Intro to Statistics
Data Exploration
Basic Visualizations
Central Tendency
Statistical Dispersion
Essentials of Probability
Probability Distributions
Confidence Interval
Statistical Inference
Nonparametric Methods
Case Study Example
Case Study Example
Case Study Example
---
title: "UAS StatDas"
output:
flexdashboard::flex_dashboard:
vertical_layout: scroll
theme: yeti
source_code: embed
---
```{r setup, include=FALSE}
packages <- c(
"flexdashboard",
"tidyverse",
"highcharter",
"viridis",
"DT",
"gapminder",
"jsonlite"
)
installed <- packages %in% rownames(installed.packages())
if (any(!installed)) {
install.packages(packages[!installed])
}
# Load library
library(flexdashboard)
library(tidyverse)
library(highcharter)
library(viridis)
library(DT)
library(gapminder)
library(jsonlite)
```
Members {data-orientation=rows}
=======================================================================
```{r}
```
Summary of Basic Statistics {data-orientation=rows}
=======================================================================
## Column {.tabset .tabset-fade data-height=520}
-----------------------------------------------------------------------
### Cahpter 1 {data-width=1200}
Intro to Statistics
### Cahpter 2 {data-width=1200}
Data Exploration
### Cahpter 3 {data-width=1200}
Basic Visualizations
### Cahpter 4 {data-width=1200}
Central Tendency
### Cahpter 5 {data-width=1200}
Statistical Dispersion
### Cahpter 6 {data-width=1200}
Essentials of Probability
### Cahpter 7 {data-width=1200}
Probability Distributions
### Cahpter 8 {data-width=1200}
Confidence Interval
### Cahpter 9 {data-width=1200}
Statistical Inference
### Cahpter 10 {data-width=1200}
Nonparametric Methods
Dataset {data-orientation=rows}
=======================================================================
### Table {data-height=520}
```{r}
df <- readr::read_csv(
"https://raw.githubusercontent.com/dsciencelabs/dataset/refs/heads/master/bestsellers_with_categories.csv",
show_col_types = FALSE
) %>%
dplyr::distinct(Name, .keep_all = TRUE) %>%
dplyr::rename(User_Rating = `User Rating`)
```
```{r}
# This is going to be a datatable
df1 <- df %>%
filter(User_Rating >= 4.5) %>%
arrange(desc(Reviews)) %>%
select(Name, Author,User_Rating,Reviews,Price,Year)
datatable(df1,
options=list(scrollX=TRUE),
caption = htmltools::tags$caption(
style = 'caption-side: bottom; text-align: center;',
'Table: ', htmltools::em('Best Books from 2009 to 2019 By Users Rating Greateher Than 4.5.')
))
```
All About Basic Visualizations {data-orientation=rows}
=======================================================================
## Column {.tabset .tabset-fade data-height=520}
-----------------------------------------------------------------------
### Pie-Chart {data-width=600 data-height=510}
```{r}
```
### Bar-Chart {data-width=600 data-height=510}
```{r}
```
### Line-Chart {data-width=600 data-height=510}
```{r}
```
### Central_Tendency
```{r}
```
### Statistical Dispersion
```{r}
```
### Probability Distributions
```{r}
```
Confidence Interval {data-orientation=rows}
=======================================================================
Case Study Example
Statistical Inference {data-orientation=rows}
=======================================================================
Case Study Example
Nonparametric Methods {data-orientation=rows}
=======================================================================
Case Study Example