##Pakete laden

# install.packages("car")
# install.packages("GPArotation")
# install.packages("psych")

library(psych)
## Warning: Paket 'psych' wurde unter R Version 4.4.3 erstellt
library(car)
## Warning: Paket 'car' wurde unter R Version 4.4.3 erstellt
## Lade nötiges Paket: carData
## Warning: Paket 'carData' wurde unter R Version 4.4.3 erstellt
## 
## Attache Paket: 'car'
## Das folgende Objekt ist maskiert 'package:psych':
## 
##     logit
library(GPArotation)
## Warning: Paket 'GPArotation' wurde unter R Version 4.4.3 erstellt
## 
## Attache Paket: 'GPArotation'
## Die folgenden Objekte sind maskiert von 'package:psych':
## 
##     equamax, varimin

Data Selection

data_agentnarc <- openxlsx::read.xlsx("data_agentnarc.xlsx")
Codebook<- openxlsx::read.xlsx("Codebook_agentnarc.xlsx")
# Spaltennamen/Keys säubern (verhindert Join-Probleme)
names(Codebook) <- trimws(names(Codebook))
if ("Itemname" %in% names(Codebook)) Codebook$Itemname <- trimws(as.character(Codebook$Itemname))
#Speichern der relevanten Variablen in einem neuen Objekt
names(data_agentnarc)
##   [1] "session"             "session_id"          "study_id"           
##   [4] "iteration"           "created"             "modified"           
##   [7] "ended"               "expired"             "datenschutz"        
##  [10] "ident_code"          "demo_gender"         "demo_age"           
##  [13] "demo_education_self" "demo_work"           "demo_position"      
##  [16] "ffni_arr_1"          "ffni_arr_2"          "ffni_arr_4"         
##  [19] "ffni_as_1"           "ffni_as_2"           "ffni_aut_1"         
##  [22] "ffni_aut_2"          "ffni_aut_3"          "ffni_aut_4"         
##  [25] "ffni_dis_1"          "ffni_dis_3"          "ffni_dis_4"         
##  [28] "ffni_ent_1"          "ffni_ent_3"          "ffni_exh_1"         
##  [31] "ffni_exh_2"          "ffni_exp_1"          "ffni_exp_3"         
##  [34] "ffni_exp_4"          "ffni_gf_1"           "ffni_gf_2"          
##  [37] "ffni_gf_3"           "ffni_gf_4"           "ffni_ind_1"         
##  [40] "ffni_ind_3"          "ffni_le_1"           "ffni_le_2"          
##  [43] "ffni_le_3"           "ffni_le_4"           "ffni_man_1"         
##  [46] "ffni_man_2"          "ffni_man_3"          "ffni_man_4"         
##  [49] "ffni_na_1"           "ffni_na_2"           "ffni_na_3"          
##  [52] "ffni_na_4"           "ffni_ra_1"           "ffni_ra_2"          
##  [55] "ffni_ra_3"           "ffni_ra_4"           "ffni_sha_1"         
##  [58] "ffni_sha_3"          "ffni_sha_4"          "ffni_ts_1"          
##  [61] "ffni_ts_2"           "ffni_ts_3"           "ffni_ts_4"          
##  [64] "narc_1"              "narc_2"              "narc_3"             
##  [67] "narc_4"              "narc_5"              "narc_6"             
##  [70] "usd3_psych_1"        "usd3_psych_2"        "usd3_psych_3"       
##  [73] "usd3_mach_1"         "usd3_mach_2"         "usd3_mach_3"        
##  [76] "usd3_nar_1"          "usd3_nar_2"          "usd3_nar_3"         
##  [79] "bfi2_extra1"         "bfi2_extra2"         "bfi2_extra3"        
##  [82] "bfi2_extra4"         "bfi2_extra5"         "bfi2_extra6"        
##  [85] "bfi2_extra7"         "bfi2_extra8"         "bfi2_extra9"        
##  [88] "bfi2_extra10"        "bfi2_extra11"        "bfi2_extra12"       
##  [91] "bfi2_ver1"           "bfi2_ver2"           "bfi2_ver3"          
##  [94] "bfi2_ver4"           "bfi2_ver5"           "bfi2_ver6"          
##  [97] "bfi2_ver7"           "bfi2_ver8"           "bfi2_ver9"          
## [100] "bfi2_ver10"          "bfi2_ver11"          "bfi2_ver12"         
## [103] "bfi2_neu1"           "bfi2_neu2"           "bfi2_neu3"          
## [106] "bfi2_neu4"           "bfi2_neu5"           "bfi2_neu6"          
## [109] "bfi2_neu7"           "bfi2_neu8"           "bfi2_neu9"          
## [112] "bfi2_neu10"          "bfi2_neu11"          "bfi2_neu12"         
## [115] "selfest_1"           "selfest_2"           "selfest_3"          
## [118] "selfest_4"           "selfest_5"           "selfest_6"          
## [121] "selfest_7"           "selfest_8"           "selfest_9"          
## [124] "selfest_10"          "demo_success"        "ffni_arr_3"         
## [127] "ffni_as_3"           "ffni_ent_2"          "ffni_ind_4"         
## [130] "ffni_ent_4"          "ffni_exh_4"          "ffni_dis_2"         
## [133] "ffni_as_4"           "ffni_sha_2"          "ffni_ind_2"         
## [136] "ffni_exh_3"          "ffni_exp_2"          "agent_1C_1"         
## [139] "agent_1C_2"          "agent_1C_3"          "agent_1C_4"         
## [142] "agent_1C_5"          "agent_1D_1"          "agent_1D_2"         
## [145] "agent_1D_3"          "agent_1D_4"          "agent_1D_5"         
## [148] "agent_1A_1"          "agent_1A_2"          "agent_1A_3"         
## [151] "agent_1A_4"          "agent_1A_5"          "agent_1E_1"         
## [154] "agent_1E_2"          "agent_1E_3"          "agent_1E_4"         
## [157] "agent_1E_5"          "agent_1B_1"          "agent_1B_2"         
## [160] "agent_1B_3"          "agent_1B_4"          "agent_1B_5"         
## [163] "agent_2E_5"          "agent_2B_1"          "agent_2B_2"         
## [166] "agent_2B_3"          "agent_2B_4"          "agent_2B_5"         
## [169] "agent_2A_1"          "agent_2A_2"          "agent_2A_3"         
## [172] "agent_2A_4"          "agent_2A_5"          "agent_2D_1"         
## [175] "agent_2D_2"          "agent_2D_3"          "agent_2D_4"         
## [178] "agent_2D_5"          "agent_3A_1"          "agent_3A_2"         
## [181] "agent_3A_3"          "agent_3B_1"          "agent_3B_2"         
## [184] "agent_3B_3"          "agent_3B_4"          "agent_3B_5"         
## [187] "agent_3C_1"          "agent_3C_2"          "agent_3C_3"         
## [190] "agent_3D_1"          "agent_3D_2"          "agent_3D_3"         
## [193] "agent_3E_1"          "agent_3E_2"          "agent_3E_3"         
## [196] "agent_4A_1"          "agent_4A_2"          "agent_4A_3"         
## [199] "agent_4B_1"          "agent_4B_2"          "agent_4B_3"         
## [202] "agent_4B_4"          "agent_4B_5"          "agent_4C_1"         
## [205] "agent_4C_2"          "agent_4C_3"          "agent_4D_1"         
## [208] "agent_4D_2"          "agent_4D_3"          "agent_5C_1"         
## [211] "agent_5C_2"          "agent_5C_3"          "agent_5C_4"         
## [214] "agent_5C_5"          "agent_5D_1"          "agent_5D_2"         
## [217] "agent_5D_3"          "agent_5D_4"          "agent_5D_5"         
## [220] "agent_2C_1"          "agent_2C_2"          "agent_2C_3"         
## [223] "agent_2C_4"          "agent_2C_5"          "agent_5A_1"         
## [226] "agent_5A_2"          "agent_5A_3"          "agent_5A_4"         
## [229] "agent_5A_5"          "agent_5B_1"          "agent_5B_2"         
## [232] "agent_5B_3"          "agent_5B_4"          "agent_5B_5"         
## [235] "agent_5E_1"          "agent_5E_2"          "agent_5E_3"         
## [238] "agent_5E_4"          "agent_5E_5"          "agent_2E_1"         
## [241] "agent_2E_2"          "agent_2E_3"          "agent_2E_4"
dat <- data_agentnarc[c(grepl("agent_", names(data_agentnarc)))]
names(dat)
##   [1] "agent_1C_1" "agent_1C_2" "agent_1C_3" "agent_1C_4" "agent_1C_5"
##   [6] "agent_1D_1" "agent_1D_2" "agent_1D_3" "agent_1D_4" "agent_1D_5"
##  [11] "agent_1A_1" "agent_1A_2" "agent_1A_3" "agent_1A_4" "agent_1A_5"
##  [16] "agent_1E_1" "agent_1E_2" "agent_1E_3" "agent_1E_4" "agent_1E_5"
##  [21] "agent_1B_1" "agent_1B_2" "agent_1B_3" "agent_1B_4" "agent_1B_5"
##  [26] "agent_2E_5" "agent_2B_1" "agent_2B_2" "agent_2B_3" "agent_2B_4"
##  [31] "agent_2B_5" "agent_2A_1" "agent_2A_2" "agent_2A_3" "agent_2A_4"
##  [36] "agent_2A_5" "agent_2D_1" "agent_2D_2" "agent_2D_3" "agent_2D_4"
##  [41] "agent_2D_5" "agent_3A_1" "agent_3A_2" "agent_3A_3" "agent_3B_1"
##  [46] "agent_3B_2" "agent_3B_3" "agent_3B_4" "agent_3B_5" "agent_3C_1"
##  [51] "agent_3C_2" "agent_3C_3" "agent_3D_1" "agent_3D_2" "agent_3D_3"
##  [56] "agent_3E_1" "agent_3E_2" "agent_3E_3" "agent_4A_1" "agent_4A_2"
##  [61] "agent_4A_3" "agent_4B_1" "agent_4B_2" "agent_4B_3" "agent_4B_4"
##  [66] "agent_4B_5" "agent_4C_1" "agent_4C_2" "agent_4C_3" "agent_4D_1"
##  [71] "agent_4D_2" "agent_4D_3" "agent_5C_1" "agent_5C_2" "agent_5C_3"
##  [76] "agent_5C_4" "agent_5C_5" "agent_5D_1" "agent_5D_2" "agent_5D_3"
##  [81] "agent_5D_4" "agent_5D_5" "agent_2C_1" "agent_2C_2" "agent_2C_3"
##  [86] "agent_2C_4" "agent_2C_5" "agent_5A_1" "agent_5A_2" "agent_5A_3"
##  [91] "agent_5A_4" "agent_5A_5" "agent_5B_1" "agent_5B_2" "agent_5B_3"
##  [96] "agent_5B_4" "agent_5B_5" "agent_5E_1" "agent_5E_2" "agent_5E_3"
## [101] "agent_5E_4" "agent_5E_5" "agent_2E_1" "agent_2E_2" "agent_2E_3"
## [106] "agent_2E_4"
dim(dat)
## [1] 375 106
# ---- Rekodierung (Invertierung) ----
# Items, die im Codebook als "recoded" (= ja) markiert sind, werden hier invertiert.
# Invertierung pro Item über den beobachteten Wertebereich: new = (min + max) - old
rec_col <- names(Codebook)[grepl("^recoded$", names(Codebook), ignore.case = TRUE) |
                           grepl("rekod|recode|reverse", names(Codebook), ignore.case = TRUE)][1]

items_recoded <- character(0)
if (!is.na(rec_col)) {
  items_recoded <- Codebook$Itemname[
    !is.na(Codebook[[rec_col]]) &
      trimws(tolower(as.character(Codebook[[rec_col]]))) %in% c("ja","j","yes","y","true","1")
  ]
  items_recoded <- intersect(trimws(as.character(items_recoded)), names(dat))
}

recode_scales <- data.frame(Itemname = items_recoded, min = NA_real_, max = NA_real_)
for (i in seq_along(items_recoded)) {
  it <- items_recoded[i]
  x <- dat[[it]]
  if (is.factor(x)) x <- as.numeric(as.character(x))
  if (is.character(x)) x <- as.numeric(x)

  mn <- suppressWarnings(min(x, na.rm = TRUE))
  mx <- suppressWarnings(max(x, na.rm = TRUE))
  recode_scales$min[i] <- mn
  recode_scales$max[i] <- mx

  dat[[it]] <- (mn + mx) - x
}

recode_scales
##     Itemname min max
## 1 agent_1C_2   1   6
## 2 agent_1A_1   1   6
## 3 agent_1A_2   1   6
## 4 agent_1A_3   1   6
## 5 agent_1E_2   1   6
## 6 agent_3B_5   1   6
options(scipen = 999) #ohne wissenschaftliche Notation (e^)

Präregistrierung

Untersuchung der agentischen Narzissmus-Skala (Items auf einer 6‑Punkte-Likert-Skala) in einer Stichprobe von N = 375 Personen. Ziel ist es, die Faktorstruktur zu überprüfen und die mittleren Itemwerte in Abhängigkeit von der wahrgenommenen psychologischen „Leichtigkeit“ der Items zu beschreiben. ## Hypothesen:

  1. Psychologisch leichte Items → hohe Mittelwerte, rechtssteile Verteilung (majority zustimmend, z.B. Mittelwert ~5–6).

  2. Psychologisch Schwere Items → niedrige Mittelwerte, linkssteile Verteilung (majority ablehnend, Mittelwert ~1–2).

  3. Psychologisch mittlere Items – also Items, die weder leicht noch schwer sind – zeigen typischerweise eine symmetrische, ungefähr normalverteilte Verteilung in der Stichprobe.

Das bedeutet, dass die Antworten über die Skala von 1–6 verteilt sind, mit dem Häufigkeitsgipfel in der Mitte (z.B. bei 3–4).

Die Faktoren der Skala hängen positiv miteinander (interkorrelieren moderat), da sie dasselbe übergeordnete Konstrukt messen. ## Variablen:

Itemwerte: agent_1 bis agent_106, 6‑Punkte-Likert-Skala (1 = stimme überhaupt nicht zu, 6 = stimme völlig zu)

Itempsychologische „Leichtigkeit“: theoretisch eingeschätzter Schwierigkeitsgrad jedes Items.

Itemtyp Erwartete Verteilung auf Skala 1–6
Leicht Rechtssteil (Mehrheit stimmt zu, Mittelwert hoch ~5–6)
Mittel Symmetrisch, normalverteilt (Mittelwert ~3–4)
Schwer Linkssteil (Mehrheit stimmt nicht zu, Mittelwert niedrig ~1–2)

Vorgehen:

Vorbereiten der Daten, Datensatz mit agent_Items; recodieren; Voraussetzungen für EFA prüfen, EFA durchführen; Ergebnisse INterpretieren

Faktorzugehörigkeit: wird über explorative Faktorenanalyse (EFA, oblique Rotation) bestimmt.

Präregistrierung – Rotationsmethode

Für die explorative Faktorenanalyse (EFA) wird eine oblique Rotation angewendet, da wir erwarten, dass die extrahierten Faktoren korreliert sind. Konkret wird die Promax-Rotation genutzt, um die Faktorladungen zu optimieren und eine interpretierbare, einfache Struktur zu erreichen.

Entscheidung für Promax statt GeominQ:

Promax: Startet mit Varimax (orthogonal) und „kippt“ dann in eine oblique Lösung. Sie ist schnell, stabil und gut für viele psychologische Items.

GeominQ: Minimiert eine geometrische Funktion, die Faktoren „einfach“ machen soll. Sie kann bei komplexeren oder sehr großen Skalen nützlich sein, ist aber rechenintensiver und kann bei kleinen Stichproben instabil sein.

Praktische Faustregel:

Wenn die Skala überschaubar ist (z.B. 5 Faktoren, 100 Items) und die Faktoren erwartbar korreliert sind → Promax reicht aus.

Bei sehr vielen Items, komplexen Faktorstrukturen oder wenn man die sauberste „Einfache Struktur“ will → GeominQ ist überlegen.

Begründung: Oblique Rotationen erlauben die Korrelation zwischen Faktoren, was psychologisch plausibel ist, da Persönlichkeits- oder Verhaltensdimensionen häufig nicht orthogonal sind.

Erwartung: Die Rotation soll die Hauptladungen jedes Items auf einen Faktor maximieren, gleichzeitig geringe Kreuzladungen erzeugen, sodass jeder Faktor klar interpretiert werden kann.

Anzahl der Faktoren bestimmen

dim(dat)
## [1] 375 106
#Parallelanalyse
fa_parallel1 <- fa.parallel(dat, fm="ml", fa="pc", n.iter=2000, SMC=FALSE, sim=TRUE, quant=0.95, plot=TRUE)  
## Parallel analysis suggests that the number of factors =  NA  and the number of components =  7
## 10000 wäre besser, dauert aber länger
abline(h=1)

print(fa_parallel1)
## Call: fa.parallel(x = dat, fm = "ml", fa = "pc", n.iter = 2000, SMC = FALSE, 
##     sim = TRUE, quant = 0.95, plot = TRUE)
## Parallel analysis suggests that the number of factors =  NA  and the number of components =  7 
## 
##  Eigen Values of 
## 
##  eigen values of factors
##   [1] 41.65  4.89  3.49  3.03  2.29  1.63  1.35  0.92  0.88  0.77  0.59  0.54
##  [13]  0.47  0.42  0.40  0.36  0.34  0.28  0.26  0.24  0.23  0.19  0.16  0.14
##  [25]  0.10  0.09  0.09  0.07  0.06  0.03  0.02 -0.02 -0.02 -0.04 -0.05 -0.06
##  [37] -0.08 -0.09 -0.11 -0.11 -0.13 -0.13 -0.14 -0.15 -0.15 -0.15 -0.16 -0.17
##  [49] -0.19 -0.20 -0.21 -0.21 -0.22 -0.23 -0.24 -0.24 -0.24 -0.25 -0.27 -0.27
##  [61] -0.27 -0.28 -0.29 -0.30 -0.31 -0.31 -0.32 -0.32 -0.33 -0.34 -0.35 -0.35
##  [73] -0.36 -0.36 -0.37 -0.37 -0.38 -0.39 -0.39 -0.40 -0.40 -0.41 -0.42 -0.42
##  [85] -0.43 -0.44 -0.44 -0.45 -0.45 -0.46 -0.46 -0.47 -0.49 -0.49 -0.50 -0.51
##  [97] -0.51 -0.53 -0.54 -0.55 -0.58 -0.59 -0.60 -0.62 -0.64 -0.69
## 
##  eigen values of simulated factors
## [1] NA
## 
##  eigen values of components 
##   [1] 42.20  5.55  4.15  3.59  2.95  2.28  2.02  1.52  1.50  1.45  1.29  1.20
##  [13]  1.17  1.16  1.06  1.03  0.96  0.93  0.91  0.90  0.85  0.83  0.82  0.78
##  [25]  0.75  0.73  0.71  0.69  0.66  0.63  0.61  0.60  0.59  0.57  0.56  0.55
##  [37]  0.52  0.51  0.50  0.48  0.48  0.46  0.45  0.43  0.42  0.42  0.41  0.40
##  [49]  0.39  0.38  0.38  0.37  0.36  0.35  0.34  0.34  0.33  0.31  0.30  0.29
##  [61]  0.29  0.28  0.27  0.27  0.27  0.25  0.25  0.25  0.24  0.24  0.23  0.22
##  [73]  0.22  0.21  0.21  0.20  0.19  0.18  0.18  0.18  0.17  0.17  0.16  0.16
##  [85]  0.15  0.15  0.15  0.14  0.13  0.13  0.13  0.12  0.11  0.11  0.11  0.10
##  [97]  0.10  0.09  0.09  0.09  0.08  0.08  0.07  0.07  0.06  0.06
## 
##  eigen values of simulated components
##   [1] 2.27 2.19 2.13 2.07 2.03 1.98 1.94 1.90 1.87 1.83 1.80 1.77 1.74 1.71 1.68
##  [16] 1.65 1.62 1.60 1.57 1.55 1.52 1.50 1.48 1.45 1.43 1.41 1.38 1.36 1.34 1.32
##  [31] 1.30 1.28 1.26 1.24 1.22 1.20 1.18 1.17 1.15 1.13 1.11 1.09 1.08 1.06 1.04
##  [46] 1.03 1.01 0.99 0.98 0.96 0.95 0.93 0.91 0.90 0.88 0.87 0.86 0.84 0.83 0.81
##  [61] 0.80 0.78 0.77 0.76 0.74 0.73 0.71 0.70 0.69 0.68 0.66 0.65 0.64 0.62 0.61
##  [76] 0.60 0.59 0.57 0.56 0.55 0.54 0.53 0.52 0.50 0.49 0.48 0.47 0.46 0.45 0.43
##  [91] 0.42 0.41 0.40 0.39 0.38 0.37 0.35 0.34 0.33 0.32 0.31 0.29 0.28 0.27 0.25
## [106] 0.23
pa1 <- 7
fa_parallel2 <- fa.parallel(dat, fm="ml", fa="fa", n.iter=2000, SMC=TRUE, sim=FALSE, quant=0.95, plot=TRUE)

## Parallel analysis suggests that the number of factors =  8  and the number of components =  NA
print(fa_parallel2)
## Call: fa.parallel(x = dat, fm = "ml", fa = "fa", n.iter = 2000, SMC = TRUE, 
##     sim = FALSE, quant = 0.95, plot = TRUE)
## Parallel analysis suggests that the number of factors =  8  and the number of components =  NA 
## 
##  Eigen Values of 
## 
##  eigen values of factors
##   [1] 41.95  5.29  3.87  3.35  2.66  2.02  1.72  1.27  1.20  1.13  0.95  0.90
##  [13]  0.85  0.80  0.74  0.70  0.65  0.62  0.60  0.58  0.55  0.52  0.50  0.48
##  [25]  0.42  0.42  0.41  0.40  0.36  0.35  0.33  0.30  0.29  0.29  0.26  0.23
##  [37]  0.23  0.22  0.21  0.20  0.19  0.18  0.18  0.17  0.15  0.15  0.14  0.14
##  [49]  0.13  0.11  0.11  0.10  0.09  0.08  0.07  0.07  0.06  0.06  0.05  0.04
##  [61]  0.03  0.03  0.02  0.02  0.01  0.00  0.00 -0.01 -0.01 -0.02 -0.03 -0.03
##  [73] -0.03 -0.04 -0.05 -0.05 -0.05 -0.06 -0.06 -0.07 -0.07 -0.07 -0.08 -0.09
##  [85] -0.09 -0.10 -0.10 -0.10 -0.11 -0.11 -0.12 -0.12 -0.12 -0.13 -0.14 -0.14
##  [97] -0.14 -0.15 -0.15 -0.16 -0.17 -0.18 -0.18 -0.19 -0.20 -0.20
## 
##  eigen values of simulated factors
## [1] NA
## 
##  eigen values of components 
##   [1] 42.20  5.55  4.15  3.59  2.95  2.28  2.02  1.52  1.50  1.45  1.29  1.20
##  [13]  1.17  1.16  1.06  1.03  0.96  0.93  0.91  0.90  0.85  0.83  0.82  0.78
##  [25]  0.75  0.73  0.71  0.69  0.66  0.63  0.61  0.60  0.59  0.57  0.56  0.55
##  [37]  0.52  0.51  0.50  0.48  0.48  0.46  0.45  0.43  0.42  0.42  0.41  0.40
##  [49]  0.39  0.38  0.38  0.37  0.36  0.35  0.34  0.34  0.33  0.31  0.30  0.29
##  [61]  0.29  0.28  0.27  0.27  0.27  0.25  0.25  0.25  0.24  0.24  0.23  0.22
##  [73]  0.22  0.21  0.21  0.20  0.19  0.18  0.18  0.18  0.17  0.17  0.16  0.16
##  [85]  0.15  0.15  0.15  0.14  0.13  0.13  0.13  0.12  0.11  0.11  0.11  0.10
##  [97]  0.10  0.09  0.09  0.09  0.08  0.08  0.07  0.07  0.06  0.06
## 
##  eigen values of simulated components
## [1] NA
pa2<-8
#Eigenwert > 1 Kriterium
fa_parallel1$pc.values
##   [1] 42.19660440  5.54890703  4.15451266  3.58898633  2.94670409  2.28047474
##   [7]  2.01750306  1.52266556  1.50223153  1.44607769  1.29018770  1.19516164
##  [13]  1.17125850  1.16082208  1.05501068  1.03000121  0.96442988  0.93202000
##  [19]  0.91438949  0.90084754  0.85389348  0.83165722  0.81645868  0.78271462
##  [25]  0.75198171  0.72553529  0.71357589  0.68970178  0.65530208  0.62846645
##  [31]  0.61400740  0.60382002  0.58743387  0.56896284  0.55502856  0.54562756
##  [37]  0.52290652  0.51253847  0.49994881  0.48463157  0.47626114  0.46070524
##  [43]  0.45407299  0.43150000  0.42092535  0.41598116  0.40768889  0.39548999
##  [49]  0.39276970  0.38337369  0.37692284  0.37308741  0.35622607  0.34625538
##  [55]  0.34149540  0.33671440  0.32921769  0.31431529  0.30477511  0.29344117
##  [61]  0.28760061  0.28469445  0.27285902  0.27064911  0.26844473  0.25261141
##  [67]  0.24938859  0.24769214  0.23909210  0.23596623  0.22556708  0.21882634
##  [73]  0.21646534  0.20999619  0.20907838  0.19586282  0.19114179  0.18486885
##  [79]  0.18230231  0.18036944  0.17400838  0.16899351  0.16496100  0.16068553
##  [85]  0.15490880  0.14626851  0.14502589  0.13947964  0.13471404  0.13149909
##  [91]  0.12924642  0.12162721  0.11359640  0.11157666  0.10765570  0.10393756
##  [97]  0.09783901  0.09397074  0.08989775  0.08635208  0.07957046  0.07897185
## [103]  0.07402640  0.07046107  0.06467730  0.05836454
which(fa_parallel1$pc.values>1)
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16
ew<-10
scree <-7
map <- VSS(dat, n=106)  

# n bezieht sich hier auf die Anzahl der möglichen Faktoren die man extrahieren kann. Dies entspricht hier also der Anzahl der Items, also 106. 
map
## 
## Very Simple Structure
## Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm, 
##     n.obs = n.obs, plot = plot, title = title, use = use, cor = cor)
## VSS complexity 1 achieves a maximimum of 0.94  with  1  factors
## VSS complexity 2 achieves a maximimum of 0.96  with  2  factors
## 
## The Velicer MAP achieves a minimum of 0.01  with  10  factors 
## BIC achieves a minimum of  -19650.75  with  7  factors
## Sample Size adjusted BIC achieves a minimum of  -5019  with  15  factors
## 
## Statistics by number of factors 
##     vss1 vss2    map  dof         chisq
## 1   0.94 0.00 0.0177 5459 17236.7188810
## 2   0.60 0.96 0.0141 5354 15037.4387454
## 3   0.51 0.88 0.0122 5250 13487.5954628
## 4   0.33 0.73 0.0093 5147 11661.9861849
## 5   0.29 0.63 0.0078 5045 10516.8177549
## 6   0.28 0.62 0.0071 4944  9714.2887307
## 7   0.25 0.58 0.0066 4844  9059.2842748
## 8   0.25 0.57 0.0064 4745  8524.9432530
## 9   0.25 0.57 0.0062 4647  8048.9159739
## 10  0.25 0.57 0.0060 4550  7648.8593157
## 11  0.26 0.56 0.0061 4454  7335.2091509
## 12  0.25 0.55 0.0061 4359  7024.5096890
## 13  0.24 0.55 0.0061 4265  6752.8344122
## 14  0.26 0.55 0.0062 4172  6501.3725028
## 15  0.25 0.55 0.0063 4080  6218.1039092
## 16  0.24 0.55 0.0063 3989  6002.3009386
## 17  0.24 0.55 0.0064 3899  5751.0186615
## 18  0.24 0.54 0.0065 3810  5507.6403122
## 19  0.23 0.54 0.0065 3722  5305.9789278
## 20  0.23 0.53 0.0066 3635  5112.0361909
## 21  0.23 0.53 0.0067 3549  4913.7442234
## 22  0.23 0.54 0.0068 3464  4756.1941551
## 23  0.23 0.53 0.0070 3380  4575.8924396
## 24  0.23 0.52 0.0071 3297  4408.5000690
## 25  0.22 0.51 0.0073 3215  4266.0579406
## 26  0.22 0.52 0.0074 3134  4117.1124922
## 27  0.21 0.50 0.0075 3054  3943.4650132
## 28  0.20 0.50 0.0077 2975  3777.3865868
## 29  0.20 0.50 0.0079 2897  3623.3079324
## 30  0.21 0.50 0.0081 2820  3478.6565008
## 31  0.20 0.50 0.0082 2744  3349.0270517
## 32  0.20 0.49 0.0084 2669  3223.9566719
## 33  0.21 0.49 0.0086 2595  3101.1170181
## 34  0.19 0.48 0.0088 2522  2989.6041018
## 35  0.19 0.47 0.0090 2450  2888.0270962
## 36  0.19 0.46 0.0092 2379  2795.7262055
## 37  0.18 0.47 0.0094 2309  2718.9630560
## 38  0.18 0.46 0.0096 2240  2623.3097516
## 39  0.18 0.47 0.0099 2172  2517.0252505
## 40  0.18 0.46 0.0102 2105  2415.0093581
## 41  0.18 0.45 0.0104 2039  2329.8727592
## 42  0.18 0.44 0.0107 1974  2234.5682464
## 43  0.18 0.44 0.0110 1910  2162.2781262
## 44  0.18 0.44 0.0113 1847  2079.2483890
## 45  0.18 0.44 0.0116 1785  2002.9969462
## 46  0.18 0.44 0.0119 1724  1927.0559906
## 47  0.17 0.43 0.0122 1664  1840.1634586
## 48  0.18 0.43 0.0125 1605  1753.4582457
## 49  0.18 0.43 0.0129 1547  1673.1536895
## 50  0.18 0.43 0.0133 1490  1594.9252314
## 51  0.17 0.42 0.0137 1434  1520.2313176
## 52  0.17 0.41 0.0140 1379  1457.5316080
## 53  0.18 0.42 0.0144 1325  1387.9166379
## 54  0.18 0.41 0.0147 1272  1317.8887099
## 55  0.17 0.41 0.0152 1220  1255.5238431
## 56  0.17 0.41 0.0156 1169  1188.0829223
## 57  0.18 0.41 0.0160 1119  1115.0234879
## 58  0.17 0.41 0.0165 1070  1057.8493728
## 59  0.17 0.41 0.0170 1022   991.0536102
## 60  0.17 0.40 0.0176  975   928.1778075
## 61  0.17 0.41 0.0180  929   877.6801285
## 62  0.17 0.41 0.0186  884   820.5004719
## 63  0.17 0.40 0.0192  840   774.8302624
## 64  0.16 0.41 0.0199  797   722.9500889
## 65  0.16 0.40 0.0204  755   680.5697994
## 66  0.16 0.39 0.0211  714   631.5272208
## 67  0.16 0.38 0.0218  674   581.6574876
## 68  0.16 0.38 0.0225  635   538.7567763
## 69  0.15 0.38 0.0234  597   490.9686035
## 70  0.14 0.37 0.0240  560   441.1964193
## 71  0.15 0.38 0.0250  524   406.7193069
## 72  0.15 0.44 0.0258  489   373.4438778
## 73  0.15 0.43 0.0269  455   338.6191405
## 74  0.16 0.43 0.0280  422   310.4824129
## 75  0.15 0.44 0.0292  390   276.0994002
## 76  0.15 0.43 0.0302  359   250.0329779
## 77  0.16 0.44 0.0317  329   218.2026267
## 78  0.14 0.43 0.0333  300   201.0195212
## 79  0.15 0.45 0.0346  272   171.6693790
## 80  0.14 0.38 0.0364  245   156.2088363
## 81  0.14 0.42 0.0379  219   139.3730300
## 82  0.13 0.42 0.0397  194   123.2868356
## 83  0.13 0.43 0.0418  170   103.2570058
## 84  0.13 0.42 0.0437  147    78.8393854
## 85  0.12 0.42 0.0460  125    66.6075625
## 86  0.12 0.42 0.0486  104    49.6243543
## 87  0.12 0.40 0.0515   84    43.9984212
## 88  0.13 0.38 0.0548   65    28.2607936
## 89  0.13 0.38 0.0581   47    18.8471153
## 90  0.13 0.40 0.0616   30    15.6330012
## 91  0.13 0.38 0.0655   14     9.7399608
## 92  0.13 0.36 0.0704   -1     4.9212757
## 93  0.13 0.40 0.0767  -15     1.1536258
## 94  0.11 0.36 0.0831  -28     0.1776878
## 95  0.11 0.38 0.0899  -40     0.0006878
## 96  0.12 0.38 0.0992  -51     0.0007887
## 97  0.12 0.36 0.1113  -61     0.0001785
## 98  0.13 0.38 0.1239  -70     0.0000286
## 99  0.13 0.37 0.1420  -78     0.0000354
## 100 0.13 0.37 0.1674  -85     0.0000099
## 101 0.13 0.37 0.2032  -91     0.0000064
## 102 0.12 0.37 0.2537  -96     0.0000069
## 103 0.12 0.36 0.3394 -100     0.0000096
## 104 0.12 0.37 0.4959 -103     0.0000035
## 105 0.12 0.36 1.0000 -105     0.0000000
## 106 0.12 0.36     NA -106     0.0000000
##                                                                                                                                                                                                                                                                                                                             prob
## 1   0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 2   0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 3   0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 4   0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 5   0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 6   0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000015
## 7   0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014072646312955291276417663093312171440629754215478897095
## 8   0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000079878351844046332555504541517166217090561985969543457031250000000000000000000000000000000000000
## 9   0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000043765489526979243655770146492756111911148764193058013916015625000000000000000000000000000000000000000000000000000000000000000000
## 10  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000243375473933133127388619976194661376212025061249732971191406250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 11  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009456794403397913050500489529071046490571461617946624755859375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 12  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000098246547886492925283005717140838441991945728659629821777343750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 13  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000331123654372717884670357380016980641812551766633987426757812500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 14  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000018484961660103120565171175293528449401492252945899963378906250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 15  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000181011373794523702795977726509590866044163703918457031250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 16  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000009893999964234163770233909662721316635725088417530059814453125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 17  0.00000000000000000000000000000000000000000000000000000000000000000000000000150023677743255952734061087205930107302265241742134094238281250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 18  0.00000000000000000000000000000000000000000000000000000000000000000354649148789134470048309277778741943620843812823295593261718750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 19  0.00000000000000000000000000000000000000000000000000000000000896153624261157870367622280127761769108474254608154296875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 20  0.00000000000000000000000000000000000000000000000000000600609951544512169450962257855053394450806081295013427734375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 21  0.00000000000000000000000000000000000000000000000612584411197885479825192556191382209362927824258804321289062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 22  0.00000000000000000000000000000000000000000001886757281166440920923410562437538828817196190357208251953125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 23  0.00000000000000000000000000000000000000121780242613572725184772904682972693990450352430343627929687500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 24  0.00000000000000000000000000000000001249434685900214529936415319699705150924273766577243804931640625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 25  0.00000000000000000000000000000000525189274056661858317701652154596558830235153436660766601562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 26  0.00000000000000000000000000000504364260935718273625577579011292073118966072797775268554687500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 27  0.00000000000000000000000008058958567194191699965821751305838915868662297725677490234375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 28  0.00000000000000000000040100592736825132278780103867177331267157569527626037597656250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 29  0.00000000000000000042781234903516385885934025790078294448903761804103851318359375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 30  0.00000000000000014612919464122188627046294850941876575234346091747283935546875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 31  0.00000000000001063228532097314345543533076199338438527774997055530548095703125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 32  0.00000000000048699745919000223984100805818542312408681027591228485107421875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 33  0.00000000001753476871546849037795251513571770374255720525979995727539062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 34  0.00000000024019014066667115500034596076162074496096465736627578735351562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 35  0.00000000152734752752433906755440140567969820040161721408367156982421875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 36  0.00000000501095658945024970739451353196614036278333514928817749023437500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 37  0.00000000537754422758236039431647967923311171034583821892738342285156250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 38  0.00000002677143567204204328835448478685066220350563526153564453125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 39  0.00000030061467739003475856725960957405163753719534724950790405273437500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 40  0.00000241820696452680223968202677387040466783219017088413238525390625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 41  0.00000635484325765306602446652606275279140390921384096145629882812500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 42  0.00003333073526849985413833890590673547649203101173043251037597656250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 43  0.00004328984253709137596660694313754902395885437726974487304687500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 44  0.00011536893485783729861558766227602745857439003884792327880859375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 45  0.00021512668918938622443157160368798486160812899470329284667968750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 46  0.00041563899462510446678603637238325063663069158792495727539062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 47  0.00152040572169934878367369979201839669258333742618560791015625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 48  0.00530496080455555244631549172140694281551986932754516601562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 49  0.01317493989920291014295017362201178912073373794555664062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 50  0.02932058611809161899341980017652531387284398078918457031250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 51  0.05576169019589242298318154666958434972912073135375976562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 52  0.06936697109764997093428462449082871899008750915527343750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 53  0.11194010231925378973105722479886026121675968170166015625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 54  0.18081448115547218979948240757948951795697212219238281250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 55  0.23399307464507812515108753359527327120304107666015625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 56  0.34226045744700106521207771947956643998622894287109375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 57  0.52792684189840377584346242656465619802474975585937500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 58  0.59841010495798330204308967950055375695228576660156250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 59  0.75071559159525169668825128610478714108467102050781250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 60  0.85602279378338042015172959509072825312614440917968750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 61  0.88448506291243833565829390863655135035514831542968750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 62  0.93723684909749604976525461097480729222297668457031250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 63  0.94702751452056876946272723216679878532886505126953125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 64  0.97119590230860319834960137086454778909683227539062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 65  0.97528899120814938061840848604333586990833282470703125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 66  0.98792809957936611464646148306201212108135223388671875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 67  0.99562604175998425937166302901459857821464538574218750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 68  0.99768446405164712409430194384185597300529479980468750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 69  0.99942726683298865886229123134398832917213439941406250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 70  0.99993251676231265090422084540477953851222991943359375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 71  0.99995461144334774061803727818187326192855834960937500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 72  0.99996996593996045898933289208798669278621673583984375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 73  0.99998801324681607649580428187618963420391082763671875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 74  0.99998764127917383337518231201102025806903839111328125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 75  0.99999713576629900568804032445768825709819793701171875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 76  0.99999725848354781287952164348098449409008026123046875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 77  0.99999952760265353735036342186504043638706207275390625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 78  0.99999755060931960759518233317066915333271026611328125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 79  0.99999963951744297308010800406918860971927642822265625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 80  0.99999791692250705743560956761939451098442077636718750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 81  0.99999364712097182916750170988962054252624511718750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 82  0.99998077208715585584286600351333618164062500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 83  0.99998705531346776531620434980140998959541320800781250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 84  0.99999920307342970993147446279181167483329772949218750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 85  0.99999591767571105460632452377467416226863861083984375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 86  0.99999871575749676999578241520794108510017395019531250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 87  0.99990427611542076480333207655348815023899078369140625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 88  0.99998016759512875495374828460626304149627685546875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 89  0.99991945338923382546880702648195438086986541748046875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 90  0.98564080418405775052548278836184181272983551025390625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 91  0.78093746784316409037529638226260431110858917236328125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
## 92                                                                                                                                                                                                                                                                                                                            NA
## 93                                                                                                                                                                                                                                                                                                                            NA
## 94                                                                                                                                                                                                                                                                                                                            NA
## 95                                                                                                                                                                                                                                                                                                                            NA
## 96                                                                                                                                                                                                                                                                                                                            NA
## 97                                                                                                                                                                                                                                                                                                                            NA
## 98                                                                                                                                                                                                                                                                                                                            NA
## 99                                                                                                                                                                                                                                                                                                                            NA
## 100                                                                                                                                                                                                                                                                                                                           NA
## 101                                                                                                                                                                                                                                                                                                                           NA
## 102                                                                                                                                                                                                                                                                                                                           NA
## 103                                                                                                                                                                                                                                                                                                                           NA
## 104                                                                                                                                                                                                                                                                                                                           NA
## 105                                                                                                                                                                                                                                                                                                                           NA
## 106                                                                                                                                                                                                                                                                                                                           NA
##     sqresid  fit  RMSEA    BIC SABIC complex                  eChisq
## 1     110.4 0.94 0.0758 -15118  2202     1.0 25872.31591807451331988
## 2      79.9 0.96 0.0694 -16695   291     1.5 16688.95967378960995120
## 3      62.9 0.97 0.0646 -17629  -972     1.9 11911.46945053323543107
## 4      50.2 0.97 0.0580 -18844 -2514     2.2  8227.33522634988912614
## 5      41.6 0.98 0.0537 -19385 -3378     2.5  5996.36303343471354310
## 6      36.6 0.98 0.0507 -19588 -3902     2.7  4788.68030172842190950
## 7      32.6 0.98 0.0481 -19651 -4282     2.8  3906.44600429156980681
## 8      30.5 0.98 0.0460 -19598 -4544     2.9  3447.38347668648930266
## 9      28.4 0.98 0.0441 -19494 -4750     3.0  3045.45259298223072619
## 10     26.5 0.99 0.0425 -19319 -4883     3.2  2687.24886975082836216
## 11     25.0 0.99 0.0414 -19063 -4932     3.3  2448.42973890789608049
## 12     23.7 0.99 0.0403 -18811 -4981     3.4  2229.11926703099516089
## 13     22.5 0.99 0.0393 -18526 -4994     3.5  2036.05495222739364181
## 14     21.3 0.99 0.0385 -18226 -4989     3.4  1862.22337339440991855
## 15     20.3 0.99 0.0373 -17964 -5019     3.5  1709.26942324145670682
## 16     19.3 0.99 0.0366 -17640 -4984     3.5  1577.08804239022242655
## 17     18.5 0.99 0.0355 -17358 -4988     3.6  1456.21221807692563743
## 18     17.8 0.99 0.0344 -17074 -4986     3.7  1345.07120111923063632
## 19     17.0 0.99 0.0336 -16754 -4945     3.7  1243.12448745442043219
## 20     16.2 0.99 0.0328 -16432 -4899     3.7  1145.13545094038977368
## 21     15.5 0.99 0.0319 -16121 -4861     3.7  1057.63007906897450994
## 22     14.8 0.99 0.0314 -15775 -4784     3.9   981.81567461655185980
## 23     14.2 0.99 0.0306 -15457 -4733     3.9   909.16984688129537062
## 24     13.6 0.99 0.0299 -15133 -4672     4.0   839.05560273425021478
## 25     13.1 0.99 0.0294 -14789 -4589     4.2   784.25262560381679577
## 26     12.6 0.99 0.0288 -14458 -4515     4.0   729.35119524897595511
## 27     12.1 0.99 0.0277 -14157 -4468     4.2   674.28970369782211947
## 28     11.7 0.99 0.0267 -13855 -4416     4.3   623.72597089908629187
## 29     11.3 0.99 0.0257 -13547 -4356     4.3   580.58124893065189553
## 30     10.8 0.99 0.0248 -13235 -4288     4.1   537.80007557597525647
## 31     10.4 0.99 0.0241 -12914 -4208     4.2   500.64857307086754190
## 32     10.0 0.99 0.0234 -12595 -4127     4.2   468.20308101240726728
## 33      9.7 0.99 0.0226 -12279 -4046     4.1   436.03488255913180183
## 34      9.3 1.00 0.0221 -11958 -3956     4.4   406.18531976220060642
## 35      8.9 1.00 0.0217 -11633 -3860     4.4   379.31680345021919720
## 36      8.6 1.00 0.0214 -11304 -3756     4.4   356.30432954860458494
## 37      8.1 1.00 0.0216 -10966 -3640     4.4   333.71808471599251789
## 38      7.9 1.00 0.0212 -10653 -3546     4.3   313.62140247534716764
## 39      7.7 1.00 0.0204 -10356 -3465     4.3   293.49815563775621285
## 40      7.4 1.00 0.0196 -10061 -3383     4.4   273.86068592723387383
## 41      7.2 1.00 0.0193  -9755 -3286     4.4   256.17425009241816269
## 42      7.0 1.00 0.0186  -9465 -3202     4.4   239.85234930229697170
## 43      6.7 1.00 0.0186  -9158 -3098     4.4   223.76612833737775077
## 44      6.5 1.00 0.0181  -8868 -3008     4.4   208.41098829244376134
## 45      6.3 1.00 0.0178  -8577 -2913     4.4   195.60736898487294866
## 46      6.0 1.00 0.0175  -8291 -2821     4.4   182.82168429418905475
## 47      5.8 1.00 0.0166  -8022 -2743     4.5   170.17223842651881682
## 48      5.7 1.00 0.0155  -7759 -2667     4.4   157.82713203161179649
## 49      5.4 1.00 0.0145  -7496 -2588     4.4   146.20002476193320717
## 50      5.3 1.00 0.0134  -7236 -2509     4.4   135.80228592333699567
## 51      5.2 1.00 0.0124  -6979 -2429     4.4   125.09318224046361934
## 52      5.0 1.00 0.0120  -6716 -2340     4.5   115.72782144085194034
## 53      4.8 1.00 0.0109  -6465 -2261     4.4   106.94327589707529569
## 54      4.6 1.00 0.0094  -6221 -2185     4.4    98.41384900830398408
## 55      4.4 1.00 0.0084  -5975 -2105     4.4    90.66220868978503233
## 56      4.3 1.00 0.0060  -5740 -2032     4.3    83.10087209254699303
## 57      4.2 1.00 0.0000  -5517 -1967     4.4    76.22815176121321201
## 58      4.0 1.00 0.0000  -5284 -1889     4.4    69.93550043513596393
## 59      3.9 1.00 0.0000  -5066 -1824     4.3    64.34747717389132049
## 60      3.8 1.00 0.0000  -4851 -1757     4.3    58.85045176597833461
## 61      3.7 1.00 0.0000  -4628 -1681     4.3    54.04106622475261901
## 62      3.6 1.00 0.0000  -4419 -1614     4.2    49.12159847972156967
## 63      3.5 1.00 0.0000  -4204 -1539     4.1    45.13469650211213491
## 64      3.4 1.00 0.0000  -4001 -1472     4.2    40.92047091282605464
## 65      3.2 1.00 0.0000  -3794 -1399     4.2    37.18385081692495220
## 66      3.0 1.00 0.0000  -3600 -1335     4.2    33.24322606173659977
## 67      2.9 1.00 0.0000  -3413 -1275     4.2    29.79281864236032007
## 68      2.8 1.00 0.0000  -3225 -1210     4.2    26.64923046634939752
## 69      2.8 1.00 0.0000  -3047 -1153     4.2    23.33570429092407394
## 70      2.7 1.00 0.0000  -2878 -1101     4.2    20.26921357997823492
## 71      2.6 1.00 0.0000  -2699 -1036     4.1    18.07435794847568999
## 72      2.5 1.00 0.0000  -2525  -973     4.4    16.12075591821209031
## 73      2.5 1.00 0.0000  -2358  -915     4.5    14.35036765902541056
## 74      2.4 1.00 0.0000  -2191  -852     4.5    12.50252932996249022
## 75      2.3 1.00 0.0000  -2035  -798     4.5    11.01175711920742017
## 76      2.3 1.00 0.0000  -1878  -739     4.6     9.62990945253087816
## 77      2.3 1.00 0.0000  -1732  -688     4.6     8.40245157058028447
## 78      2.1 1.00 0.0000  -1577  -625     4.4     7.34030907056735593
## 79      2.1 1.00 0.0000  -1440  -577     4.5     6.31745431425128867
## 80      2.0 1.00 0.0000  -1296  -519     4.1     5.34556379979636365
## 81      1.9 1.00 0.0000  -1159  -464     4.5     4.60505688714877870
## 82      1.8 1.00 0.0000  -1027  -411     4.4     3.77099949743362828
## 83      1.7 1.00 0.0000   -904  -365     4.3     3.02217796733488342
## 84      1.8 1.00 0.0000   -792  -326     4.3     2.30212714842441679
## 85      1.8 1.00 0.0000   -674  -278     4.2     1.85925787459161151
## 86      1.7 1.00 0.0000   -567  -237     4.3     1.43052035402430189
## 87      1.6 1.00 0.0000   -454  -187     4.5     1.16694481154090357
## 88      1.4 1.00 0.0000   -357  -151     4.4     0.79637964804050332
## 89      1.4 1.00 0.0000   -260  -111     4.5     0.50033689114673574
## 90      1.4 1.00 0.0000   -162   -67     4.5     0.40487867452754162
## 91      1.4 1.00 0.0000    -73   -29     4.4     0.24301775717320867
## 92      1.3 1.00     NA     NA    NA     4.5     0.11911250397626495
## 93      1.2 1.00     NA     NA    NA     4.4     0.02735398259514563
## 94      1.3 1.00     NA     NA    NA     4.5     0.00448685979795078
## 95      1.3 1.00     NA     NA    NA     4.4     0.00001533462867733
## 96      1.5 1.00     NA     NA    NA     4.4     0.00001659310314613
## 97      1.4 1.00     NA     NA    NA     4.4     0.00000394198613447
## 98      1.4 1.00     NA     NA    NA     4.3     0.00000064543435060
## 99      1.5 1.00     NA     NA    NA     4.4     0.00000074222707420
## 100     1.5 1.00     NA     NA    NA     4.4     0.00000020252708435
## 101     1.4 1.00     NA     NA    NA     4.3     0.00000013156420474
## 102     1.4 1.00     NA     NA    NA     4.2     0.00000011543776114
## 103     1.4 1.00     NA     NA    NA     4.2     0.00000014666891540
## 104     1.4 1.00     NA     NA    NA     4.2     0.00000006000242285
## 105     1.4 1.00     NA     NA    NA     4.2     0.00000000000000015
## 106     1.4 1.00     NA     NA    NA     4.2     0.00000000000000015
##                SRMR  eCRMS   eBIC
## 1   0.0787325715954 0.0795  -6483
## 2   0.0632341109053 0.0645 -15044
## 3   0.0534219153191 0.0550 -19205
## 4   0.0443983040030 0.0462 -22279
## 5   0.0379036246806 0.0398 -23905
## 6   0.0338723014666 0.0359 -24514
## 7   0.0305933966073 0.0328 -24804
## 8   0.0287396570786 0.0311 -24676
## 9   0.0270123709881 0.0296 -24497
## 10  0.0253741047510 0.0281 -24280
## 11  0.0242203607189 0.0271 -23950
## 12  0.0231101857829 0.0261 -23606
## 13  0.0220867355652 0.0252 -23242
## 14  0.0211228575700 0.0244 -22865
## 15  0.0202368096100 0.0236 -22473
## 16  0.0194385897190 0.0230 -22065
## 17  0.0186788063341 0.0223 -21653
## 18  0.0179518586942 0.0217 -21237
## 19  0.0172581442504 0.0211 -20817
## 20  0.0165639996945 0.0205 -20399
## 21  0.0159185564117 0.0199 -19977
## 22  0.0153374007232 0.0194 -19549
## 23  0.0147590803062 0.0189 -19124
## 24  0.0141785609619 0.0184 -18702
## 25  0.0137077057930 0.0180 -18271
## 26  0.0132191987878 0.0176 -17846
## 27  0.0127104242880 0.0172 -17427
## 28  0.0122245729865 0.0167 -17009
## 29  0.0117941945296 0.0163 -16590
## 30  0.0113513421274 0.0159 -16176
## 31  0.0109522481519 0.0156 -15763
## 32  0.0105914133514 0.0153 -15351
## 33  0.0102210944376 0.0150 -14944
## 34  0.0098650410229 0.0147 -14542
## 35  0.0095331806980 0.0144 -14142
## 36  0.0092394758314 0.0141 -13744
## 37  0.0089418350705 0.0139 -13352
## 38  0.0086684137084 0.0137 -12963
## 39  0.0083857029121 0.0134 -12580
## 40  0.0081003098145 0.0132 -12202
## 41  0.0078343779784 0.0129 -11829
## 42  0.0075806906119 0.0127 -11460
## 43  0.0073220713710 0.0125 -11097
## 44  0.0070663816636 0.0123 -10739
## 45  0.0068458816958 0.0121 -10384
## 46  0.0066183638139 0.0119 -10035
## 47  0.0063852975483 0.0117  -9692
## 48  0.0061493274023 0.0115  -9355
## 49  0.0059184843976 0.0112  -9023
## 50  0.0057041419444 0.0110  -8695
## 51  0.0054746152684 0.0108  -8374
## 52  0.0052656946671 0.0106  -8058
## 53  0.0050618995850 0.0104  -7746
## 54  0.0048558458641 0.0102  -7441
## 55  0.0046606869323 0.0100  -7140
## 56  0.0044621028324 0.0097  -6845
## 57  0.0042736059855 0.0095  -6556
## 58  0.0040934135932 0.0093  -6272
## 59  0.0039264723744 0.0092  -5993
## 60  0.0037550150717 0.0090  -5720
## 61  0.0035983113481 0.0088  -5452
## 62  0.0034306232722 0.0086  -5190
## 63  0.0032884560901 0.0085  -4933
## 64  0.0031311732308 0.0083  -4683
## 65  0.0029847912711 0.0081  -4438
## 66  0.0028222037554 0.0079  -4199
## 67  0.0026717300824 0.0077  -3965
## 68  0.0025268480125 0.0075  -3737
## 69  0.0023645431315 0.0072  -3515
## 70  0.0022037140139 0.0069  -3299
## 71  0.0020809815195 0.0068  -3088
## 72  0.0019653028556 0.0066  -2882
## 73  0.0018542500437 0.0065  -2682
## 74  0.0017307555183 0.0063  -2489
## 75  0.0016242957048 0.0061  -2300
## 76  0.0015189654155 0.0060  -2118
## 77  0.0014188608088 0.0058  -1942
## 78  0.0013261539931 0.0057  -1771
## 79  0.0012302909771 0.0056  -1606
## 80  0.0011317058025 0.0054  -1447
## 81  0.0010503989615 0.0053  -1293
## 82  0.0009505282335 0.0051  -1146
## 83  0.0008509358120 0.0049  -1005
## 84  0.0007426795014 0.0046   -869
## 85  0.0006674313448 0.0045   -739
## 86  0.0005854419042 0.0043   -615
## 87  0.0005287640772 0.0043   -497
## 88  0.0004368143130 0.0040   -384
## 89  0.0003462326716 0.0038   -278
## 90  0.0003114578169 0.0042   -177
## 91  0.0002412991478 0.0048    -83
## 92  0.0001689333760     NA     NA
## 93  0.0000809556319     NA     NA
## 94  0.0000327874796     NA     NA
## 95  0.0000019167851     NA     NA
## 96  0.0000019938872     NA     NA
## 97  0.0000009718390     NA     NA
## 98  0.0000003932446     NA     NA
## 99  0.0000004217015     NA     NA
## 100 0.0000002202817     NA     NA
## 101 0.0000001775439     NA     NA
## 102 0.0000001663071     NA     NA
## 103 0.0000001874588     NA     NA
## 104 0.0000001199006     NA     NA
## 105 0.0000000000059     NA     NA
## 106 0.0000000000059     NA     NA
mapn <- 7

knitr::kable(rbind(pa1,pa2,ew,scree, mapn))
pa1 7
pa2 8
ew 10
scree 7
mapn 7

7-Faktor Lösung (Nach Testung beste Ergebnisse mit promax)

Deskriptive Statistik der Items

desc <- round(psych::describe(dat), 2)
knitr::kable(desc)
vars n mean sd median trimmed mad min max range skew kurtosis se
agent_1C_1 1 372 3.07 1.14 3 3.06 1.48 1 6 5 -0.01 -0.74 0.06
agent_1C_2 2 372 2.76 1.16 3 2.71 1.48 1 6 5 0.36 -0.27 0.06
agent_1C_3 3 370 3.17 1.19 3 3.13 1.48 1 6 5 0.23 -0.48 0.06
agent_1C_4 4 371 2.88 1.15 3 2.87 1.48 1 6 5 0.29 -0.29 0.06
agent_1C_5 5 372 2.43 1.08 2 2.36 1.48 1 6 5 0.43 -0.36 0.06
agent_1D_1 6 372 2.46 1.15 2 2.38 1.48 1 6 5 0.48 -0.33 0.06
agent_1D_2 7 372 2.92 1.29 3 2.89 1.48 1 6 5 0.08 -0.95 0.07
agent_1D_3 8 372 2.34 1.11 2 2.24 1.48 1 6 5 0.55 -0.28 0.06
agent_1D_4 9 372 2.81 1.14 3 2.81 1.48 1 6 5 0.05 -0.83 0.06
agent_1D_5 10 371 2.60 1.19 3 2.55 1.48 1 6 5 0.31 -0.59 0.06
agent_1A_1 11 370 3.99 1.21 4 4.01 1.48 1 6 5 -0.19 -0.60 0.06
agent_1A_2 12 371 4.19 1.09 4 4.19 1.48 1 6 5 -0.16 -0.38 0.06
agent_1A_3 13 371 4.12 1.16 4 4.13 1.48 1 6 5 -0.27 -0.44 0.06
agent_1A_4 14 371 2.55 1.14 2 2.49 1.48 1 5 4 0.32 -0.69 0.06
agent_1A_5 15 371 2.76 1.28 3 2.68 1.48 1 6 5 0.30 -0.76 0.07
agent_1E_1 16 371 2.47 1.14 2 2.41 1.48 1 5 4 0.40 -0.69 0.06
agent_1E_2 17 371 3.07 1.18 3 2.97 1.48 1 6 5 0.71 0.39 0.06
agent_1E_3 18 370 1.83 0.86 2 1.73 1.48 1 5 4 0.81 0.00 0.04
agent_1E_4 19 371 2.18 1.07 2 2.05 1.48 1 5 4 0.80 0.05 0.06
agent_1E_5 20 372 1.73 0.88 2 1.60 1.48 1 5 4 1.12 0.75 0.05
agent_1B_1 21 371 2.52 1.21 2 2.45 1.48 1 6 5 0.39 -0.84 0.06
agent_1B_2 22 371 2.24 1.08 2 2.14 1.48 1 6 5 0.57 -0.45 0.06
agent_1B_3 23 371 2.02 1.03 2 1.89 1.48 1 6 5 0.89 0.41 0.05
agent_1B_4 24 371 3.36 1.14 4 3.39 1.48 1 6 5 -0.29 -0.25 0.06
agent_1B_5 25 371 2.58 1.12 3 2.55 1.48 1 6 5 0.34 -0.31 0.06
agent_2E_5 26 371 2.30 1.16 2 2.20 1.48 1 6 5 0.63 -0.37 0.06
agent_2B_1 27 372 2.32 1.13 2 2.23 1.48 1 5 4 0.49 -0.70 0.06
agent_2B_2 28 371 2.03 1.07 2 1.89 1.48 1 5 4 0.82 -0.22 0.06
agent_2B_3 29 371 2.73 1.23 3 2.69 1.48 1 6 5 0.21 -0.77 0.06
agent_2B_4 30 372 2.32 1.15 2 2.22 1.48 1 6 5 0.64 -0.31 0.06
agent_2B_5 31 372 1.82 0.95 2 1.68 1.48 1 5 4 1.09 0.70 0.05
agent_2A_1 32 371 2.42 1.24 2 2.32 1.48 1 6 5 0.59 -0.50 0.06
agent_2A_2 33 371 2.98 1.28 3 2.95 1.48 1 6 5 0.15 -0.68 0.07
agent_2A_3 34 371 2.49 1.20 2 2.41 1.48 1 6 5 0.54 -0.35 0.06
agent_2A_4 35 371 2.33 1.15 2 2.22 1.48 1 6 5 0.65 -0.35 0.06
agent_2A_5 36 370 3.62 1.23 4 3.71 1.48 1 6 5 -0.58 -0.29 0.06
agent_2D_1 37 371 2.94 1.29 3 2.90 1.48 1 6 5 0.04 -0.91 0.07
agent_2D_2 38 371 2.87 1.27 3 2.83 1.48 1 6 5 0.13 -0.92 0.07
agent_2D_3 39 371 2.56 1.19 2 2.52 1.48 1 5 4 0.24 -1.00 0.06
agent_2D_4 40 370 3.18 1.23 3 3.22 1.48 1 6 5 -0.35 -0.85 0.06
agent_2D_5 41 371 2.22 1.11 2 2.11 1.48 1 5 4 0.60 -0.52 0.06
agent_3A_1 42 371 3.17 1.29 3 3.18 1.48 1 6 5 -0.20 -0.78 0.07
agent_3A_2 43 371 2.50 1.31 2 2.40 1.48 1 6 5 0.40 -0.97 0.07
agent_3A_3 44 371 2.57 1.27 2 2.49 1.48 1 6 5 0.37 -0.81 0.07
agent_3B_1 45 371 2.93 1.29 3 2.89 1.48 1 6 5 0.10 -0.78 0.07
agent_3B_2 46 371 2.99 1.18 3 3.00 1.48 1 6 5 -0.06 -0.69 0.06
agent_3B_3 47 371 1.58 0.87 1 1.41 0.00 1 5 4 1.48 1.52 0.05
agent_3B_4 48 371 2.10 1.11 2 1.98 1.48 1 5 4 0.68 -0.60 0.06
agent_3B_5 49 370 2.86 1.19 3 2.80 1.48 1 6 5 0.51 0.13 0.06
agent_3C_1 50 367 2.18 1.11 2 2.07 1.48 1 6 5 0.67 -0.38 0.06
agent_3C_2 51 370 3.19 1.12 3 3.18 1.48 1 6 5 -0.08 -0.66 0.06
agent_3C_3 52 368 1.77 0.95 1 1.63 0.00 1 5 4 1.14 0.75 0.05
agent_3D_1 53 369 2.13 1.08 2 2.02 1.48 1 6 5 0.65 -0.38 0.06
agent_3D_2 54 370 3.29 1.04 3 3.32 1.48 1 6 5 -0.35 -0.26 0.05
agent_3D_3 55 370 3.34 1.29 4 3.39 1.48 1 6 5 -0.19 -0.69 0.07
agent_3E_1 56 369 2.85 1.18 3 2.86 1.48 1 6 5 -0.05 -0.85 0.06
agent_3E_2 57 369 2.14 1.05 2 2.02 1.48 1 6 5 0.69 -0.06 0.05
agent_3E_3 58 370 2.16 1.13 2 2.02 1.48 1 6 5 0.86 0.09 0.06
agent_4A_1 59 369 3.75 1.24 4 3.82 1.48 1 6 5 -0.49 -0.11 0.06
agent_4A_2 60 369 2.00 1.08 2 1.83 1.48 1 6 5 1.11 0.99 0.06
agent_4A_3 61 368 3.15 1.04 3 3.21 1.48 1 6 5 -0.38 -0.49 0.05
agent_4B_1 62 372 2.31 1.19 2 2.20 1.48 1 6 5 0.57 -0.60 0.06
agent_4B_2 63 372 2.56 1.20 2 2.49 1.48 1 6 5 0.32 -0.79 0.06
agent_4B_3 64 372 2.17 1.09 2 2.05 1.48 1 5 4 0.70 -0.34 0.06
agent_4B_4 65 372 3.17 1.26 3 3.20 1.48 1 6 5 -0.24 -0.81 0.07
agent_4B_5 66 371 2.11 1.05 2 1.99 1.48 1 5 4 0.73 -0.17 0.05
agent_4C_1 67 371 1.83 1.02 2 1.65 1.48 1 6 5 1.27 1.22 0.05
agent_4C_2 68 372 1.68 0.91 1 1.53 0.00 1 6 5 1.46 2.25 0.05
agent_4C_3 69 372 2.40 1.18 2 2.31 1.48 1 6 5 0.53 -0.53 0.06
agent_4D_1 70 371 1.85 0.95 2 1.72 1.48 1 5 4 0.98 0.28 0.05
agent_4D_2 71 370 1.76 0.92 2 1.61 1.48 1 5 4 1.11 0.53 0.05
agent_4D_3 72 370 2.39 1.27 2 2.29 1.48 1 6 5 0.53 -0.73 0.07
agent_5C_1 73 372 3.13 1.34 3 3.14 1.48 1 6 5 -0.10 -0.89 0.07
agent_5C_2 74 372 3.74 1.17 4 3.86 1.48 1 6 5 -0.77 0.21 0.06
agent_5C_3 75 371 2.94 1.17 3 2.94 1.48 1 6 5 0.00 -0.70 0.06
agent_5C_4 76 372 3.25 1.24 3 3.28 1.48 1 6 5 -0.07 -0.54 0.06
agent_5C_5 77 372 2.30 1.13 2 2.20 1.48 1 5 4 0.51 -0.66 0.06
agent_5D_1 78 371 1.77 1.03 1 1.58 0.00 1 5 4 1.27 0.84 0.05
agent_5D_2 79 372 3.23 1.35 3 3.24 1.48 1 6 5 -0.02 -0.84 0.07
agent_5D_3 80 372 3.23 1.24 3 3.28 1.48 1 6 5 -0.26 -0.74 0.06
agent_5D_4 81 371 2.49 1.27 2 2.38 1.48 1 6 5 0.53 -0.54 0.07
agent_5D_5 82 370 1.98 1.06 2 1.82 1.48 1 5 4 0.95 0.16 0.05
agent_2C_1 83 370 3.05 1.36 3 3.03 1.48 1 6 5 0.01 -1.01 0.07
agent_2C_2 84 372 1.98 1.01 2 1.84 1.48 1 6 5 1.07 1.09 0.05
agent_2C_3 85 370 2.33 1.14 2 2.25 1.48 1 6 5 0.51 -0.68 0.06
agent_2C_4 86 372 2.36 1.12 2 2.28 1.48 1 6 5 0.51 -0.42 0.06
agent_2C_5 87 372 2.43 1.28 2 2.31 1.48 1 6 5 0.62 -0.52 0.07
agent_5A_1 88 372 3.09 1.25 3 3.09 1.48 1 6 5 -0.04 -0.78 0.06
agent_5A_2 89 372 2.83 1.33 3 2.77 1.48 1 6 5 0.24 -0.84 0.07
agent_5A_3 90 372 2.19 1.18 2 2.04 1.48 1 6 5 0.94 0.40 0.06
agent_5A_4 91 372 2.40 1.21 2 2.31 1.48 1 6 5 0.54 -0.64 0.06
agent_5A_5 92 372 1.90 0.98 2 1.76 1.48 1 6 5 0.90 0.19 0.05
agent_5B_1 93 371 2.57 1.17 2 2.51 1.48 1 6 5 0.44 -0.44 0.06
agent_5B_2 94 371 4.28 1.08 4 4.36 1.48 1 6 5 -0.89 1.10 0.06
agent_5B_3 95 370 3.70 1.20 4 3.77 1.48 1 6 5 -0.39 -0.26 0.06
agent_5B_4 96 371 2.53 1.27 2 2.43 1.48 1 6 5 0.55 -0.32 0.07
agent_5B_5 97 371 3.47 1.13 4 3.49 1.48 1 6 5 -0.25 -0.15 0.06
agent_5E_1 98 370 3.11 1.22 3 3.12 1.48 1 6 5 -0.07 -0.68 0.06
agent_5E_2 99 371 2.57 1.17 3 2.52 1.48 1 6 5 0.32 -0.62 0.06
agent_5E_3 100 371 2.09 1.05 2 1.95 1.48 1 6 5 0.81 0.14 0.05
agent_5E_4 101 371 2.19 1.13 2 2.07 1.48 1 6 5 0.72 -0.22 0.06
agent_5E_5 102 371 2.26 1.16 2 2.15 1.48 1 6 5 0.64 -0.48 0.06
agent_2E_1 103 371 3.68 1.15 4 3.76 1.48 1 6 5 -0.59 0.08 0.06
agent_2E_2 104 372 2.80 1.17 3 2.78 1.48 1 6 5 0.18 -0.68 0.06
agent_2E_3 105 371 2.47 1.18 2 2.39 1.48 1 6 5 0.56 -0.29 0.06
agent_2E_4 106 370 2.29 1.17 2 2.19 1.48 1 6 5 0.62 -0.43 0.06

Korrelationsplot

cor.plot(cor(dat, use="pairwise.complete.obs"))

# Bartlett-Test

cortest.bartlett(dat, n = nrow(dat))
## R was not square, finding R from data
## $chisq
## [1] 34759.12
## 
## $p.value
## [1] 0
## 
## $df
## [1] 5565

KMO (Kaiser-Meyer-Olkin-Kriterium)

kmo <- KMO(dat)
kmo
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = dat)
## Overall MSA =  0.96
## MSA for each item = 
## agent_1C_1 agent_1C_2 agent_1C_3 agent_1C_4 agent_1C_5 agent_1D_1 agent_1D_2 
##       0.96       0.75       0.96       0.95       0.96       0.97       0.95 
## agent_1D_3 agent_1D_4 agent_1D_5 agent_1A_1 agent_1A_2 agent_1A_3 agent_1A_4 
##       0.96       0.96       0.96       0.96       0.96       0.96       0.96 
## agent_1A_5 agent_1E_1 agent_1E_2 agent_1E_3 agent_1E_4 agent_1E_5 agent_1B_1 
##       0.96       0.96       0.88       0.97       0.95       0.96       0.97 
## agent_1B_2 agent_1B_3 agent_1B_4 agent_1B_5 agent_2E_5 agent_2B_1 agent_2B_2 
##       0.97       0.97       0.91       0.97       0.96       0.97       0.96 
## agent_2B_3 agent_2B_4 agent_2B_5 agent_2A_1 agent_2A_2 agent_2A_3 agent_2A_4 
##       0.95       0.97       0.96       0.98       0.95       0.96       0.96 
## agent_2A_5 agent_2D_1 agent_2D_2 agent_2D_3 agent_2D_4 agent_2D_5 agent_3A_1 
##       0.96       0.94       0.96       0.97       0.97       0.86       0.95 
## agent_3A_2 agent_3A_3 agent_3B_1 agent_3B_2 agent_3B_3 agent_3B_4 agent_3B_5 
##       0.97       0.98       0.96       0.97       0.96       0.98       0.88 
## agent_3C_1 agent_3C_2 agent_3C_3 agent_3D_1 agent_3D_2 agent_3D_3 agent_3E_1 
##       0.96       0.93       0.97       0.97       0.94       0.89       0.97 
## agent_3E_2 agent_3E_3 agent_4A_1 agent_4A_2 agent_4A_3 agent_4B_1 agent_4B_2 
##       0.97       0.97       0.76       0.96       0.94       0.96       0.97 
## agent_4B_3 agent_4B_4 agent_4B_5 agent_4C_1 agent_4C_2 agent_4C_3 agent_4D_1 
##       0.98       0.97       0.98       0.97       0.97       0.97       0.97 
## agent_4D_2 agent_4D_3 agent_5C_1 agent_5C_2 agent_5C_3 agent_5C_4 agent_5C_5 
##       0.96       0.97       0.96       0.93       0.97       0.91       0.98 
## agent_5D_1 agent_5D_2 agent_5D_3 agent_5D_4 agent_5D_5 agent_2C_1 agent_2C_2 
##       0.98       0.95       0.96       0.97       0.98       0.92       0.98 
## agent_2C_3 agent_2C_4 agent_2C_5 agent_5A_1 agent_5A_2 agent_5A_3 agent_5A_4 
##       0.98       0.99       0.95       0.96       0.96       0.95       0.97 
## agent_5A_5 agent_5B_1 agent_5B_2 agent_5B_3 agent_5B_4 agent_5B_5 agent_5E_1 
##       0.96       0.98       0.94       0.91       0.94       0.90       0.96 
## agent_5E_2 agent_5E_3 agent_5E_4 agent_5E_5 agent_2E_1 agent_2E_2 agent_2E_3 
##       0.98       0.98       0.98       0.98       0.91       0.96       0.96 
## agent_2E_4 
##       0.98
# ist irgendeiner der MSAi Werte kleiner als .50?
any(kmo$MSAi < 0.50)
## [1] FALSE

EFA

Übersichtliche Ergebnisse erhalten

# Robust: Spalten im Codebook auch bei Umlaut/Encoding-Unterschieden finden
resolve_codebook_col <- function(df, preferred, patterns = NULL) {
  nms <- names(df)
  if (!is.null(preferred) && preferred %in% nms) return(preferred)

  # 1) direkter Regex-Match
  if (!is.null(patterns)) {
    hit <- nms[Reduce(`|`, lapply(patterns, function(p) grepl(p, nms, ignore.case = TRUE)))]
    if (length(hit) > 0) return(hit[1])
  }

  # 2) ASCII-Transliteration (Ü -> Ue/U)
  nms_ascii <- iconv(nms, to = "ASCII//TRANSLIT")
  if (!is.null(preferred)) {
    pref_ascii <- iconv(preferred, to = "ASCII//TRANSLIT")
    if (!is.na(pref_ascii)) {
      idx <- which(tolower(nms_ascii) == tolower(pref_ascii))
      if (length(idx) > 0) return(nms[idx[1]])
    }
  }
  if (!is.null(patterns)) {
    hit <- nms[Reduce(`|`, lapply(patterns, function(p) grepl(p, nms_ascii, ignore.case = TRUE)))]
    if (length(hit) > 0) return(hit[1])
  }

  NA_character_
}

matchItems <- function(efa.result,
                       Codebooka,
                       shortitem = "Itemname",
                       longitem  = "Itemtext",
                       overlap_construct = "Überlappendes Konstrukt",
                       digits = 3,
                       cut = NULL) {

  fs <- psych::fa.sort(efa.result)

  loadings <- as.data.frame(unclass(fs$loadings))

  short_vec <- trimws(as.character(Codebooka[[shortitem]]))
  long_vec  <- as.character(Codebooka[[longitem]])
  overlap_col <- resolve_codebook_col(Codebooka, overlap_construct,
                                      patterns = c("Überlappendes", "Ueberlappendes", "Uberlappendes", "Overlapp"))
  overlap_vec <- if (!is.na(overlap_col)) as.character(Codebooka[[overlap_col]]) else rep(NA_character_, nrow(Codebooka))

  rn <- trimws(rownames(loadings))
  matches <- match(rn, short_vec)

  if (anyNA(matches)) {
    warning("Nicht im Codebook gefunden: ",
            paste(rn[is.na(matches)], collapse = ", "))
  }

  resultEFA <- data.frame(
    Itemtext = long_vec[matches],
    `Überlappendes Konstrukt` = overlap_vec[matches],
    loadings,
    check.names = FALSE
  )

  # NAs optisch leeren
  if ("Überlappendes Konstrukt" %in% names(resultEFA)) resultEFA$`Überlappendes Konstrukt`[is.na(resultEFA$`Überlappendes Konstrukt`)] <- ""

  is.num <- sapply(resultEFA, is.numeric)
  resultEFA[is.num] <- lapply(resultEFA[is.num], round, digits)

  if (!is.null(cut)) {
    tmp <- as.matrix(resultEFA[is.num])
    tmp[abs(tmp) < cut] <- NA
    resultEFA[is.num] <- as.data.frame(tmp)
  }

  resultEFA
}

# Zuordnung: Faktoren -> Kernkonstrukt (basierend auf stärkster Ladung pro Item)
assignFactorConstruct <- function(efa.result,
                                  Codebooka,
                                  shortitem = "Itemname",
                                  construct_col = "Kernkonstrukt",
                                  cut = 0.30) {

  fs <- psych::fa.sort(efa.result)
  L <- as.matrix(unclass(fs$loadings))

  rn <- trimws(rownames(L))
  short_vec <- trimws(as.character(Codebooka[[shortitem]]))
  construct_vec <- if (construct_col %in% names(Codebooka)) as.character(Codebooka[[construct_col]]) else rep(NA_character_, nrow(Codebooka))

  matches <- match(rn, short_vec)

  absL <- abs(L)
  best_factor <- apply(absL, 1, function(x) {
    if (all(is.na(x))) return(NA_character_)
    ix <- which.max(x)
    if (!is.null(cut) && x[ix] < cut) return(NA_character_)
    colnames(L)[ix]
  })
  best_loading <- apply(absL, 1, function(x) if (all(is.na(x))) NA_real_ else max(x, na.rm = TRUE))

  df <- data.frame(
    Itemname = rn,
    Kernkonstrukt = construct_vec[matches],
    Faktor = best_factor,
    Ladung = best_loading,
    stringsAsFactors = FALSE
  )

  df <- df[!is.na(df$Faktor) & !is.na(df$Kernkonstrukt) & df$Kernkonstrukt != "", ]

  out <- do.call(rbind, lapply(split(df, df$Faktor), function(d) {
    counts <- sort(table(d$Kernkonstrukt), decreasing = TRUE)
    top <- names(counts)[1]

    # Tie-Breaker: höchste aufsummierte absolute Ladung
    if (length(counts) > 1 && counts[1] == counts[2]) {
      w <- tapply(d$Ladung, d$Kernkonstrukt, sum, na.rm = TRUE)
      top <- names(sort(w, decreasing = TRUE))[1]
    }

    data.frame(
      Faktor = unique(d$Faktor),
      Zugeordnetes_Konstrukt = top,
      n_items = nrow(d),
      stringsAsFactors = FALSE
    )
  }))

  out <- out[order(out$Faktor), ]
  rownames(out) <- NULL
  out
}

# Items nach Faktor clustern (z.B. PA1 > .30)
factorClusters <- function(efa.result,
                           Codebooka,
                           cut = 0.30,
                           shortitem = "Itemname",
                           longitem  = "Itemtext",
                           overlap_construct = "Überlappendes Konstrukt",
                           core_construct = "Kernkonstrukt",
                           expected_difficulty = "erwartete Schwierigkeit (psychologisch)",
                           digits = 3) {

  fs <- psych::fa.sort(efa.result)
  loadings <- as.data.frame(unclass(fs$loadings))

  item_vec <- trimws(rownames(loadings))
  key_vec  <- trimws(as.character(Codebooka[[shortitem]]))
  idx <- match(item_vec, key_vec)
  overlap_col <- resolve_codebook_col(Codebooka, overlap_construct,
                                    patterns = c("Überlappendes", "Ueberlappendes", "Uberlappendes", "Overlapp"))
  core_col <- resolve_codebook_col(Codebooka, core_construct,
                                 patterns = c("Kernkonstrukt", "Core"))
  diff_col <- resolve_codebook_col(Codebooka, expected_difficulty,
                                 patterns = c("erwartete.*Schwierigkeit", "Schwierigkeit", "difficulty"))


  if (anyNA(idx)) {
    warning("Nicht im Codebook gefunden: ",
            paste(item_vec[is.na(idx)], collapse = ", "))
  }

  base_df <- data.frame(
    Item = item_vec,
    Itemtext = as.character(Codebooka[[longitem]])[idx],
    `Überlappendes Konstrukt` = if (!is.na(overlap_col)) as.character(Codebooka[[overlap_col]])[idx] else NA_character_,
    Kernkonstrukt = if (!is.na(core_col)) as.character(Codebooka[[core_col]])[idx] else NA_character_,
    `Erwartete Schwierigkeit` = if (!is.na(diff_col)) as.character(Codebooka[[diff_col]])[idx] else NA_character_,
    stringsAsFactors = FALSE,
    check.names = FALSE
  )

  # NAs optisch leeren (im Codebook sind Überlappungen oft nicht vergeben)
  if ("Überlappendes Konstrukt" %in% names(base_df)) base_df$`Überlappendes Konstrukt`[is.na(base_df$`Überlappendes Konstrukt`)] <- ""
  if ("Kernkonstrukt" %in% names(base_df)) base_df$Kernkonstrukt[is.na(base_df$Kernkonstrukt)] <- ""
  if ("Erwartete Schwierigkeit" %in% names(base_df)) base_df$`Erwartete Schwierigkeit`[is.na(base_df$`Erwartete Schwierigkeit`)] <- ""

  fac_names <- names(loadings)

  clusters <- lapply(fac_names, function(fac) {
    lad <- loadings[[fac]]
    keep <- which(!is.na(lad) & lad > cut)
    if (length(keep) == 0) return(NULL)

    out <- base_df[keep, c("Item", "Itemtext", "Erwartete Schwierigkeit", "Überlappendes Konstrukt", "Kernkonstrukt")]
    out$Ladung <- round(lad[keep], digits)
    out <- out[order(-out$Ladung), ]
    rownames(out) <- NULL
    out
  })

  names(clusters) <- fac_names
  clusters <- clusters[!sapply(clusters, is.null)]
  clusters
}

printFactorClusters <- function(clusters, solution_label = "EFA", cut = 0.30) {
  for (fac in names(clusters)) {
    cat("\n\n#### ", solution_label, " – ", fac, " (Ladung > ", cut, ")\n\n", sep = "")
    print(knitr::kable(clusters[[fac]]))
  }
}


# Cluster ohne Codebook (z.B. EFA 2. Ordnung, wenn "Items" keine echten Itemnamen sind)
factorClustersSimple <- function(efa.result, cut = 0.30, digits = 3) {
  fs <- psych::fa.sort(efa.result)
  loadings <- as.data.frame(unclass(fs$loadings))
  item_vec <- trimws(rownames(loadings))
  fac_names <- names(loadings)

  clusters <- lapply(fac_names, function(fac) {
    lad <- loadings[[fac]]
    keep <- which(!is.na(lad) & lad > cut)
    if (length(keep) == 0) return(NULL)
    out <- data.frame(
      Item = item_vec[keep],
      Ladung = round(lad[keep], digits),
      stringsAsFactors = FALSE
    )
    out <- out[order(-out$Ladung), ]
    rownames(out) <- NULL
    out
  })

  names(clusters) <- fac_names
  clusters <- clusters[!sapply(clusters, is.null)]
  clusters
}

7-Faktor Lösung (Promax)

# EFA mit 7 Faktoren und Promax-Rotation (oblique)
efa7 <- fa(dat, nfactors = 7, fm = "pa", rotate = "promax")
print(efa7, sort = TRUE, cut = .30)
## Factor Analysis using method =  pa
## Call: fa(r = dat, nfactors = 7, rotate = "promax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            item   PA1   PA4   PA5   PA2   PA3   PA7   PA6   h2   u2 com
## agent_4D_2   71  0.94                                     0.72 0.28 1.1
## agent_4C_2   68  0.93                                     0.71 0.29 1.1
## agent_4C_1   67  0.83                                     0.57 0.43 1.1
## agent_3C_3   52  0.83                                     0.68 0.32 1.2
## agent_2B_5   31  0.81                                     0.64 0.36 1.1
## agent_5A_5   92  0.79                          0.33       0.67 0.33 1.5
## agent_4D_1   70  0.78                                     0.70 0.30 1.1
## agent_2C_2   84  0.73                                     0.69 0.31 1.2
## agent_5D_1   78  0.73        0.35                         0.69 0.31 1.6
## agent_5E_3  100  0.72                                     0.73 0.27 1.3
## agent_4B_5   66  0.63                                     0.69 0.31 1.3
## agent_3E_2   57  0.62                                     0.58 0.42 1.6
## agent_5D_5   82  0.58  0.38                               0.67 0.33 2.1
## agent_4A_2   60  0.58                                     0.42 0.58 1.2
## agent_3B_3   47  0.57                                     0.40 0.60 1.4
## agent_5E_4  101  0.53                                     0.72 0.28 1.5
## agent_4B_3   64  0.49                                     0.63 0.37 1.5
## agent_1E_3   18  0.48                                0.30 0.53 0.47 2.7
## agent_1E_5   20  0.44  0.39                               0.47 0.53 2.7
## agent_1B_2   22  0.40                                     0.51 0.49 2.3
## agent_1E_4   19  0.40                                     0.45 0.55 3.8
## agent_1E_1   16  0.39                                     0.68 0.32 3.6
## agent_5A_3   90  0.37                                     0.31 0.69 2.1
## agent_2C_5   87  0.37                                     0.34 0.66 2.5
## agent_2C_4   86  0.33                                     0.67 0.33 3.1
## agent_1C_5    5                                           0.60 0.40 4.7
## agent_3B_5   49                                           0.13 0.87 3.9
## agent_5B_4   96                                           0.22 0.78 3.7
## agent_2D_3   39        0.84                               0.74 0.26 1.1
## agent_3D_1   53        0.80                               0.78 0.22 1.1
## agent_2B_1   27        0.79                               0.73 0.27 1.1
## agent_1C_4    4        0.78                               0.67 0.33 1.4
## agent_3B_4   48        0.78                               0.75 0.25 1.2
## agent_1B_5   25        0.77                               0.61 0.39 1.1
## agent_3C_1   50        0.76                               0.67 0.33 1.2
## agent_1A_2   12       -0.75                               0.56 0.44 1.5
## agent_2A_3   34        0.74                               0.60 0.40 1.3
## agent_3E_3   58        0.72                               0.69 0.31 1.2
## agent_4B_1   62        0.70                               0.56 0.44 1.1
## agent_2C_3   85        0.69                               0.73 0.27 1.2
## agent_1D_1    6        0.63                               0.59 0.41 1.5
## agent_5A_4   91        0.56                               0.65 0.35 1.7
## agent_5B_3   95        0.51                               0.32 0.68 2.0
## agent_5C_5   77  0.36  0.42                               0.71 0.29 2.3
## agent_5E_5  102  0.35  0.42                               0.70 0.30 2.9
## agent_3C_2   51        0.41                               0.29 0.71 2.0
## agent_2E_2  104        0.40                               0.38 0.62 1.9
## agent_1C_2    2        0.34                               0.13 0.87 2.1
## agent_5D_2   79        0.31  0.30                         0.38 0.62 3.0
## agent_5A_2   89              0.74                         0.71 0.29 1.1
## agent_1C_3    3              0.74                         0.62 0.38 1.2
## agent_4D_3   72  0.33        0.70                         0.74 0.26 1.7
## agent_5C_1   73              0.69                         0.60 0.40 1.3
## agent_5D_4   81  0.33        0.66                         0.73 0.27 1.6
## agent_1A_3   13             -0.63                         0.57 0.43 1.3
## agent_2A_1   32              0.61                         0.67 0.33 1.4
## agent_3A_2   43  0.31        0.61                         0.59 0.41 1.5
## agent_1A_1   11             -0.55       -0.39             0.63 0.37 2.1
## agent_5C_3   75              0.51        0.35             0.65 0.35 2.2
## agent_2E_4  106              0.49                         0.63 0.37 1.6
## agent_3A_3   44              0.47                         0.58 0.42 2.0
## agent_4C_3   69              0.47                         0.62 0.38 2.0
## agent_5B_2   94              0.46                         0.28 0.72 2.0
## agent_5E_2   99              0.44                         0.64 0.36 2.2
## agent_2B_2   28              0.42                         0.58 0.42 2.6
## agent_2E_5   26              0.35                         0.47 0.53 3.7
## agent_3B_1   45              0.34                    0.31 0.43 0.57 3.5
## agent_5C_2   74                    0.73                   0.63 0.37 1.6
## agent_5C_4   76                    0.72                   0.56 0.44 1.3
## agent_3D_3   55                    0.64                   0.50 0.50 1.8
## agent_2A_5   36                    0.63                   0.55 0.45 1.6
## agent_5A_1   88                    0.60                   0.57 0.43 1.3
## agent_5D_3   80                    0.60                   0.55 0.45 1.1
## agent_5E_1   98                    0.50                   0.62 0.38 2.3
## agent_4B_4   65                    0.50        0.31       0.55 0.45 2.0
## agent_4B_2   63                    0.46                   0.64 0.36 2.0
## agent_5B_1   93                    0.42                   0.58 0.42 3.7
## agent_5B_5   97                    0.42                   0.32 0.68 3.2
## agent_4A_3   61                          0.73             0.62 0.38 1.4
## agent_3D_2   54                          0.71             0.62 0.38 1.3
## agent_4A_1   59                          0.64             0.34 0.66 1.4
## agent_3E_1   56                          0.62             0.66 0.34 1.8
## agent_2C_1   83              0.35        0.54             0.57 0.43 2.7
## agent_1D_4    9                          0.50             0.48 0.52 1.6
## agent_2D_1   37              0.44        0.50             0.64 0.36 2.9
## agent_1B_4   24                          0.48             0.35 0.65 2.5
## agent_2D_2   38                          0.47             0.55 0.45 2.2
## agent_3B_2   46                          0.42             0.49 0.51 2.2
## agent_3A_1   42                          0.38  0.30       0.40 0.60 3.1
## agent_1B_1   21                                           0.51 0.49 5.0
## agent_1E_2   17  0.34                         -0.56       0.40 0.60 2.4
## agent_2A_4   35  0.41                          0.55       0.63 0.37 2.3
## agent_2E_3  105  0.43                          0.52       0.60 0.40 2.2
## agent_1A_5   15                                0.51       0.55 0.45 1.6
## agent_2D_4   40                                0.48       0.58 0.42 2.9
## agent_2A_2   33                    0.45        0.45       0.50 0.50 2.5
## agent_1A_4   14                                0.41       0.60 0.40 2.0
## agent_1D_2    7                                0.30       0.32 0.68 3.3
## agent_1D_3    8                                           0.63 0.37 5.3
## agent_1C_1    1                    0.32              0.63 0.62 0.38 1.5
## agent_2B_3   29                    0.39              0.62 0.68 0.32 1.7
## agent_1D_5   10                                      0.61 0.64 0.36 1.5
## agent_2E_1  103                    0.43              0.52 0.47 0.53 2.6
## agent_1B_3   23  0.30                                0.50 0.61 0.39 2.4
## agent_2D_5   41  0.36                    0.33       -0.42 0.35 0.65 4.0
## agent_2B_4   30  0.34                                0.36 0.45 0.55 2.6
## 
##                         PA1   PA4  PA5  PA2  PA3  PA7  PA6
## SS loadings           15.96 12.33 9.65 6.91 6.07 4.48 4.34
## Proportion Var         0.15  0.12 0.09 0.07 0.06 0.04 0.04
## Cumulative Var         0.15  0.27 0.36 0.42 0.48 0.52 0.56
## Proportion Explained   0.27  0.21 0.16 0.12 0.10 0.08 0.07
## Cumulative Proportion  0.27  0.47 0.64 0.75 0.85 0.93 1.00
## 
##  With factor correlations of 
##      PA1  PA4  PA5  PA2  PA3  PA7  PA6
## PA1 1.00 0.69 0.61 0.51 0.43 0.49 0.41
## PA4 0.69 1.00 0.57 0.46 0.47 0.40 0.23
## PA5 0.61 0.57 1.00 0.45 0.39 0.45 0.27
## PA2 0.51 0.46 0.45 1.00 0.34 0.32 0.27
## PA3 0.43 0.47 0.39 0.34 1.00 0.43 0.30
## PA7 0.49 0.40 0.45 0.32 0.43 1.00 0.47
## PA6 0.41 0.23 0.27 0.27 0.30 0.47 1.00
## 
## Mean item complexity =  2.1
## Test of the hypothesis that 7 factors are sufficient.
## 
## df null model =  5565  with the objective function =  102.89 with Chi Square =  34759.12
## df of  the model are 4844  and the objective function was  27.19 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  370 with the empirical chi square  3855.81  with prob <  1 
## The total n.obs was  375  with Likelihood Chi Square =  9059.31  with prob <  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014 
## 
## Tucker Lewis Index of factoring reliability =  0.831
## RMSEA index =  0.048  and the 90 % confidence intervals are  0.047 0.05
## BIC =  -19650.72
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA4  PA5  PA2  PA3  PA7
## Correlation of (regression) scores with factors   0.99 0.98 0.98 0.96 0.96 0.94
## Multiple R square of scores with factors          0.97 0.97 0.95 0.92 0.92 0.89
## Minimum correlation of possible factor scores     0.95 0.94 0.91 0.84 0.84 0.78
##                                                    PA6
## Correlation of (regression) scores with factors   0.94
## Multiple R square of scores with factors          0.88
## Minimum correlation of possible factor scores     0.76

Übersichtliche Darstellung der Ergebnisse

Codebooka<- Codebook[grepl("^agent_", Codebook$Itemname), ]

# Faktoren einem Kernkonstrukt zuordnen
efa7_factor_map <- assignFactorConstruct(efa7, Codebooka, cut = 0.30)
knitr::kable(efa7_factor_map, caption = "EFA (7 Faktoren, promax): Zuordnung Faktor → Kernkonstrukt (Mehrheit; Tie-Breaker = Ladungssumme)")
EFA (7 Faktoren, promax): Zuordnung Faktor → Kernkonstrukt (Mehrheit; Tie-Breaker = Ladungssumme)
Faktor Zugeordnetes_Konstrukt n_items
PA1 ja 25
PA2 ja 11
PA3 ja 11
PA4 ja 21
PA5 ja 18
PA6 ja 7
PA7 ja 8
# Cluster: pro Faktor nur Items mit Ladung > .30
efa7_clusters <- factorClusters(efa7, Codebooka, cut = 0.30)
printFactorClusters(efa7_clusters, solution_label = "EFA (7 Faktoren, promax)", cut = 0.30)

EFA (7 Faktoren, promax) – PA1 (Ladung > 0.3)

Item Itemtext Erwartete Schwierigkeit Überlappendes Konstrukt Kernkonstrukt Ladung
agent_4D_2 Ich verdiene eine bevorzugte Behandlung. schwer Antagonismus nein 0.939
agent_4C_2 Ich sollte stets im Mittelpunkt stehen. schwer Extraversion nein 0.931
agent_4C_1 Meine Bedürfnisse sind wichtiger als die der anderen. mittel Verträglichkeit nein 0.835
agent_3C_3 Ich bin wertvoller als alle anderen. schwer ja 0.833
agent_2B_5 Ich sollte bevorzugt behandelt werden. schwer eventuell antagonistsich ? ja 0.813
agent_5A_5 Ich habe eine besondere Behandlung verdient. schwer Anspruchsdenken (Selbstwert) nein 0.787
agent_4D_1 Ich sollte im Mittelpunkt der Aufmerksamkeit stehen. mittel Extraversion nein 0.776
agent_2C_2 Ich verdiene mehr Anerkennung als die Menschen in meinem Umfeld. mittel ja 0.732
agent_5D_1 Ich bin der Meinung, dass ich besser bin als alle anderen Menschen. schwer Selbstwert ja 0.727
agent_5E_3 Ich sollte im Mittelpunkt stehen, weil ich ein besonderer Mensch bin. leicht ja 0.718
agent_4B_5 Ich erwarte, dass meine Beiträge in Gruppen mehr Beachtung finden als die der anderen. schwer Antagonistischer Narzissmus nein 0.630
agent_3E_2 In einer Gruppe bin ich immer der interessanteste Mensch. schwer Sebstwertgefühl ja 0.617
agent_5D_5 Ich bin davon überzeugt, dass ich nur erfolgreich bin, wenn ich die Führung im Team habe. schwer Dominanzstreben ja 0.583
agent_4A_2 Ich möchte Menschen kontrollieren. schwer ja 0.576
agent_3B_3 Ich sehe mich selbst als allwissend an. schwer Selbstüberschätzung nein 0.568
agent_5E_4 Aufgrund meiner herausragenden Fähigkeiten verdiene ich es, mich in Gruppen durchzusetzen. mittel ja 0.530
agent_4B_3 Ich habe das Gefühl, dass mir außergewöhnliche Chancen und Positionen eher zustehen als anderen. schwer ja 0.495
agent_1E_3 Ich tue alles dafür, um im Mittelpunkt zu stehen. schwer Extraversion nein 0.478
agent_1E_5 Ich bin die einzige Person die eine Gruppenarbeit zum Erfolg führen kann. schwer ja 0.437
agent_2E_3 Ich habe das Gefühl, mir steht mehr zu, als ich bekomme. mittel ja 0.432
agent_2A_4 Ich habe das Gefühle, mir steht mehr zu als ich bekomme. mittel ja 0.413
agent_1B_2 In Gesprächen verdiene ich es immer die Aufmerksamkeit und Anerkennung aller Anwesenden zu bekommen. mittel ja 0.404
agent_1E_4 Wenn andere mich kritisieren, liegt es daran, dass sie mein Niveau nicht verstehen. schwer ja 0.395
agent_1E_1 Ich verdiene es bewundert zu werden. schwer ja 0.391
agent_5A_3 Ich tendiere zu Lügen, wenn sich daraus ein Vorteil für mich ergibt. mittel Verträglichkeit nein 0.372
agent_2C_5 Ich finde, zu viel Rücksicht auf andere hält einen davon ab, wirklich erfolgreich zu sein. schwer Psychopathie nein 0.368
agent_5C_5 Aufgrund meiner überragender Talente und Fähigkeiten, verdiene ich es, Entscheidungen in Gruppen zu treffen. mittel Dominanzstreben ja 0.361
agent_2D_5 Selbstzweifel sind mir fremd. schwer ja 0.355
agent_5E_5 In Gruppensituationen bin ich die Person, die mit der meisten Komptetenz ausgestattet ist. mittel Self esteem nein 0.350
agent_1E_2 Es steht mir zu, dass meine Leistungen anerkannt werden. schwer ja 0.344
agent_2B_4 Ich begebe mich gezielt in soziale Situationen, um mich positiv hervorzutun. mittel ja 0.341
agent_2C_4 Ich lege Wert darauf, dass andere meine überlegene Kompetenz erkennen. schwer ja 0.333
agent_4D_3 Ich bin talentierter als meine Mitmenschen. schwer Selbstüberschätzuzng ja 0.331
agent_5D_4 Ich halte mich für deutlich intelligenter als die Menschen in meinem Umwelt. schwer ja 0.327
agent_3A_2 Ich bin intelligenter als alle anderen. mittel ja 0.310
agent_1B_3 Ich strebe aktiv danach, in jeder Situation stark bewundert zu werden. schwer Soziale Annerkennung nein 0.302

EFA (7 Faktoren, promax) – PA4 (Ladung > 0.3)

Item Itemtext Erwartete Schwierigkeit Überlappendes Konstrukt Kernkonstrukt Ladung
agent_2D_3 Ich bin die Person, die bei Teamarbeiten die Führung übernehmen sollte. schwer ja 0.843
agent_3D_1 In Gruppen übernehme ich selbstverständlich die Führung, weil ich am besten dafür geeignet bin. mittel Extraversion nein 0.800
agent_2B_1 Ich sollte in Gruppen die Leitung übernehmen, weil ich am geeignetsten bin. schwer ja 0.785
agent_1C_4 Es ist am besten für alle, wenn ich die Führung bei schwierigen Entscheidungen übernehme. Mittel Ja 0.778
agent_3B_4 In Gruppen muss ich die Führung übernehmen, weil ich dafür am besten geeignet bin. mittel Dominanz, Extraversion nein 0.778
agent_1B_5 In Gruppenkontexten werden die besten Ergebnisse erzielt, wenn ich die führende Rolle übernehme. mittel Soziale Dominanz nein 0.772
agent_3C_1 Ich halte es für selbstverständlich, dass ich in Gruppen die Führung übernehme. mittel soziale Dominanz nein 0.760
agent_2A_3 Ich übernehme oft die Führung, weil ich befürchte, dass wir ohne mich scheitern. mittel ja 0.736
agent_3E_3 In Gruppen übernehme ich immer die Führung, weil es sonst nicht funktioniert. mittel Soziale Dominanz ja 0.717
agent_4B_1 Ich sehe mich als geborene Führungspersönlichkeit. leicht Extraversion nein 0.701
agent_2C_3 Bei Teamarbeit sollte ich die Führung übernehmen, um erfolgreiche Ergebnisse zu erzielen. mittel Selbstbewusstsein nein 0.691
agent_1D_1 Ich bin überzeugt, dass ich als Führungskraft anderen überlegen bin. mittel ja 0.627
agent_5A_4 Aufgrund meiner besonderen Fähigkeiten sollte ich Führungspositionen übernehmen. mittel Anspruchsdenken (Selbstwert) nein 0.557
agent_5B_3 Ich übernehme gerne die Kontrolle und treffe Entscheidungen eigenständig. mittel ja 0.513
agent_5C_5 Aufgrund meiner überragender Talente und Fähigkeiten, verdiene ich es, Entscheidungen in Gruppen zu treffen. mittel Dominanzstreben ja 0.423
agent_5E_5 In Gruppensituationen bin ich die Person, die mit der meisten Komptetenz ausgestattet ist. mittel Self esteem nein 0.421
agent_3C_2 Ich habe keine Schwierigkeit, meinen Willen durchzusetzen. mittel Durchsetzungsfähigkeit nein 0.409
agent_2E_2 Ich genieße es, mich anderen gegenüber durchzusetzen. mittel ja 0.397
agent_1E_5 Ich bin die einzige Person die eine Gruppenarbeit zum Erfolg führen kann. schwer ja 0.393
agent_5D_5 Ich bin davon überzeugt, dass ich nur erfolgreich bin, wenn ich die Führung im Team habe. schwer Dominanzstreben ja 0.377
agent_1C_2 Eine harmonische Atmosphäre ist mir wichtiger als recht zu behalten. Schwierig Verträglichkeit Nein 0.336
agent_5D_2 In meinem Arbeitsumfeld gehöre ich zu den kompetentesten Arbeiterinnen. mittel ja 0.311

EFA (7 Faktoren, promax) – PA5 (Ladung > 0.3)

Item Itemtext Erwartete Schwierigkeit Überlappendes Konstrukt Kernkonstrukt Ladung
agent_5A_2 Ich bin weitaus kompetenter als der Durchschnittsmensch. mittel antagonistischer Narzissmus nein 0.744
agent_1C_3 Ich bin überzeugt, dass ich kompetenter als die meisten anderen Menschen bin. Schwierig Ja 0.737
agent_4D_3 Ich bin talentierter als meine Mitmenschen. schwer Selbstüberschätzuzng ja 0.702
agent_5C_1 Manchmal denke ich, ich sei anderen überlegen (z.B. intelligenter, fähiger). schwer Selbstbild ja 0.695
agent_5D_4 Ich halte mich für deutlich intelligenter als die Menschen in meinem Umwelt. schwer ja 0.663
agent_2A_1 Ich bin deutlich fähiger als andere. schwer ja 0.614
agent_3A_2 Ich bin intelligenter als alle anderen. mittel ja 0.611
agent_5C_3 Durch meine Kompetenz steche ich aus der Masse hervor. schwer Einzigartigkeitsglaube ja 0.506
agent_2E_4 Ich bin anderen überlegen. schwer ja 0.491
agent_3A_3 Meine Meinung ist meistens besser als die Meinung anderer. mittel ja 0.470
agent_4C_3 Ich bin besser geeignet als andere, um schwierige Aufgaben zu lösen. leicht ja 0.467
agent_5B_2 Ich halte mich für intelligent. mittel Selbstwert nein 0.459
agent_5E_2 Ich halte mich für außergewöhnlich klug und möchte dass andere dies erkennen. mittel ja 0.441
agent_2D_1 Ich bin außergewöhnlich. leicht Selbstwertgefühl ja 0.438
agent_2B_2 Andere sind mir unterlegen. schwer ja 0.423
agent_2E_5 Ich erwarte, dass Andere schlechter abschneiden, als ich. schwer ja 0.354
agent_5D_1 Ich bin der Meinung, dass ich besser bin als alle anderen Menschen. schwer Selbstwert ja 0.351
agent_2C_1 Ich bin außergewöhnlich. mittel ja 0.350
agent_3B_1 Ich will immer besser als andere sein. mittel Leistungsmotivation ja 0.341
agent_5D_2 In meinem Arbeitsumfeld gehöre ich zu den kompetentesten Arbeiterinnen. mittel ja 0.301

EFA (7 Faktoren, promax) – PA2 (Ladung > 0.3)

Item Itemtext Erwartete Schwierigkeit Überlappendes Konstrukt Kernkonstrukt Ladung
agent_5C_2 Ich genieße die Anerkennung und Bewunderung anderer. mittel Extraversion ja 0.726
agent_5C_4 Ich erzähle anderen gern von meinen Erfolgen. leicht Selbstwert ja 0.715
agent_3D_3 Ich berichte anderen Menschen gerne von meinen Erfolgen. ⁠ leicht ja 0.643
agent_2A_5 Ich genieße es, wenn andere mich für meine Leistungen bewundern. leicht ja 0.628
agent_5A_1 Ich genieße es, mit meiner Leistung Aufmerksamkeit auf mich zu ziehen. leicht ja 0.604
agent_5D_3 Es ist mir wichtig, bewusst einen Eindruck zu hinterlassen, der meinen Erfolg und meine Kompetenz zeigt. leicht Soziale Erwünschtheit ja 0.600
agent_5E_1 Ich möchte, dass andere meine besonderen Fähigkeiten anerkennen und bewundern. mittel ja 0.502
agent_4B_4 Mir ist es wichtig, dass meine besonderen Fähigkeiten gesehen und angemessen anerkannt werden. mittel ja 0.496
agent_4B_2 Ich habe das Bedürfnis, meine besonderen Stärken sichtbar zu machen, damit andere erkennen, dass ich herausrage. mittel Selbstwert nein 0.460
agent_2A_2 Es stört mich extrem, wenn meine Leistungen von anderen nicht bemerkt und anerkannt werden. schwer ja 0.450
agent_2E_1 Ich strebe danach, dass Andere mich positiv bewerten. leicht ja 0.434
agent_5B_1 Ich genieße es, im Mittelpunkt zu stehen und meine Erfolge zu präsentieren. leicht Extraversion nein 0.424
agent_5B_5 Ich reagiere empfindlich, wenn jemand meine Leistung in Frage stellt. mittel ja 0.423
agent_2B_3 Es ist mir wichtig, dass andere Menschen mich bewundern. mittel ja 0.385
agent_1C_1 Mir ist es wichtig, von anderen bewundert zu werden. Mittel Ja 0.319

EFA (7 Faktoren, promax) – PA3 (Ladung > 0.3)

Item Itemtext Erwartete Schwierigkeit Überlappendes Konstrukt Kernkonstrukt Ladung
agent_4A_3 Ich werde von meinen Mitmenschen bewundert. mittel ja 0.725
agent_3D_2 Menschen sind von mir beeindruckt. schwer nein 0.710
agent_4A_1 Ich bin großartig, so wie ich bin. schwer ja 0.638
agent_3E_1 Ich bin bewundernswert. mittel Sebstwertgefühl ja 0.615
agent_2C_1 Ich bin außergewöhnlich. mittel ja 0.541
agent_1D_4 Andere Menschen wollen so sein wie ich. schwer ja 0.501
agent_2D_1 Ich bin außergewöhnlich. leicht Selbstwertgefühl ja 0.495
agent_1B_4 Ich schaffe es sehr leicht andere für mich zu gewinnen. mittel ja 0.479
agent_2D_2 Zu wissen, dass ich etwas Besonderes bin, gibt mir viel Kraft. mittel Selbstwertgefühl ja 0.471
agent_3B_2 Ich hinterlasse durch meine herausragenden Leistungen Eindruck bei anderen. schwer Selbstbewertung ja 0.424
agent_3A_1 Mir steht eine grandiose Zukunft zu. schwer Anspruchsdenken nein 0.380
agent_5C_3 Durch meine Kompetenz steche ich aus der Masse hervor. schwer Einzigartigkeitsglaube ja 0.354
agent_2D_5 Selbstzweifel sind mir fremd. schwer ja 0.333

EFA (7 Faktoren, promax) – PA7 (Ladung > 0.3)

Item Itemtext Erwartete Schwierigkeit Überlappendes Konstrukt Kernkonstrukt Ladung
agent_2A_4 Ich habe das Gefühle, mir steht mehr zu als ich bekomme. mittel ja 0.551
agent_2E_3 Ich habe das Gefühl, mir steht mehr zu, als ich bekomme. mittel ja 0.522
agent_1A_5 Ich empfinde es als unfair wenn Leute meine Leistungen nicht anerkennen oder mit Neid oder Distanz reagieren, da mir die Bewunderung und Anerkennung zusteht. mittelschwer ja 0.515
agent_2D_4 Meine Leistungen rechtfertigen Respekt und Anerkennung von anderen Personen. mittel ja 0.477
agent_2A_2 Es stört mich extrem, wenn meine Leistungen von anderen nicht bemerkt und anerkannt werden. schwer ja 0.455
agent_1A_4 Ich erwarte für meine außergewöhnlichen Fähigkeiten und Leistungen Anerkennung anderer zu bekommen, da ich diese für mein Tun auch verdiene. mittelschwer ja 0.415
agent_5A_5 Ich habe eine besondere Behandlung verdient. schwer Anspruchsdenken (Selbstwert) nein 0.330
agent_4B_4 Mir ist es wichtig, dass meine besonderen Fähigkeiten gesehen und angemessen anerkannt werden. mittel ja 0.313
agent_1D_2 Wenn ich die Führung übernehme, erwarte ich Gehorsam und Respekt. schwer ja 0.302
agent_3A_1 Mir steht eine grandiose Zukunft zu. schwer Anspruchsdenken nein 0.300

EFA (7 Faktoren, promax) – PA6 (Ladung > 0.3)

Item Itemtext Erwartete Schwierigkeit Überlappendes Konstrukt Kernkonstrukt Ladung
agent_1C_1 Mir ist es wichtig, von anderen bewundert zu werden. Mittel Ja 0.631
agent_2B_3 Es ist mir wichtig, dass andere Menschen mich bewundern. mittel ja 0.622
agent_1D_5 Ich strebe aktiv nach Bewunderung. schwer ja 0.608
agent_2E_1 Ich strebe danach, dass Andere mich positiv bewerten. leicht ja 0.522
agent_1B_3 Ich strebe aktiv danach, in jeder Situation stark bewundert zu werden. schwer Soziale Annerkennung nein 0.497
agent_2B_4 Ich begebe mich gezielt in soziale Situationen, um mich positiv hervorzutun. mittel ja 0.364
agent_3B_1 Ich will immer besser als andere sein. mittel Leistungsmotivation ja 0.313
agent_1E_3 Ich tue alles dafür, um im Mittelpunkt zu stehen. schwer Extraversion nein 0.302

Faktorbewertung

PA1 = (allgemeiner / agentischer) Narzismus PA2 = Anerkennungsbestreben PA3 = Selbstwertgefühl PA4 = Soziale Dominanz PA5 = Kompetenzerleben PA6 = Bewunderungsbestreben PA7 = Anspruchsdenken

Spezielle Ausgabe: Gruppe 3B (5 Items)

agent3b_items <- c("agent_3B_1","agent_3B_2","agent_3B_3","agent_3B_4","agent_3B_5")

# Ladungen aus der 7-Faktor-Promax-Lösung
L <- as.data.frame(unclass(efa7$loadings))
L$Itemname <- rownames(L)

L_sub <- L[L$Itemname %in% agent3b_items, , drop = FALSE]
L_sub <- L_sub[match(agent3b_items, L_sub$Itemname), , drop = FALSE]  # in fester Reihenfolge

# Codebook-Metadaten dazu (Itemtext, Kern-/Overlap-Konstrukt, erwartete Schwierigkeit)
short_vec <- trimws(as.character(Codebooka$Itemname))
matches <- match(L_sub$Itemname, short_vec)

diff_col <- resolve_codebook_col(Codebooka, "erwartete Schwierigkeit (psychologisch)",
                                 patterns = c("erwartete", "Schwierigkeit"))
over_col <- resolve_codebook_col(Codebooka, "Überlappendes Konstrukt",
                                 patterns = c("Überlappendes", "Ueberlappendes", "Uberlappendes", "Overlapp"))

meta <- data.frame(
  Itemname = L_sub$Itemname,
  Itemtext = as.character(Codebooka$Itemtext[matches]),
  Kernkonstrukt = as.character(Codebooka$Kernkonstrukt[matches]),
  `Überlappendes Konstrukt` = if (!is.na(over_col)) as.character(Codebooka[[over_col]][matches]) else NA_character_,
  `Erwartete Schwierigkeit` = if (!is.na(diff_col)) as.character(Codebooka[[diff_col]][matches]) else NA_character_,
  stringsAsFactors = FALSE
)

load_mat <- L_sub[, setdiff(names(L_sub), "Itemname"), drop = FALSE]
load_mat <- as.data.frame(lapply(load_mat, function(x) round(as.numeric(x), 3)))

out_agent3b <- cbind(meta, load_mat)

knitr::kable(out_agent3b,
             caption = "Faktorladungen der fünf agent_3B Items (EFA: 7 Faktoren, Promax)")
Faktorladungen der fünf agent_3B Items (EFA: 7 Faktoren, Promax)
Itemname Itemtext Kernkonstrukt Überlappendes.Konstrukt Erwartete.Schwierigkeit PA1 PA4 PA5 PA2 PA3 PA7 PA6
agent_3B_1 Ich will immer besser als andere sein. ja Leistungsmotivation mittel -0.070 0.153 0.341 0.241 -0.036 -0.078 0.313
agent_3B_2 Ich hinterlasse durch meine herausragenden Leistungen Eindruck bei anderen. ja Selbstbewertung schwer -0.031 0.146 0.267 0.122 0.424 -0.045 -0.016
agent_3B_3 Ich sehe mich selbst als allwissend an. nein Selbstüberschätzung schwer 0.568 0.011 0.210 -0.100 -0.029 -0.101 0.043
agent_3B_4 In Gruppen muss ich die Führung übernehmen, weil ich dafür am besten geeignet bin. nein Dominanz, Extraversion mittel 0.124 0.778 0.041 -0.029 -0.083 -0.047 0.137
agent_3B_5 Mir ist Anerkennung egal, solange das Team Erfolg hat. nein NA mittel 0.208 -0.066 0.068 0.183 -0.167 0.017 0.097

7-Faktor Lösung (geominq)

# EFA mit 7 Faktoren und Promax-Rotation (oblique)
efa1.2 <- fa(dat, nfactors = 7, fm="pa", rotate="geominQ") # geominQ oblique
print(efa7, sort = TRUE, cut = .30)
## Factor Analysis using method =  pa
## Call: fa(r = dat, nfactors = 7, rotate = "promax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##            item   PA1   PA4   PA5   PA2   PA3   PA7   PA6   h2   u2 com
## agent_4D_2   71  0.94                                     0.72 0.28 1.1
## agent_4C_2   68  0.93                                     0.71 0.29 1.1
## agent_4C_1   67  0.83                                     0.57 0.43 1.1
## agent_3C_3   52  0.83                                     0.68 0.32 1.2
## agent_2B_5   31  0.81                                     0.64 0.36 1.1
## agent_5A_5   92  0.79                          0.33       0.67 0.33 1.5
## agent_4D_1   70  0.78                                     0.70 0.30 1.1
## agent_2C_2   84  0.73                                     0.69 0.31 1.2
## agent_5D_1   78  0.73        0.35                         0.69 0.31 1.6
## agent_5E_3  100  0.72                                     0.73 0.27 1.3
## agent_4B_5   66  0.63                                     0.69 0.31 1.3
## agent_3E_2   57  0.62                                     0.58 0.42 1.6
## agent_5D_5   82  0.58  0.38                               0.67 0.33 2.1
## agent_4A_2   60  0.58                                     0.42 0.58 1.2
## agent_3B_3   47  0.57                                     0.40 0.60 1.4
## agent_5E_4  101  0.53                                     0.72 0.28 1.5
## agent_4B_3   64  0.49                                     0.63 0.37 1.5
## agent_1E_3   18  0.48                                0.30 0.53 0.47 2.7
## agent_1E_5   20  0.44  0.39                               0.47 0.53 2.7
## agent_1B_2   22  0.40                                     0.51 0.49 2.3
## agent_1E_4   19  0.40                                     0.45 0.55 3.8
## agent_1E_1   16  0.39                                     0.68 0.32 3.6
## agent_5A_3   90  0.37                                     0.31 0.69 2.1
## agent_2C_5   87  0.37                                     0.34 0.66 2.5
## agent_2C_4   86  0.33                                     0.67 0.33 3.1
## agent_1C_5    5                                           0.60 0.40 4.7
## agent_3B_5   49                                           0.13 0.87 3.9
## agent_5B_4   96                                           0.22 0.78 3.7
## agent_2D_3   39        0.84                               0.74 0.26 1.1
## agent_3D_1   53        0.80                               0.78 0.22 1.1
## agent_2B_1   27        0.79                               0.73 0.27 1.1
## agent_1C_4    4        0.78                               0.67 0.33 1.4
## agent_3B_4   48        0.78                               0.75 0.25 1.2
## agent_1B_5   25        0.77                               0.61 0.39 1.1
## agent_3C_1   50        0.76                               0.67 0.33 1.2
## agent_1A_2   12       -0.75                               0.56 0.44 1.5
## agent_2A_3   34        0.74                               0.60 0.40 1.3
## agent_3E_3   58        0.72                               0.69 0.31 1.2
## agent_4B_1   62        0.70                               0.56 0.44 1.1
## agent_2C_3   85        0.69                               0.73 0.27 1.2
## agent_1D_1    6        0.63                               0.59 0.41 1.5
## agent_5A_4   91        0.56                               0.65 0.35 1.7
## agent_5B_3   95        0.51                               0.32 0.68 2.0
## agent_5C_5   77  0.36  0.42                               0.71 0.29 2.3
## agent_5E_5  102  0.35  0.42                               0.70 0.30 2.9
## agent_3C_2   51        0.41                               0.29 0.71 2.0
## agent_2E_2  104        0.40                               0.38 0.62 1.9
## agent_1C_2    2        0.34                               0.13 0.87 2.1
## agent_5D_2   79        0.31  0.30                         0.38 0.62 3.0
## agent_5A_2   89              0.74                         0.71 0.29 1.1
## agent_1C_3    3              0.74                         0.62 0.38 1.2
## agent_4D_3   72  0.33        0.70                         0.74 0.26 1.7
## agent_5C_1   73              0.69                         0.60 0.40 1.3
## agent_5D_4   81  0.33        0.66                         0.73 0.27 1.6
## agent_1A_3   13             -0.63                         0.57 0.43 1.3
## agent_2A_1   32              0.61                         0.67 0.33 1.4
## agent_3A_2   43  0.31        0.61                         0.59 0.41 1.5
## agent_1A_1   11             -0.55       -0.39             0.63 0.37 2.1
## agent_5C_3   75              0.51        0.35             0.65 0.35 2.2
## agent_2E_4  106              0.49                         0.63 0.37 1.6
## agent_3A_3   44              0.47                         0.58 0.42 2.0
## agent_4C_3   69              0.47                         0.62 0.38 2.0
## agent_5B_2   94              0.46                         0.28 0.72 2.0
## agent_5E_2   99              0.44                         0.64 0.36 2.2
## agent_2B_2   28              0.42                         0.58 0.42 2.6
## agent_2E_5   26              0.35                         0.47 0.53 3.7
## agent_3B_1   45              0.34                    0.31 0.43 0.57 3.5
## agent_5C_2   74                    0.73                   0.63 0.37 1.6
## agent_5C_4   76                    0.72                   0.56 0.44 1.3
## agent_3D_3   55                    0.64                   0.50 0.50 1.8
## agent_2A_5   36                    0.63                   0.55 0.45 1.6
## agent_5A_1   88                    0.60                   0.57 0.43 1.3
## agent_5D_3   80                    0.60                   0.55 0.45 1.1
## agent_5E_1   98                    0.50                   0.62 0.38 2.3
## agent_4B_4   65                    0.50        0.31       0.55 0.45 2.0
## agent_4B_2   63                    0.46                   0.64 0.36 2.0
## agent_5B_1   93                    0.42                   0.58 0.42 3.7
## agent_5B_5   97                    0.42                   0.32 0.68 3.2
## agent_4A_3   61                          0.73             0.62 0.38 1.4
## agent_3D_2   54                          0.71             0.62 0.38 1.3
## agent_4A_1   59                          0.64             0.34 0.66 1.4
## agent_3E_1   56                          0.62             0.66 0.34 1.8
## agent_2C_1   83              0.35        0.54             0.57 0.43 2.7
## agent_1D_4    9                          0.50             0.48 0.52 1.6
## agent_2D_1   37              0.44        0.50             0.64 0.36 2.9
## agent_1B_4   24                          0.48             0.35 0.65 2.5
## agent_2D_2   38                          0.47             0.55 0.45 2.2
## agent_3B_2   46                          0.42             0.49 0.51 2.2
## agent_3A_1   42                          0.38  0.30       0.40 0.60 3.1
## agent_1B_1   21                                           0.51 0.49 5.0
## agent_1E_2   17  0.34                         -0.56       0.40 0.60 2.4
## agent_2A_4   35  0.41                          0.55       0.63 0.37 2.3
## agent_2E_3  105  0.43                          0.52       0.60 0.40 2.2
## agent_1A_5   15                                0.51       0.55 0.45 1.6
## agent_2D_4   40                                0.48       0.58 0.42 2.9
## agent_2A_2   33                    0.45        0.45       0.50 0.50 2.5
## agent_1A_4   14                                0.41       0.60 0.40 2.0
## agent_1D_2    7                                0.30       0.32 0.68 3.3
## agent_1D_3    8                                           0.63 0.37 5.3
## agent_1C_1    1                    0.32              0.63 0.62 0.38 1.5
## agent_2B_3   29                    0.39              0.62 0.68 0.32 1.7
## agent_1D_5   10                                      0.61 0.64 0.36 1.5
## agent_2E_1  103                    0.43              0.52 0.47 0.53 2.6
## agent_1B_3   23  0.30                                0.50 0.61 0.39 2.4
## agent_2D_5   41  0.36                    0.33       -0.42 0.35 0.65 4.0
## agent_2B_4   30  0.34                                0.36 0.45 0.55 2.6
## 
##                         PA1   PA4  PA5  PA2  PA3  PA7  PA6
## SS loadings           15.96 12.33 9.65 6.91 6.07 4.48 4.34
## Proportion Var         0.15  0.12 0.09 0.07 0.06 0.04 0.04
## Cumulative Var         0.15  0.27 0.36 0.42 0.48 0.52 0.56
## Proportion Explained   0.27  0.21 0.16 0.12 0.10 0.08 0.07
## Cumulative Proportion  0.27  0.47 0.64 0.75 0.85 0.93 1.00
## 
##  With factor correlations of 
##      PA1  PA4  PA5  PA2  PA3  PA7  PA6
## PA1 1.00 0.69 0.61 0.51 0.43 0.49 0.41
## PA4 0.69 1.00 0.57 0.46 0.47 0.40 0.23
## PA5 0.61 0.57 1.00 0.45 0.39 0.45 0.27
## PA2 0.51 0.46 0.45 1.00 0.34 0.32 0.27
## PA3 0.43 0.47 0.39 0.34 1.00 0.43 0.30
## PA7 0.49 0.40 0.45 0.32 0.43 1.00 0.47
## PA6 0.41 0.23 0.27 0.27 0.30 0.47 1.00
## 
## Mean item complexity =  2.1
## Test of the hypothesis that 7 factors are sufficient.
## 
## df null model =  5565  with the objective function =  102.89 with Chi Square =  34759.12
## df of  the model are 4844  and the objective function was  27.19 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  370 with the empirical chi square  3855.81  with prob <  1 
## The total n.obs was  375  with Likelihood Chi Square =  9059.31  with prob <  0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014 
## 
## Tucker Lewis Index of factoring reliability =  0.831
## RMSEA index =  0.048  and the 90 % confidence intervals are  0.047 0.05
## BIC =  -19650.72
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA4  PA5  PA2  PA3  PA7
## Correlation of (regression) scores with factors   0.99 0.98 0.98 0.96 0.96 0.94
## Multiple R square of scores with factors          0.97 0.97 0.95 0.92 0.92 0.89
## Minimum correlation of possible factor scores     0.95 0.94 0.91 0.84 0.84 0.78
##                                                    PA6
## Correlation of (regression) scores with factors   0.94
## Multiple R square of scores with factors          0.88
## Minimum correlation of possible factor scores     0.76

Extrahieren der Faktorkorrelationsmatrix phi

fa2<- efa1.2$Phi
round(fa2,2)
##      PA4  PA5  PA1  PA2  PA6  PA3  PA7
## PA4 1.00 0.56 0.48 0.40 0.42 0.26 0.14
## PA5 0.56 1.00 0.43 0.40 0.43 0.21 0.24
## PA1 0.48 0.43 1.00 0.40 0.37 0.19 0.07
## PA2 0.40 0.40 0.40 1.00 0.38 0.31 0.21
## PA6 0.42 0.43 0.37 0.38 1.00 0.32 0.27
## PA3 0.26 0.21 0.19 0.31 0.32 1.00 0.13
## PA7 0.14 0.24 0.07 0.21 0.27 0.13 1.00
cor.plot(fa2)

fa_parallel.ho <- fa.parallel(fa2,fm="ml", fa="pc", n.iter=2000, SMC=FALSE, sim=TRUE, quant=0.95, plot=TRUE, n.obs = nrow(dat))   # da wir an dieser Stelle eine Korrelationsmatrix als Datengrundlage verwenden, müssen wir hier angeben, wie viele Leute in dem Ursprungsdatensatz vorhanden waren (= n.obs) 

## Parallel analysis suggests that the number of factors =  NA  and the number of components =  1
print(fa_parallel.ho)
## Call: fa.parallel(x = fa2, n.obs = nrow(dat), fm = "ml", fa = "pc", 
##     n.iter = 2000, SMC = FALSE, sim = TRUE, quant = 0.95, plot = TRUE)
## Parallel analysis suggests that the number of factors =  NA  and the number of components =  1 
## 
##  Eigen Values of 
## 
##  eigen values of factors
## [1]  2.39  0.23  0.10 -0.01 -0.04 -0.11 -0.17
## 
##  eigen values of simulated factors
## [1] NA
## 
##  eigen values of components 
## [1] 2.98 0.99 0.86 0.63 0.58 0.53 0.42
## 
##  eigen values of simulated components
## [1] 1.20 1.11 1.05 1.00 0.94 0.88 0.81
which(fa_parallel.ho$pc.values>1)
## [1] 1

Faktorenanalyse durchführen (EFA höherer Ordnung)

efa2.ord <- fa(fa2, nfactors = 2, fm="pa", rotate="geominQ")
efa2.ord.2 <- fa(fa2, nfactors = 2, fm="pa", rotate="varimax")
print(efa2.ord, digits=2,  sort=TRUE, cut=.3)
## Factor Analysis using method =  pa
## Call: fa(r = fa2, nfactors = 2, rotate = "geominQ", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##     item   PA1   PA2   h2   u2 com
## PA4    1  0.76       0.58 0.42 1.0
## PA1    3  0.68       0.43 0.57 1.0
## PA5    2  0.57       0.49 0.51 1.2
## PA2    4  0.35  0.33 0.38 0.62 2.0
## PA6    5        0.52 0.47 0.53 1.4
## PA7    7        0.50 0.19 0.81 1.1
## PA3    6        0.36 0.19 0.81 1.2
## 
##                        PA1  PA2
## SS loadings           1.73 0.99
## Proportion Var        0.25 0.14
## Cumulative Var        0.25 0.39
## Proportion Explained  0.64 0.36
## Cumulative Proportion 0.64 1.00
## 
##  With factor correlations of 
##      PA1  PA2
## PA1 1.00 0.62
## PA2 0.62 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 factors are sufficient.
## 
## df null model =  21  with the objective function =  1.57
## df of  the model are 8  and the objective function was  0.05 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.05 
## 
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA2
## Correlation of (regression) scores with factors   0.89 0.80
## Multiple R square of scores with factors          0.79 0.64
## Minimum correlation of possible factor scores     0.57 0.29
print(efa2.ord.2, digits=2,  sort=TRUE)
## Factor Analysis using method =  pa
## Call: fa(r = fa2, nfactors = 2, rotate = "varimax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##     item  PA1  PA2   h2   u2 com
## PA4    1 0.73 0.22 0.58 0.42 1.2
## PA1    3 0.64 0.15 0.43 0.57 1.1
## PA5    2 0.61 0.33 0.49 0.51 1.5
## PA2    4 0.46 0.41 0.38 0.62 2.0
## PA6    5 0.41 0.55 0.47 0.53 1.9
## PA7    7 0.06 0.43 0.19 0.81 1.0
## PA3    6 0.23 0.37 0.19 0.81 1.7
## 
##                        PA1  PA2
## SS loadings           1.76 0.97
## Proportion Var        0.25 0.14
## Cumulative Var        0.25 0.39
## Proportion Explained  0.64 0.36
## Cumulative Proportion 0.64 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 2 factors are sufficient.
## 
## df null model =  21  with the objective function =  1.57
## df of  the model are 8  and the objective function was  0.05 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.05 
## 
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1   PA2
## Correlation of (regression) scores with factors   0.83  0.68
## Multiple R square of scores with factors          0.69  0.46
## Minimum correlation of possible factor scores     0.37 -0.08

Resümé & Rückschlüsse

PA1 - Items (Agentischer Narzissmus)

agent_4D_2 Ich verdiene eine bevorzugte Behandlung. -schwer agent_4C_2 Ich sollte stets im Mittelpunkt stehen.- schwer agent_5A_5 Ich habe eine besondere Behandlung verdient. - schwer agent_5E_3 Ich sollte im Mittelpunkt stehen, weil ich ein besonderer Mensch bin. - leicht agent_3E_2 In einer Gruppe bin ich immer der interessanteste Mensch. - schwer

PA2 - Items (Anerkennungsbestreben)

agent_5C_2 Ich genieße die Anerkennung und Bewunderung anderer. - mittel agent_5C_4 Ich erzähle anderen gern von meinen Erfolgen. - leicht agent_2A_5 Ich genieße es, wenn andere mich für meine Leistungen bewundern. - leicht agent_5D_3 Es ist mir wichtig, bewusst einen Eindruck zu hinterlassen, der meinen Erfolg und meine Kompetenz zeigt.- leicht agent_5E_1 Ich möchte, dass andere meine besonderen Fähigkeiten anerkennen und bewundern. - mittel agent_4B_4 Mir ist es wichtig, dass meine besonderen Fähigkeiten gesehen und angemessen anerkannt werden. mittel agent_2A_2 Es stört mich extrem, wenn meine Leistungen von anderen nicht bemerkt und anerkannt werden. - schwer

PA3 - Items (Selbstwertgefühl)

agent_4A_1 Ich bin großartig, so wie ich bin. - schwer agent_4A_3 Ich werde von meinen Mitmenschen bewundert. - mittel agent_3D_2 Menschen sind von mir beeindruckt. - schwer agent_3E_1 Ich bin bewundernswert. - mittel agent_1D_4 Andere Menschen wollen so sein wie ich.- schwer agent_2D_1 Ich bin außergewöhnlich. - leicht agent_2D_2 Zu wissen, dass ich etwas Besonderes bin, gibt mir viel Kraft. - mittel agent_3B_2 Ich hinterlasse durch meine herausragenden Leistungen Eindruck bei anderen. - schwer

PA4 - Items (Soziale Dominanz)

agent_2D_3 Ich bin die Person, die bei Teamarbeiten die Führung übernehmen sollte. - schwer agent_3D_1 In Gruppen übernehme ich selbstverständlich die Führung, weil ich am besten dafür geeignet bin. - mittel agent_2B_1 Ich sollte in Gruppen die Leitung übernehmen, weil ich am geeignetsten bin. - schwer agent_1C_4 Es ist am besten für alle, wenn ich die Führung bei schwierigen Entscheidungen übernehme. - Mittel agent_1B_5 In Gruppenkontexten werden die besten Ergebnisse erzielt, wenn ich die führende Rolle übernehme. - mittel agent_3C_1 Ich halte es für selbstverständlich, dass ich in Gruppen die Führung übernehme. - mittel agent_2A_3 Ich übernehme oft die Führung, weil ich befürchte, dass wir ohne mich scheitern. - mittel agent_1D_1 Ich bin überzeugt, dass ich als Führungskraft anderen überlegen bin. - mittel agent_5B_3 Ich übernehme gerne die Kontrolle und treffe Entscheidungen eigenständig. - mittel

PA5 - Items (Kompetenzerleben)

agent_5A_2 Ich bin weitaus kompetenter als der Durchschnittsmensch. - mittel agent_1C_3 Ich bin überzeugt, dass ich kompetenter als die meisten anderen Menschen bin. - Schwierig agent_4D_3 Ich bin talentierter als meine Mitmenschen. - schwer agent_3A_2 Ich bin intelligenter als alle anderen. - mittel agent_3A_3 Meine Meinung ist meistens besser als die Meinung anderer. - mittel agent_4C_3 Ich bin besser geeignet als andere, um schwierige Aufgaben zu lösen. - leicht agent_5B_2 Ich halte mich für intelligent. - mittel

PA6 - Items (Bewunderungsbestreben)

agent_1C_1 Mir ist es wichtig, von anderen bewundert zu werden. - Mittel agent_2B_3 Es ist mir wichtig, dass andere Menschen mich bewundern. - mittel agent_1D_5 Ich strebe aktiv nach Bewunderung. - schwer agent_2E_1 Ich strebe danach, dass Andere mich positiv bewerten. - leicht agent_1B_3 Ich strebe aktiv danach, in jeder Situation stark bewundert zu werden. - schwer agent_2B_4 Ich begebe mich gezielt in soziale Situationen, um mich positiv hervorzutun. - mittel

PA7 - Items (Anspruchsdenken)

agent_2A_4 Ich habe das Gefühle, mir steht mehr zu als ich bekomme. - mittel agent_2E_3 Ich habe das Gefühl, mir steht mehr zu, als ich bekomme. - mittel agent_1A_5 Ich empfinde es als unfair wenn Leute meine Leistungen nicht anerkennen oder mit Neid oder Distanz reagieren, da mir die Bewunderung und Anerkennung zusteht. - mittelschwer agent_2D_4 Meine Leistungen rechtfertigen Respekt und Anerkennung von anderen Personen. - mittel agent_5A_5 Ich habe eine besondere Behandlung verdient. - schwer

Gruppe 3B - Items Bewertung

agent_3B_1 Ich will immer besser als andere sein.

Item 1 lädt auf Faktor PA5 mit 0,341 ✔ Inhaltlich klar Kompetenzerleben ⚠ Statistisch nur moderat ➡ akzeptabel, aber kein starkes Ankeritem

agent_3B_2 Ich hinterlasse durch meine herausragenden Leistungen Eindruck bei anderen.

Item 2 läd auf Faktor PA3 mit 0,424 ✔ Inhaltlich kompetenzsbezogen + soziale Wirkung ⚠ Ebenfalls grenzwertige Ladung ➡ Trägt zum Faktor bei, aber nicht sehr trennscharf

agent_3B_3 Ich sehe mich selbst als allwissend an.

Item 3 läd auf Faktor PA1 mit 0,568 ✔ Saubere, klare Ladung ✔ Inhaltlich stark selbstüberhöhter Selbstwert ➡ gutes Item, klar faktorzugehörig

agent_3B_4 In Gruppen muss ich die Führung übernehmen, weil ich dafür am besten geeignet bin.

Item 4 läd auf Faktor PA2 mit 0,778 ✔ Saubere, klare Ladung ✔ Inhaltlich stark anhand des Anerkennungsbestrebend ➡ gutes Item, klar faktorzugehörig

agent_3B_5 Mir ist Anerkennung egal, solange das Team Erfolg hat.

Item 5 läd auf Faktor PA2 mit 0,183 ❌ Sehr schwach ❌ Inhaltlich eher anti-narzisstisch / kollektivistisch ➡ problematisch, misst vermutlich etwas anderes

Das letzte Item ist eindeutig „nicht so gut“ – sowohl statistisch als auch inhaltlich.