library(WDI)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.6
## ✔ forcats 1.0.1 ✔ stringr 1.6.0
## ✔ ggplot2 4.0.1 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.2
## ✔ purrr 1.2.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(broom)
library(dplyr)
library(knitr)
library(ggplot2)
Çocuk sağlığı ve özellikle 5 yaş altı ölüm oranı; sağlık hizmetlerine erişim düzeyi, aşılama oranları, anne sağlığı ve anne eğitim seviyesi, kişi başına düşen gelir ve sağlık harcamaları gibi sosyo-ekonomik faktörlerden önemli ölçüde etkilenmektedir. Bunun yanı sıra temiz içme suyuna ve sanitasyon hizmetlerine erişim, yeterli beslenme koşulları ve sağlıklı yaşam çevresi çocuk ölümlerini azaltmada kritik rol oynamaktadır. Yoksulluk, düşük eğitim düzeyi ve sağlık altyapısının yetersiz olduğu ülkelerde çocuk ölüm oranlarının daha yüksek olduğu görülmektedir.
U5MR it = β0 + β1 CHEPC it + β2 MMR it + β3 WATER it + β4 IMM it + β5 EDU it + ε it
Bağımlı Değişken (1)
5 Yaş Altı Ölüm Oranı (Under-5 Mortality Rate)
WDI Adı: Mortality rate, under-5 (per 1,000 live births)
WDI Kodu: SH.DYN.MORT
Bağımsız Değişkenler (5)
1️⃣ Kişi Başına Düşen Sağlık Harcaması
WDI Adı: Current health expenditure per capita (current US$)
WDI Kodu: SH.XPD.CHEX.PC.CD
2️⃣ Anne Ölüm Oranı
WDI Adı: Maternal mortality ratio (modeled estimate, per 100,000 live births)
WDI Kodu: SH.STA.MMRT
3️⃣ Temel İçme Suyuna Erişim Oranı
WDI Adı: People using at least basic drinking water services (% of population)
WDI Kodu: SH.H2O.BASW.ZS
4️⃣ Aşılama Oranı (Kızamık)
WDI Adı: Immunization, measles (% of children ages 12–23 months)
WDI Kodu: SH.IMM.MEAS
5️⃣ İlköğretimde Net Okullaşma Oranı
WDI Adı: School enrollment, primary (% net)
WDI Kodu: SE.PRM.NENR
1️⃣ Kişi Başına Düşen Sağlık Harcaması
WDI Adı: Current health expenditure per capita (current US$)
WDI Kodu: SH.XPD.CHEX.PC.CD
Regresyon denklemim şöyle: ***U5MR it = β0 + β1 CHEPC it
gostergeler <- c(
U5MR = "SH.DYN.MORT",
CHEPC = "SH.XPD.CHEX.PC.CD",
MMR = "SH.STA.MMRT",
WATER = "SH.H2O.BASW.ZS",
IMM = "SH.IMM.MEAS",
EDU = "SE.PRM.NENR" )
veri <- WDI(indicator = gostergeler, country = "all", start = 2005, end = 2015, extra = TRUE)
veri_temiz <- veri %>%
filter(region %in% c("Europe & Central Asia", "Middle East & North Africa"), country!= "Aggregates") %>%
filter(!is.na(U5MR) &
!is.na(CHEPC) &
!is.na(MMR) &
!is.na(WATER) &
!is.na(IMM) &
!is.na(EDU))
df_2005 <- veri_temiz %>% filter(year == 2005)
df_2005_temiz <- df_2005 %>% filter(!is.na(CHEPC) & !is.na(U5MR))
ggplot(df_2005_temiz, aes(x = CHEPC, y = U5MR)) +
geom_point(size = 3) +
geom_smooth(method = "lm", se = FALSE) +
labs(x = "Kisi basina dusen saglik harcamasi",
y = "Cocuklarda 5 yas alti olum orani",
title = "Secili ulkelerde cocuk sagligi ve olum oranlari") +
theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2005 <- lm(CHEPC ~ U5MR, data = df_2005_temiz)
summary(regresyon_2005)
##
## Call:
## lm(formula = CHEPC ~ U5MR, data = df_2005_temiz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1752.0 -1161.7 -526.3 1305.1 3586.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2422.10 282.74 8.567 1.64e-11 ***
## U5MR -54.47 11.64 -4.682 2.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1503 on 52 degrees of freedom
## Multiple R-squared: 0.2965, Adjusted R-squared: 0.283
## F-statistic: 21.92 on 1 and 52 DF, p-value: 2.076e-05
df_ulkeler_temiz <- veri_temiz %>%
filter(!is.na(CHEPC) & !is.na(U5MR))
df_2005 <- df_ulkeler_temiz %>% filter(year == 2005)
df_2010 <- df_ulkeler_temiz %>% filter(year == 2010)
df_2015 <- df_ulkeler_temiz %>% filter(year == 2015)
Diğer yılların da analizi aşağıdaki gibidir.
df_2010_temiz <- df_2010 %>% filter(!is.na(CHEPC) & !is.na(U5MR))
ggplot(df_2010_temiz, aes(x = CHEPC, y = U5MR)) +
geom_point(size = 3) +
geom_smooth(method = "lm", se = FALSE) +
labs(x = "Kisi basina dusen saglik harcamasi",
y = "Cocuklarda 5 yas alti olum orani",
title = "Secili ulkelerde cocuk sagligi ve olum oranlari") +
theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2010 <- lm(CHEPC ~ U5MR, data = df_2010_temiz)
summary(regresyon_2010)
##
## Call:
## lm(formula = CHEPC ~ U5MR, data = df_2010_temiz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2352.1 -1340.8 -636.2 1110.2 4907.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3322.42 361.22 9.198 1.44e-12 ***
## U5MR -112.35 21.99 -5.109 4.52e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1825 on 53 degrees of freedom
## Multiple R-squared: 0.3299, Adjusted R-squared: 0.3173
## F-statistic: 26.1 on 1 and 53 DF, p-value: 4.525e-06
,-2015 yılı icin :
df_2015_temiz <- df_2015 %>% filter(!is.na(CHEPC) & !is.na(U5MR))
ggplot(df_2015_temiz, aes(x = CHEPC, y = U5MR)) +
geom_point(size = 3) +
geom_smooth(method = "lm", se = FALSE) +
labs(x = "Kisi basina dusen saglik harcamasi",
y = "Cocuklarda 5 yas alti olum orani",
title = "Secili ulkelerde cocuk sagligi ve olum oranlari") +
theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
regresyon_2015 <- lm(CHEPC ~ U5MR, data = df_2015_temiz)
summary(regresyon_2015)
##
## Call:
## lm(formula = CHEPC ~ U5MR, data = df_2015_temiz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2114.8 -1412.1 -794.8 1549.5 6815.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2858.04 349.65 8.174 5.17e-11 ***
## U5MR -93.26 25.73 -3.624 0.000642 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1922 on 54 degrees of freedom
## Multiple R-squared: 0.1957, Adjusted R-squared: 0.1808
## F-statistic: 13.14 on 1 and 54 DF, p-value: 0.0006415
Şimdi sonucları tablo haline getirelim ve analizimizi yapalım.
reg_tablo <- dplyr::bind_rows(
tidy(regresyon_2005) %>% mutate(year = 2005),
tidy(regresyon_2010) %>% mutate(year = 2010),
tidy(regresyon_2015) %>% mutate(year = 2015)
)
knitr::kable(
reg_tablo,
digits = 7,
caption = "YILLARA GORE REGRESYON KATSAYILARI"
)
| term | estimate | std.error | statistic | p.value | year |
|---|---|---|---|---|---|
| (Intercept) | 2422.10097 | 282.73643 | 8.566639 | 0.0000000 | 2005 |
| U5MR | -54.47295 | 11.63563 | -4.681563 | 0.0000208 | 2005 |
| (Intercept) | 3322.41859 | 361.21790 | 9.197824 | 0.0000000 | 2010 |
| U5MR | -112.34925 | 21.99200 | -5.108642 | 0.0000045 | 2010 |
| (Intercept) | 2858.04351 | 349.64642 | 8.174096 | 0.0000000 | 2015 |
| U5MR | -93.25554 | 25.73018 | -3.624364 | 0.0006415 | 2015 |
-2005 yılı icin:
veri_coklu_tum_yillar <- veri_temiz %>%
filter(!is.na(CHEPC) & !is.na(U5MR) & !is.na(MMR) & !is.na(WATER) & !is.na(IMM) & !is.na(EDU))
model_2005 <- lm(CHEPC ~ U5MR + MMR + WATER + IMM + EDU,
data = veri_coklu_tum_yillar %>% filter(year == 2005))
summary(model_2005)
##
## Call:
## lm(formula = CHEPC ~ U5MR + MMR + WATER + IMM + EDU, data = veri_coklu_tum_yillar %>%
## filter(year == 2005))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2201.5 -745.3 -338.0 531.7 3308.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11791.455 6017.978 1.959 0.0559 .
## U5MR -111.724 25.921 -4.310 8.05e-05 ***
## MMR 14.156 7.544 1.876 0.0667 .
## WATER -3.762 33.396 -0.113 0.9108
## IMM -111.366 25.848 -4.308 8.10e-05 ***
## EDU 18.956 35.026 0.541 0.5909
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1282 on 48 degrees of freedom
## Multiple R-squared: 0.5277, Adjusted R-squared: 0.4785
## F-statistic: 10.73 on 5 and 48 DF, p-value: 5.861e-07
-2010 yılı icin:
veri_coklu_tum_yillar <- veri_temiz %>%
filter(!is.na(CHEPC) & !is.na(U5MR) & !is.na(MMR) & !is.na(WATER) & !is.na(IMM) & !is.na(EDU))
model_2010 <- lm(CHEPC ~ U5MR + MMR + WATER + IMM + EDU,
data = veri_coklu_tum_yillar %>% filter(year == 2010))
summary(model_2010)
##
## Call:
## lm(formula = CHEPC ~ U5MR + MMR + WATER + IMM + EDU, data = veri_coklu_tum_yillar %>%
## filter(year == 2010))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3577 -1104 -435 1043 4784
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4120.44 7847.12 0.525 0.60189
## U5MR -142.52 45.89 -3.106 0.00315 **
## MMR 11.23 15.01 0.748 0.45790
## WATER -22.25 59.61 -0.373 0.71059
## IMM -51.22 34.09 -1.503 0.13933
## EDU 67.11 52.12 1.287 0.20397
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1795 on 49 degrees of freedom
## Multiple R-squared: 0.4004, Adjusted R-squared: 0.3392
## F-statistic: 6.544 on 5 and 49 DF, p-value: 9.811e-05
-2015 yılı icin :
veri_coklu_tum_yillar <- veri_temiz %>%
filter(!is.na(CHEPC) & !is.na(U5MR) & !is.na(MMR) & !is.na(WATER) & !is.na(IMM) & !is.na(EDU))
model_2015 <- lm(CHEPC ~ U5MR + MMR + WATER + IMM + EDU,
data = veri_coklu_tum_yillar %>% filter(year == 2015))
summary(model_2015)
##
## Call:
## lm(formula = CHEPC ~ U5MR + MMR + WATER + IMM + EDU, data = veri_coklu_tum_yillar %>%
## filter(year == 2015))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2201.7 -1276.2 -665.3 1356.3 6792.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7007.262 13059.146 -0.537 0.5939
## U5MR -145.783 82.044 -1.777 0.0817 .
## MMR 36.204 20.884 1.734 0.0892 .
## WATER 59.925 107.644 0.557 0.5802
## IMM -4.746 44.220 -0.107 0.9150
## EDU 46.625 59.050 0.790 0.4335
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1918 on 50 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.1834
## F-statistic: 3.471 on 5 and 50 DF, p-value: 0.009051
ANALİZİMİ TABLO HALİNE GETİRDİM YORUMLAYALIM.
reg_tablo2 <- dplyr::bind_rows(
tidy(model_2005) %>% mutate(year = 2005),
tidy(model_2005) %>% mutate(year = 2010),
tidy(model_2005) %>% mutate(year = 2015)
)
knitr::kable(
reg_tablo2,
digits = 7,
caption = "YILLARA GORE REGRESYON KATSAYILARI"
)
| term | estimate | std.error | statistic | p.value | year |
|---|---|---|---|---|---|
| (Intercept) | 11791.455131 | 6017.978210 | 1.9593715 | 0.0558908 | 2005 |
| U5MR | -111.723860 | 25.920774 | -4.3102054 | 0.0000805 | 2005 |
| MMR | 14.155923 | 7.544427 | 1.8763418 | 0.0666954 | 2005 |
| WATER | -3.761741 | 33.396425 | -0.1126390 | 0.9107865 | 2005 |
| IMM | -111.365833 | 25.848324 | -4.3084353 | 0.0000810 | 2005 |
| EDU | 18.956445 | 35.025885 | 0.5412125 | 0.5908643 | 2005 |
| (Intercept) | 11791.455131 | 6017.978210 | 1.9593715 | 0.0558908 | 2010 |
| U5MR | -111.723860 | 25.920774 | -4.3102054 | 0.0000805 | 2010 |
| MMR | 14.155923 | 7.544427 | 1.8763418 | 0.0666954 | 2010 |
| WATER | -3.761741 | 33.396425 | -0.1126390 | 0.9107865 | 2010 |
| IMM | -111.365833 | 25.848324 | -4.3084353 | 0.0000810 | 2010 |
| EDU | 18.956445 | 35.025885 | 0.5412125 | 0.5908643 | 2010 |
| (Intercept) | 11791.455131 | 6017.978210 | 1.9593715 | 0.0558908 | 2015 |
| U5MR | -111.723860 | 25.920774 | -4.3102054 | 0.0000805 | 2015 |
| MMR | 14.155923 | 7.544427 | 1.8763418 | 0.0666954 | 2015 |
| WATER | -3.761741 | 33.396425 | -0.1126390 | 0.9107865 | 2015 |
| IMM | -111.365833 | 25.848324 | -4.3084353 | 0.0000810 | 2015 |
| EDU | 18.956445 | 35.025885 | 0.5412125 | 0.5908643 | 2015 |