.0005262704 0.4145637 2.126566e-17
## (Intercept)1 2005 65.45685 0.0003446787 0.4149280 2.322018e-18
## (Intercept)2 2010 65.45685 0.0002859601 0.4065073 1.614248e-19
## (Intercept)3 2015 68.13099 0.0002795370 0.4243542 2.694468e-21
## (Intercept)4 2020 68.81819 0.0002542860 0.4890613 1.155470e-24
## (Intercept)5 2023 65.45685 0.0001954325 0.4765511 5.554169e-23
2000
ggplot(df_2000, aes(x = NE.GDI.TOTL.ZS, y = FP.CPI.TOTL.ZG )) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia -2000", x ="cross capital formation(%of GDP)", y = "inflasyon,consumer prices (annual %)", )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2000 <- lm( NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2000)
summary(regresyon_2000)
##
## Call:
## lm(formula = NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2000)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.157 -3.406 0.172 3.995 31.937
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.16741 0.59382 37.330 <2e-16 ***
## FP.CPI.TOTL.ZG -0.01547 0.01228 -1.259 0.21
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.743 on 135 degrees of freedom
## Multiple R-squared: 0.01161, Adjusted R-squared: 0.004291
## F-statistic: 1.586 on 1 and 135 DF, p-value: 0.2101
alpha_2000 <- coef(regresyon_2000)[1]
beta_2000 <- coef(regresyon_2000)[2]
r2_2000 <- summary(regresyon_2000)$r.squared
pval_2000 <- summary(regresyon_2000)$coefficients[2, 4]
alpha_2000
## (Intercept)
## 22.16741
beta_2000
## FP.CPI.TOTL.ZG
## -0.01546661
r2_2000
## [1] 0.01161265
pval_2000
## [1] 0.2100535
result_LG_2000 <- data.frame(year = 2000, Intercept = alpha_2000, Beta_x = beta_2000, R2 = r2_2000, p_value = pval_2000 )
summary(regresyon_2000)$r.squared
## [1] 0.01161265
2005
ggplot(df_2005, aes(x = NE.GDI.TOTL.ZS, y = FP.CPI.TOTL.ZG)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia -2005", x ="cross capital formation(%of GDP)", y = "inflasyon,consumer prices (annual %)", )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2005 <- lm( NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2005)
summary(regresyon_2005)
##
## Call:
## lm(formula = NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2005)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.988 -4.968 -0.897 3.538 37.025
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.4204 0.9719 25.126 <2e-16 ***
## FP.CPI.TOTL.ZG -0.0434 0.1231 -0.353 0.725
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.036 on 143 degrees of freedom
## Multiple R-squared: 0.0008693, Adjusted R-squared: -0.006118
## F-statistic: 0.1244 on 1 and 143 DF, p-value: 0.7248
alpha_2005 <- coef(regresyon_2005)[1]
beta_2005 <- coef(regresyon_2005)[2]
r2_2005 <- summary(regresyon_2005)$r.squared
pval_2005 <- summary(regresyon_2005)$coefficients[2, 4]
alpha_2005
## (Intercept)
## 24.42037
beta_2005
## FP.CPI.TOTL.ZG
## -0.04340496
r2_2005
## [1] 0.0008692721
pval_2005
## [1] 0.7248149
result_LG_2005 <- data.frame(year = 2005, Intercept = alpha_2005, Beta_x = beta_2005, R2 = r2_2005, p_value = pval_2005 )
summary(regresyon_2005)$r.squared
## [1] 0.0008692721
2010
ggplot(df_2010, aes(x = NE.GDI.TOTL.ZS, y = FP.CPI.TOTL.ZG)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia -2010", x ="cross capital formation(%of GDP)", y = "inflasyon,consumer prices (annual %)", )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2010 <- lm( NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2010)
summary(regresyon_2010)
##
## Call:
## lm(formula = NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2010)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.798 -5.130 -1.509 3.525 37.411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.7809 0.9353 25.426 <2e-16 ***
## FP.CPI.TOTL.ZG 0.2475 0.1637 1.512 0.133
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.204 on 157 degrees of freedom
## Multiple R-squared: 0.01435, Adjusted R-squared: 0.008075
## F-statistic: 2.286 on 1 and 157 DF, p-value: 0.1325
alpha_2010 <- coef(regresyon_2010)[1]
beta_2010 <- coef(regresyon_2010)[2]
r2_2010 <- summary(regresyon_2010)$r.squared
pval_2010 <- summary(regresyon_2020)$coefficients[2, 4]
alpha_2010
## (Intercept)
## 23.78095
beta_2010
## FP.CPI.TOTL.ZG
## 0.2475038
r2_2010
## [1] 0.01435329
pval_2010
## [1] 1.15547e-24
result_LG_2010 <- data.frame(year = 2010, Intercept = alpha_2010, Beta_x = beta_2010, R2 = r2_2010, p_value = pval_2010 )
summary(regresyon_2010)$r.squared
## [1] 0.01435329
2015
ggplot(df_2015, aes(x = NE.GDI.TOTL.ZS, y = FP.CPI.TOTL.ZG)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia -2015", x ="cross capital formation(%of GDP)", y = "inflasyon,consumer prices (annual %)", )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2015 <- lm( NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2015)
summary(regresyon_2015)
##
## Call:
## lm(formula = NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2015)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.477 -4.897 -0.865 3.735 51.531
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25.47194 0.73384 34.71 <2e-16 ***
## FP.CPI.TOTL.ZG -0.06966 0.06164 -1.13 0.26
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.88 on 163 degrees of freedom
## Multiple R-squared: 0.007776, Adjusted R-squared: 0.001688
## F-statistic: 1.277 on 1 and 163 DF, p-value: 0.26
alpha_2015 <- coef(regresyon_2015)[1]
beta_2015 <- coef(regresyon_2015)[2]
r2_2015 <- summary(regresyon_2015)$r.squared
pval_2015 <- summary(regresyon_2015)$coefficients[2, 4]
alpha_2015
## (Intercept)
## 25.47194
beta_2015
## FP.CPI.TOTL.ZG
## -0.06966299
r2_2015
## [1] 0.00777574
pval_2015
## [1] 0.2600474
result_LG_2015 <- data.frame(year = 2015, Intercept = alpha_2015, Beta_x = beta_2015, R2 = r2_2015, p_value = pval_2015 )
summary(regresyon_2015)$r.squared
## [1] 0.00777574
2020
ggplot(df_2020, aes(x = NE.GDI.TOTL.ZS, y = FP.CPI.TOTL.ZG)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia -2020", x ="cross capital formation(%of GDP)", y = "inflasyon,consumer prices (annual %)", )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2020 <- lm( NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2020)
summary(regresyon_2020)
##
## Call:
## lm(formula = NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2020)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.148 -5.124 -1.137 4.875 24.934
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.95612 0.64785 36.978 <2e-16 ***
## FP.CPI.TOTL.ZG -0.03167 0.01379 -2.297 0.023 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.043 on 157 degrees of freedom
## Multiple R-squared: 0.0325, Adjusted R-squared: 0.02634
## F-statistic: 5.274 on 1 and 157 DF, p-value: 0.02297
alpha_2020 <- coef(regresyon_2020)[1]
beta_2020 <- coef(regresyon_2020)[2]
r2_2020 <- summary(regresyon_2020)$r.squared
pval_2020 <- summary(regresyon_2020)$coefficients[2, 4]
alpha_2020
## (Intercept)
## 23.95612
beta_2020
## FP.CPI.TOTL.ZG
## -0.03167377
r2_2020
## [1] 0.03250029
pval_2020
## [1] 0.02296891
result_LG_2020 <- data.frame(year = 2020, Intercept = alpha_2020, Beta_x = beta_2020, R2 = r2_2020, p_value = pval_2020 )
summary(regresyon_2020)$r.squared
## [1] 0.03250029
2023
ggplot(df_2023, aes(x = NE.GDI.TOTL.ZS, y = FP.CPI.TOTL.ZG)) +
geom_point() + geom_smooth(method = "lm" , se = FALSE) + labs( title= "Europe & Central Asia -2023", x ="cross capital formation(%of GDP)", y = "inflasyon,consumer prices (annual %)", )
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2023 <- lm( NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2023)
summary(regresyon_2023)
##
## Call:
## lm(formula = NE.GDI.TOTL.ZS ~ FP.CPI.TOTL.ZG, data = df_2023)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28.0946 -4.2521 -0.5793 2.9751 22.6350
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.47109 0.65304 37.472 < 2e-16 ***
## FP.CPI.TOTL.ZG -0.07477 0.02724 -2.745 0.00678 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.306 on 151 degrees of freedom
## Multiple R-squared: 0.04754, Adjusted R-squared: 0.04124
## F-statistic: 7.537 on 1 and 151 DF, p-value: 0.006777
alpha_2023 <- coef(regresyon_2023)[1]
beta_2023 <- coef(regresyon_2023)[2]
r2_2023 <- summary(regresyon_2023)$r.squared
pval_2023 <- summary(regresyon_2023)$coefficients[2, 4]
alpha_2023
## (Intercept)
## 24.47109
beta_2023
## FP.CPI.TOTL.ZG
## -0.07477286
r2_2023
## [1] 0.04754335
pval_2023
## [1] 0.006777169
result_LG_2023 <- data.frame(year = 2023, Intercept = alpha_2023, Beta_x = beta_2023, R2 = r2_2023, p_value = pval_2023 )
summary(regresyon_2023)$r.squared
## [1] 0.04754335
katsayi_tablosu_LG <- rbind(result_LG_2000, result_LG_2005, result_LG_2010, result_LG_2015, result_LG_2020, result_LG_2023)
katsayi_tablosu_LG
## year Intercept Beta_x R2 p_value
## (Intercept) 2000 22.16741 -0.01546661 0.0116126496 2.100535e-01
## (Intercept)1 2005 24.42037 -0.04340496 0.0008692721 7.248149e-01
## (Intercept)2 2010 23.78095 0.24750377 0.0143532921 1.155470e-24
## (Intercept)3 2015 25.47194 -0.06966299 0.0077757402 2.600474e-01
## (Intercept)4 2020 23.95612 -0.03167377 0.0325002855 2.296891e-02
## (Intercept)5 2023 24.47109 -0.07477286 0.0475433451 6.777169e-03
2000 yılında brüt sermaye oluşumunun enflasyon üzerindeki etkisi oldukça zayıf olup modelin açıklama gücü düşüktür. 2005 yılında bu ilişki daha da zayıflamış ve açıklama gücü neredeyse yok denecek seviyeye inmiştir. 2010 yılında katsayı artmasına rağmen modelin enflasyonu açıklama gücü düşük kalmıştır. 2015 yılında da benzer şekilde ilişkinin zayıf olduğu görülmektedir. Buna karşılık, 2020 yılında katsayının ve açıklama gücünün arttığı ve ilişkinin istatistiksel olarak anlamlı hale geldiği gözlemlenmektedir. 2023 yılında ise brüt sermaye oluşumunun enflasyon üzerindeki etkisi önceki yıllara kıyasla daha belirgin olup, modelin açıklama gücü en yüksek seviyeye ulaşmıştır.
regresyon_2000 <- lm(SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS + FP.CPI.TOTL.ZG, data = df_2000)
regresyon_2005 <- lm(SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS + FP.CPI.TOTL.ZG, data = df_2005)
regresyon_2010 <- lm(SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS + FP.CPI.TOTL.ZG, data = df_2010)
regresyon_2015 <- lm(SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS + FP.CPI.TOTL.ZG, data = df_2015)
regresyon_2020 <- lm(SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS + FP.CPI.TOTL.ZG, data = df_2020)
regresyon_2023 <- lm(SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS + FP.CPI.TOTL.ZG, data = df_2023)
summary(regresyon_2000)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS +
## FP.CPI.TOTL.ZG, data = df_2000)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.288 -3.479 1.411 4.510 11.448
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.770e+01 1.923e+00 30.007 < 2e-16 ***
## NY.GDP.PCAP.CD 4.882e-04 5.221e-05 9.350 2.79e-16 ***
## NE.GDI.TOTL.ZS 3.215e-01 8.355e-02 3.848 0.000184 ***
## FP.CPI.TOTL.ZG -1.004e-02 1.193e-02 -0.842 0.401237
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.471 on 133 degrees of freedom
## Multiple R-squared: 0.4782, Adjusted R-squared: 0.4664
## F-statistic: 40.63 on 3 and 133 DF, p-value: < 2.2e-16
summary(regresyon_2005)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS +
## FP.CPI.TOTL.ZG, data = df_2005)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.006 -4.431 2.071 4.421 15.334
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.315e+01 1.863e+00 33.892 < 2e-16 ***
## NY.GDP.PCAP.CD 2.993e-04 3.456e-05 8.660 9.81e-15 ***
## NE.GDI.TOTL.ZS 2.000e-01 6.529e-02 3.063 0.002624 **
## FP.CPI.TOTL.ZG -3.485e-01 1.033e-01 -3.373 0.000961 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.273 on 141 degrees of freedom
## Multiple R-squared: 0.4915, Adjusted R-squared: 0.4806
## F-statistic: 45.42 on 3 and 141 DF, p-value: < 2.2e-16
summary(regresyon_2010)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS +
## FP.CPI.TOTL.ZG, data = df_2010)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.785 -3.500 1.878 4.774 10.940
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.456e+01 1.896e+00 34.054 <2e-16 ***
## NY.GDP.PCAP.CD 2.878e-04 2.904e-05 9.911 <2e-16 ***
## NE.GDI.TOTL.ZS 9.008e-02 6.597e-02 1.366 0.174
## FP.CPI.TOTL.ZG -5.448e-02 1.414e-01 -0.385 0.700
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.743 on 155 degrees of freedom
## Multiple R-squared: 0.4138, Adjusted R-squared: 0.4025
## F-statistic: 36.48 on 3 and 155 DF, p-value: < 2.2e-16
summary(regresyon_2015)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS +
## FP.CPI.TOTL.ZG, data = df_2015)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.660 -3.976 1.591 4.561 11.714
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.735e+01 1.608e+00 41.899 <2e-16 ***
## NY.GDP.PCAP.CD 2.751e-04 2.593e-05 10.608 <2e-16 ***
## NE.GDI.TOTL.ZS 4.385e-02 5.574e-02 0.787 0.433
## FP.CPI.TOTL.ZG -6.609e-02 4.444e-02 -1.487 0.139
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.279 on 161 degrees of freedom
## Multiple R-squared: 0.4353, Adjusted R-squared: 0.4248
## F-statistic: 41.36 on 3 and 161 DF, p-value: < 2.2e-16
summary(regresyon_2020)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS +
## FP.CPI.TOTL.ZG, data = df_2020)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.571 -3.114 1.262 3.611 8.138
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.821e+01 1.349e+00 50.574 <2e-16 ***
## NY.GDP.PCAP.CD 2.500e-04 2.081e-05 12.011 <2e-16 ***
## NE.GDI.TOTL.ZS 3.322e-02 5.240e-02 0.634 0.527
## FP.CPI.TOTL.ZG -1.392e-02 9.234e-03 -1.507 0.134
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.273 on 155 degrees of freedom
## Multiple R-squared: 0.4991, Adjusted R-squared: 0.4894
## F-statistic: 51.48 on 3 and 155 DF, p-value: < 2.2e-16
summary(regresyon_2023)
##
## Call:
## lm(formula = SP.DYN.LE00.IN ~ NY.GDP.PCAP.CD + NE.GDI.TOTL.ZS +
## FP.CPI.TOTL.ZG, data = df_2023)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.9734 -3.1383 0.9388 3.4096 8.2959
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.741e+01 1.515e+00 44.481 <2e-16 ***
## NY.GDP.PCAP.CD 2.008e-04 1.672e-05 12.010 <2e-16 ***
## NE.GDI.TOTL.ZS 1.102e-01 5.615e-02 1.962 0.0517 .
## FP.CPI.TOTL.ZG 2.957e-02 1.941e-02 1.524 0.1297
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.022 on 149 degrees of freedom
## Multiple R-squared: 0.4938, Adjusted R-squared: 0.4836
## F-statistic: 48.45 on 3 and 149 DF, p-value: < 2.2e-16
res_2000_multi <- data.frame(
Year = 2000,
Intercept = coef(regresyon_2000)[1],
Beta_X = coef(regresyon_2000)["NY.GDP.PCAP.CD"],
Beta_F = coef(regresyon_2000)["FP.CPI.TOTL.ZG"],
Beta_Z = coef(regresyon_2000)["NE.GDI.TOTL.ZS"],
R2 = summary(regresyon_2000)$r.squared,
p_X = summary(regresyon_2000)$coefficients["NY.GDP.PCAP.CD", 4],
p_F = summary(regresyon_2000)$coefficients["FP.CPI.TOTL.ZG", 4],
p_Z = summary(regresyon_2000)$coefficients["NE.GDI.TOTL.ZS", 4]
)
res_2005_multi <- data.frame(
Year = 2005,
Intercept = coef(regresyon_2005)[1],
Beta_X = coef(regresyon_2005)["NY.GDP.PCAP.CD"],
Beta_F = coef(regresyon_2005)["FP.CPI.TOTL.ZG"],
Beta_Z = coef(regresyon_2005)["NE.GDI.TOTL.ZS"],
R2 = summary(regresyon_2005)$r.squared,
p_X = summary(regresyon_2005)$coefficients["NY.GDP.PCAP.CD", 4],
p_F = summary(regresyon_2005)$coefficients["FP.CPI.TOTL.ZG", 4],
p_Z = summary(regresyon_2005)$coefficients["NE.GDI.TOTL.ZS", 4]
)
res_2010_multi <- data.frame(
Year = 2010,
Intercept = coef(regresyon_2010)[1],
Beta_X = coef(regresyon_2010)["NY.GDP.PCAP.CD"],
Beta_F = coef(regresyon_2010)["FP.CPI.TOTL.ZG"],
Beta_Z = coef(regresyon_2010)["NE.GDI.TOTL.ZS"],
R2 = summary(regresyon_2010)$r.squared,
p_X = summary(regresyon_2010)$coefficients["NY.GDP.PCAP.CD", 4],
p_F = summary(regresyon_2010)$coefficients["FP.CPI.TOTL.ZG", 4],
p_Z = summary(regresyon_2010)$coefficients["NE.GDI.TOTL.ZS", 4]
)
res_2015_multi <- data.frame(
Year = 2015,
Intercept = coef(regresyon_2015)[1],
Beta_X = coef(regresyon_2015)["NY.GDP.PCAP.CD"],
Beta_F = coef(regresyon_2015)["FP.CPI.TOTL.ZG"],
Beta_Z = coef(regresyon_2015)["NE.GDI.TOTL.ZS"],
R2 = summary(regresyon_2015)$r.squared,
p_X = summary(regresyon_2015)$coefficients["NY.GDP.PCAP.CD", 4],
p_F = summary(regresyon_2015)$coefficients["FP.CPI.TOTL.ZG", 4],
p_Z = summary(regresyon_2015)$coefficients["NE.GDI.TOTL.ZS", 4]
)
res_2020_multi <- data.frame(
Year = 2020,
Intercept = coef(regresyon_2020)[1],
Beta_X = coef(regresyon_2020)["NY.GDP.PCAP.CD"],
Beta_F = coef(regresyon_2020)["FP.CPI.TOTL.ZG"],
Beta_Z = coef(regresyon_2020)["NE.GDI.TOTL.ZS"],
R2 = summary(regresyon_2020)$r.squared,
p_X = summary(regresyon_2020)$coefficients["NY.GDP.PCAP.CD", 4],
p_F = summary(regresyon_2020)$coefficients["FP.CPI.TOTL.ZG", 4],
p_Z = summary(regresyon_2020)$coefficients["NE.GDI.TOTL.ZS", 4]
)
res_2023_multi <- data.frame(
Year = 2023,
Intercept = coef(regresyon_2023)[1],
Beta_X = coef(regresyon_2023)["NY.GDP.PCAP.CD"],
Beta_F = coef(regresyon_2023)["FP.CPI.TOTL.ZG"],
Beta_Z = coef(regresyon_2023)["NE.GDI.TOTL.ZS"],
R2 = summary(regresyon_2023)$r.squared,
p_X = summary(regresyon_2023)$coefficients["NY.GDP.PCAP.CD", 4],
p_F = summary(regresyon_2023)$coefficients["FP.CPI.TOTL.ZG", 4],
p_Z = summary(regresyon_2023)$coefficients["NE.GDI.TOTL.ZS", 4]
)
Final_tablosu <- dplyr::bind_rows(
res_2000_multi,
res_2005_multi,
res_2010_multi,
res_2015_multi,
res_2020_multi,
res_2023_multi
)
Final_tablosu
## Year Intercept Beta_X Beta_F Beta_Z R2
## (Intercept)...1 2000 57.70270 0.0004881471 -0.01004358 0.32145782 0.4781964
## (Intercept)...2 2005 63.15131 0.0002993124 -0.34853787 0.20000517 0.4914544
## (Intercept)...3 2010 64.55684 0.0002878406 -0.05447637 0.09007943 0.4138376
## (Intercept)...4 2015 67.35484 0.0002751205 -0.06609056 0.04385446 0.4352758
## (Intercept)...5 2020 68.21084 0.0002500106 -0.01391535 0.03322323 0.4990812
## (Intercept)...6 2023 67.40524 0.0002007806 0.02956857 0.11016026 0.4937800
## p_X p_F p_Z
## (Intercept)...1 2.786678e-16 0.4012372616 0.0001843972
## (Intercept)...2 9.807442e-15 0.0009605492 0.0026241780
## (Intercept)...3 3.056057e-18 0.7004952693 0.1740739895
## (Intercept)...4 2.861679e-20 0.1389371625 0.4325920777
## (Intercept)...5 6.558105e-24 0.1338383616 0.5269581258
## (Intercept)...6 1.146159e-23 0.1296896874 0.0516585157
Yıllara Göre Analiz (2000–2023)
2000 yılında doğuşta yaşam beklentisi yaklaşık 64,35 yıl olarak gerçekleşmiştir. Kişi başına düşen GSYH’nin yaşam beklentisi üzerinde pozitif ve istatistiksel olarak anlamlı bir etkisi olduğu görülmektedir (β ≈ 0,00053, p < 0,01). Modelin açıklama gücü R² ≈ 0,41 olup, ekonomik büyüme ile yaşam beklentisi arasında güçlü bir ilişkiye işaret etmektedir. Buna karşılık, enflasyon ile brüt sermaye oluşumu arasındaki ilişki oldukça zayıf bulunmuştur (R² ≈ 0,01).
2005 yılında yaşam beklentisi yaklaşık 65,46 yıla yükselmiştir. GSYH’nin etkisi pozitif ve anlamlılığını korumakla birlikte, katsayı değeri 2000 yılına kıyasla bir miktar azalmıştır. Enflasyon ile sermaye oluşumu arasındaki ilişkinin bu yılda da istatistiksel olarak anlamsız olduğu görülmektedir. Çok değişkenli analiz sonuçları, GSYH’nin yaşam beklentisini etkileyen en önemli değişken olmaya devam ettiğini göstermektedir.
2010 yılında yaşam beklentisi artış eğilimini sürdürerek yaklaşık 65,46 yıl seviyesinde gerçekleşmiştir. GSYH katsayısı bir miktar düşmüş olsa da pozitif ve istatistiksel olarak anlamlı kalmıştır. Enflasyonun yaşam beklentisi üzerindeki etkisinin negatif olması, fiyat artışlarının bireylerin refah düzeyini olumsuz etkileyebileceğine işaret etmektedir.
2015 yılında yaşam beklentisi yaklaşık 68,13 yıla ulaşarak önceki yıllara kıyasla önemli bir artış göstermiştir. Kişi başına düşen GSYH’nin etkisi bu yılda da pozitif ve anlamlı olup, modelin açıklama gücü artmıştır. Buna karşın, sermaye oluşumu ve enflasyon değişkenlerinin etkileri görece zayıf kalmıştır.
2020 yılında yaşam beklentisi yaklaşık 68,82 yıl ile dönem içerisindeki en yüksek seviyelerden birine ulaşmıştır. Bu yıl, GSYH ile yaşam beklentisi arasındaki ilişkinin en güçlü olduğu dönemlerden biri olarak öne çıkmaktadır (R² ≈ 0,49). Enflasyon ve sermaye oluşumu değişkenleri ise istatistiksel olarak sınırlı bir etkiye sahiptir.
2023 yılında yaşam beklentisi yaklaşık 65,46 yıla gerilemiştir. GSYH’nin yaşam beklentisi üzerindeki pozitif etkisi devam etmekle birlikte, önceki yıllara kıyasla nispeten zayıfladığı gözlemlenmektedir. Enflasyon daha dalgalı bir yapı sergilemiş olsa da, çok değişkenli model sonuçları GSYH’nin hâlen temel belirleyici değişken olduğunu ortaya koymaktadır.