Suc oranlarını etkıleyen faktorlerı bu asamada ıncelıycem
issizlik <- read.csv("issizlik_orani.csv", skip = 4)
head(issizlik)
## Country.Name Country.Code
## 1 Aruba ABW
## 2 Africa Eastern and Southern AFE
## 3 Afghanistan AFG
## 4 Africa Western and Central AFW
## 5 Angola AGO
## 6 Albania ALB
## Indicator.Name
## 1 Unemployment, total (% of total labor force) (modeled ILO estimate)
## 2 Unemployment, total (% of total labor force) (modeled ILO estimate)
## 3 Unemployment, total (% of total labor force) (modeled ILO estimate)
## 4 Unemployment, total (% of total labor force) (modeled ILO estimate)
## 5 Unemployment, total (% of total labor force) (modeled ILO estimate)
## 6 Unemployment, total (% of total labor force) (modeled ILO estimate)
## Indicator.Code X1960 X1961 X1962 X1963 X1964 X1965 X1966 X1967 X1968 X1969
## 1 SL.UEM.TOTL.ZS NA NA NA NA NA NA NA NA NA NA
## 2 SL.UEM.TOTL.ZS NA NA NA NA NA NA NA NA NA NA
## 3 SL.UEM.TOTL.ZS NA NA NA NA NA NA NA NA NA NA
## 4 SL.UEM.TOTL.ZS NA NA NA NA NA NA NA NA NA NA
## 5 SL.UEM.TOTL.ZS NA NA NA NA NA NA NA NA NA NA
## 6 SL.UEM.TOTL.ZS NA NA NA NA NA NA NA NA NA NA
## X1970 X1971 X1972 X1973 X1974 X1975 X1976 X1977 X1978 X1979 X1980 X1981 X1982
## 1 NA NA NA NA NA NA NA NA NA NA NA NA NA
## 2 NA NA NA NA NA NA NA NA NA NA NA NA NA
## 3 NA NA NA NA NA NA NA NA NA NA NA NA NA
## 4 NA NA NA NA NA NA NA NA NA NA NA NA NA
## 5 NA NA NA NA NA NA NA NA NA NA NA NA NA
## 6 NA NA NA NA NA NA NA NA NA NA NA NA NA
## X1983 X1984 X1985 X1986 X1987 X1988 X1989 X1990 X1991 X1992 X1993
## 1 NA NA NA NA NA NA NA NA NA NA NA
## 2 NA NA NA NA NA NA NA NA 8.179629 8.270724 8.266327
## 3 NA NA NA NA NA NA NA NA 8.070000 8.011000 7.888000
## 4 NA NA NA NA NA NA NA NA 4.158680 4.251102 4.369805
## 5 NA NA NA NA NA NA NA NA 16.855000 16.978000 17.399000
## 6 NA NA NA NA NA NA NA NA 10.304000 30.007000 25.251000
## X1994 X1995 X1996 X1997 X1998 X1999 X2000
## 1 NA NA NA NA NA NA NA
## 2 8.138291 7.908446 7.823908 7.783654 7.812734 7.849878 7.788317
## 3 7.822000 7.817000 7.867000 7.863000 7.890000 7.903000 7.935000
## 4 4.393781 4.399749 4.340691 4.313735 4.324049 4.512158 4.551119
## 5 17.400000 16.987000 16.275000 16.172000 16.371000 16.593000 16.682000
## 6 20.835000 14.607000 13.928000 16.872000 20.042000 20.835000 19.023000
## X2001 X2002 X2003 X2004 X2005 X2006 X2007
## 1 NA NA NA NA NA NA NA
## 2 7.676955 7.632330 7.586883 7.395648 7.218793 7.158958 7.102231
## 3 7.953000 7.930000 7.880000 7.899000 7.885000 7.914000 7.817000
## 4 4.479977 4.285854 4.180111 4.094738 4.100700 3.974095 3.950643
## 5 16.700000 16.488000 16.498000 16.378000 16.360000 16.206000 16.153000
## 6 18.570000 17.891000 16.985000 16.306000 15.966000 15.626000 15.966000
## X2008 X2009 X2010 X2011 X2012 X2013 X2014
## 1 NA NA NA NA NA NA NA
## 2 7.076710 7.155881 7.403061 7.427940 7.181608 6.986733 6.947011
## 3 7.878000 7.754000 7.753000 7.784000 7.856000 7.930000 7.915000
## 4 3.968542 4.000387 3.991595 3.969027 3.982163 3.703853 3.881396
## 5 16.228000 16.431000 16.618000 16.770000 16.562000 16.492000 16.406000
## 6 13.060000 13.674000 14.086000 13.481000 13.376000 15.866000 18.055000
## X2015 X2016 X2017 X2018 X2019 X2020 X2021
## 1 NA NA NA NA NA NA NA
## 2 7.036357 7.194666 7.346331 7.360513 7.584419 8.191395 8.577385
## 3 9.052000 10.133000 11.184000 11.196000 11.185000 11.710000 11.994000
## 4 4.164467 4.157574 4.274196 4.323631 4.395271 4.852393 4.736732
## 5 16.490000 16.575000 16.610000 16.594000 16.497000 16.690000 15.799000
## 6 17.193000 15.418000 13.616000 12.304000 11.466000 11.690000 11.474000
## X2022 X2023 X2024 X
## 1 NA NA NA NA
## 2 7.985202 7.806411 7.772705 NA
## 3 14.100000 13.991000 13.295000 NA
## 4 3.658573 3.277245 3.218313 NA
## 5 14.602000 14.537000 14.464000 NA
## 6 10.137000 10.108000 10.250000 NA
issizlik_tr <- issizlik[issizlik$Country.Code == "TUR", ]
years <- paste0("X", 2000:2015)
issizlik_tr_2000_2015 <- issizlik_tr[, years]
issizlik_tr_ts <- as.numeric(issizlik_tr_2000_2015)
length(issizlik_tr_ts)
## [1] 16
plot(issizlik_tr_ts,
main = "Türkiye İşsizlik Oranı (2000–2015)",
xlab = "Yıl",
ylab = "İşsizlik Oranı (%)")
ISSIZLIK ORANLARI YUKSEK OLDUGU ICIN SUC ORANIDA YUKSEKTIR
nufus <- read.csv("nufus_artis_hizi.csv", skip = 4)
head(nufus)
## Country.Name Country.Code Indicator.Name
## 1 Aruba ABW Population growth (annual %)
## 2 Africa Eastern and Southern AFE Population growth (annual %)
## 3 Afghanistan AFG Population growth (annual %)
## 4 Africa Western and Central AFW Population growth (annual %)
## 5 Angola AGO Population growth (annual %)
## 6 Albania ALB Population growth (annual %)
## Indicator.Code X1960 X1961 X1962 X1963 X1964 X1965 X1966
## 1 SP.POP.GROW NA 1.187344 1.3262272 1.203664 1.076602 0.9861144 0.8623988
## 2 SP.POP.GROW NA 2.624624 2.6870088 2.714042 2.769856 2.8098822 2.8103238
## 3 SP.POP.GROW NA 1.962239 2.0445228 2.105208 2.161195 2.2337086 2.2696514
## 4 SP.POP.GROW NA 2.103832 2.1315222 2.170015 2.184894 2.2162834 2.2492773
## 5 SP.POP.GROW NA 1.327797 0.9896389 1.003666 1.027684 1.0521327 1.0700460
## 6 SP.POP.GROW NA 3.120855 3.0567305 2.953749 2.880686 2.7540212 2.6345639
## X1967 X1968 X1969 X1970 X1971 X1972 X1973
## 1 0.5030431 0.1338314 -0.02878404 -0.1728785 -0.2870954 -1.256565 0.4331913
## 2 2.8448112 2.8905305 2.88945065 2.8885090 2.8868616 2.842602 2.9205749
## 3 2.3066680 2.3606834 2.39272038 2.4452057 2.4285163 2.442584 2.5347589
## 4 2.2646219 2.3017182 2.34163602 2.3897812 2.4167046 2.451102 2.5217936
## 5 1.0767272 1.0735167 1.06374556 1.5341102 2.3357240 3.011399 3.4114521
## 6 2.6301903 2.8425107 2.89608339 2.5508512 2.4229720 2.494973 2.3625522
## X1974 X1975 X1976 X1977 X1978 X1979 X1980
## 1 0.08572801 -0.09258942 0.1251468 0.3625547 0.3340267 0.7035895 1.205724
## 2 2.97492215 2.92186725 2.9172973 2.8295967 2.9895236 3.1290892 2.998951
## 3 2.52684421 2.41525048 2.2134461 2.1280996 2.0086979 0.3236588 -3.625808
## 4 2.59934984 2.67554130 2.6824375 2.7176727 2.7939681 2.8312285 2.832285
## 5 3.45890220 3.41255829 3.3301464 3.3793748 3.4768537 3.5075436 3.587940
## 6 2.29721418 2.30115381 2.2082353 2.2132522 2.0757419 1.9894570 2.047964
## X1981 X1982 X1983 X1984 X1985 X1986 X1987
## 1 1.085740 1.170410 1.5416810 1.075700 -1.882443 -2.95437363 -1.2965166
## 2 3.093171 3.215599 3.1326507 3.034019 3.010992 2.98752965 2.9967607
## 3 -9.819771 -8.258034 -0.6699993 2.462912 2.092575 -0.05933402 -0.2828497
## 4 2.846611 2.902373 2.7324630 2.634796 2.733968 2.73990732 2.7378587
## 5 3.642460 3.678035 3.7160637 3.706036 3.678648 3.61842556 3.4737480
## 6 2.002974 2.113272 2.1208853 2.103937 2.055995 1.93322081 1.9970400
## X1988 X1989 X1990 X1991 X1992 X1993 X1994
## 1 0.2903201 1.856884 3.750561 4.8871356 4.6101224 6.5620285 5.1703741
## 2 2.9047076 2.825753 2.866549 2.7506938 2.6604817 2.7694914 2.6593173
## 3 1.1826711 2.998765 1.434588 1.5913259 8.1564194 11.8072591 8.3887296
## 4 2.7482966 2.771155 2.661366 2.6430014 2.7559390 2.7008278 2.6546216
## 5 3.4033948 3.414572 3.392403 3.3590546 3.2741425 3.1955944 3.2416892
## 6 1.8867105 2.687862 1.799086 -0.6028097 -0.6064347 -0.6101658 -0.6138805
## X1995 X1996 X1997 X1998 X1999 X2000 X2001
## 1 2.8083167 3.9507429 3.8747598 2.4607541 1.3564859 1.0308169 0.9350329
## 2 2.5962475 2.6452072 2.5636093 2.5908291 2.6228930 2.5953893 2.5886418
## 3 4.8936801 4.0054047 3.8045080 3.7646866 3.7281160 1.2121760 0.7620049
## 4 2.7230290 2.7205855 2.7190726 2.7616848 2.7316619 2.7513239 2.8015396
## 5 3.3399887 3.3816089 3.3955150 3.3467955 3.2952766 3.3122875 3.3537094
## 6 -0.6177037 -0.6215114 -0.6254301 -0.6293344 -0.6333523 -0.6373568 -0.9384704
## X2002 X2003 X2004 X2005 X2006 X2007 X2008
## 1 0.6920518 1.1382289 2.1353578 2.5907567 1.7966379 0.7466648 0.7629335
## 2 2.6078016 2.6190681 2.6413715 2.6584784 2.6697659 2.6914450 2.7236400
## 3 5.2520296 6.1451940 3.5758349 3.5192170 4.0927020 1.8925975 2.1865462
## 4 2.8107714 2.8141742 2.8285650 2.8395896 2.8260842 2.8219705 2.8260718
## 5 3.4074762 3.4933428 3.5944575 3.6462689 3.6848920 3.7425802 3.7782898
## 6 -0.2998767 -0.3741492 -0.4179314 -0.5117901 -0.6309112 -0.7557188 -0.7673430
## X2009 X2010 X2011 X2012 X2013 X2014 X2015
## 1 0.6784508 0.2300411 0.7366894 1.469782 1.492031 1.065512 1.023701
## 2 2.7372376 2.7345252 2.6846214 2.693513 2.748246 2.704105 2.696830
## 3 3.6463809 2.9346867 3.6915031 4.047863 3.418227 3.632519 3.119959
## 4 2.7923740 2.7869889 2.8228609 2.781262 2.731162 2.730316 2.699359
## 5 3.8015619 3.8510982 3.8879460 3.883584 3.849981 3.732728 3.605072
## 6 -0.6738940 -0.4964620 -0.2690173 -1.543137 -1.543145 -1.543138 -1.543120
## X2016 X2017 X2018 X2019 X2020 X2021 X2022
## 1 0.7579676 0.007357607 0.158976 0.2705046 -0.565684 -0.8202111 -0.3627742
## 2 2.6407433 2.642067288 2.734263 2.7216805 2.699516 2.6494392 2.5927545
## 3 2.5357199 2.808337308 2.910810 2.9843891 3.153609 2.3560978 1.4357044
## 4 2.6729129 2.626295641 2.533621 2.4400480 2.389176 2.3638290 2.3322704
## 5 3.5764414 3.540612215 3.453233 3.3878842 3.267959 3.1813226 3.1430261
## 6 -1.5431347 -1.543151568 -1.543100 -1.5431371 -1.543156 -1.5431208 -1.5431567
## X2023 X2024 X
## 1 0.04565168 0.5906571 NA
## 2 2.51916665 2.4728015 NA
## 3 2.13559385 2.8365732 NA
## 4 2.38620356 2.3984731 NA
## 5 3.08065531 3.0441997 NA
## 6 -1.54310811 -1.5431439 NA
nufus_tr <- nufus[nufus$Country.Code == "TUR", ]
years <- paste0("X", 2000:2015)
nufus_tr_2000_2015 <- nufus_tr[, years]
nufus_tr_ts <- as.numeric(nufus_tr_2000_2015)
length(nufus_tr_ts)
## [1] 16
plot(nufus_tr_ts,
main = "Türkiye Nüfus Artış Hızı (2000–2015)",
xlab = "Yıl",
ylab = "Nüfus Artış Hızı (%)")
#GRAFIK
KONTROLDUS NUFUS ARTISI SUC ORANINI ARTTIRIR.
Bu çalışmada Türkiye’de suç oranları ile işsizlik ve nüfus artış hızı gibi sosyo-ekonomik göstergeler arasındaki ilişki incelenmiştir. Dünya Bankası verileri kullanılarak yapılan grafikler, özellikle işsizliğin arttığı dönemlerde suç oranlarında da artış olabileceğini göstermektedir. Nüfus artış hızının yüksek olduğu dönemlerde ise sosyal ve ekonomik baskıların arttığı söylenebilir.
Genel olarak sonuçlar, suç oranlarının tek bir nedene bağlı olmadığını; ekonomik ve demografik faktörlerin birlikte etkili olduğunu göstermektedir. Bu nedenle işsizlikle mücadele, eğitim ve sosyal politikaların güçlendirilmesi suç oranlarının azaltılmasında önemli görülmektedir.