ob = read.csv("C:\\Thach\\VN trips\\2026_1Jan\\PN Institute\\Datasets\\Obesity data.csv")
dim(ob)
## [1] 1217 11
head(ob)
## id gender height weight bmi age bmc bmd fat lean pcfat
## 1 1 F 150 49 21.8 53 1312 0.88 17802 28600 37.3
## 2 2 M 165 52 19.1 65 1309 0.84 8381 40229 16.8
## 3 3 F 157 57 23.1 64 1230 0.84 19221 36057 34.0
## 4 4 F 156 53 21.8 56 1171 0.80 17472 33094 33.8
## 5 5 M 160 51 19.9 54 1681 0.98 7336 40621 14.8
## 6 6 F 153 47 20.1 52 1358 0.91 14904 30068 32.2
library(lessR)
## Warning: package 'lessR' was built under R version 4.3.3
##
## lessR 4.3.9 feedback: gerbing@pdx.edu
## --------------------------------------------------------------
## > d <- Read("") Read text, Excel, SPSS, SAS, or R data file
## d is default data frame, data= in analysis routines optional
##
## Many examples of reading, writing, and manipulating data,
## graphics, testing means and proportions, regression, factor analysis,
## customization, and descriptive statistics from pivot tables
## Enter: browseVignettes("lessR")
##
## View lessR updates, now including time series forecasting
## Enter: news(package="lessR")
##
## Interactive data analysis
## Enter: interact()
Histogram(pcfat,
data = ob,
fill = "blue",
xlab = "Tỉ trọng mỡ (%)",
ylab = "Số người",
main = "Phân bố tỉ trọng mỡ")
## >>> Suggestions
## bin_width: set the width of each bin
## bin_start: set the start of the first bin
## bin_end: set the end of the last bin
## Histogram(pcfat, density=TRUE) # smoothed curve + histogram
## Plot(pcfat) # Violin/Box/Scatterplot (VBS) plot
##
## --- pcfat ---
##
## n miss mean sd min mdn max
## 1217 0 31.604786 7.182862 9.200000 32.400000 48.400000
##
##
## --- Outliers --- from the box plot: 10
##
## Small Large
## ----- -----
## 9.2
## 9.7
## 9.8
## 10.3
## 10.3
## 10.7
## 11.0
## 11.4
## 11.7
## 11.9
##
##
## Bin Width: 5
## Number of Bins: 9
##
## Bin Midpnt Count Prop Cumul.c Cumul.p
## -------------------------------------------------
## 5 > 10 7.5 3 0.00 3 0.00
## 10 > 15 12.5 26 0.02 29 0.02
## 15 > 20 17.5 61 0.05 90 0.07
## 20 > 25 22.5 128 0.11 218 0.18
## 25 > 30 27.5 244 0.20 462 0.38
## 30 > 35 32.5 338 0.28 800 0.66
## 35 > 40 37.5 294 0.24 1094 0.90
## 40 > 45 42.5 107 0.09 1201 0.99
## 45 > 50 47.5 16 0.01 1217 1.00
library(table1)
##
## Attaching package: 'table1'
## The following object is masked from 'package:lessR':
##
## label
## The following objects are masked from 'package:base':
##
## units, units<-
table1(~ pcfat | gender, data = ob)
| F (N=862) |
M (N=355) |
Overall (N=1217) |
|
|---|---|---|---|
| pcfat | |||
| Mean (SD) | 34.7 (5.19) | 24.2 (5.76) | 31.6 (7.18) |
| Median [Min, Max] | 34.7 [14.6, 48.4] | 24.6 [9.20, 39.0] | 32.4 [9.20, 48.4] |
ttest(pcfat ~ gender, data = ob)
##
## Compare pcfat across gender with levels F and M
## Grouping Variable: gender
## Response Variable: pcfat
##
##
## ------ Describe ------
##
## pcfat for gender F: n.miss = 0, n = 862, mean = 34.672, sd = 5.187
## pcfat for gender M: n.miss = 0, n = 355, mean = 24.156, sd = 5.764
##
## Mean Difference of pcfat: 10.516
##
## Weighted Average Standard Deviation: 5.362
##
##
## ------ Assumptions ------
##
## Note: These hypothesis tests can perform poorly, and the
## t-test is typically robust to violations of assumptions.
## Use as heuristic guides instead of interpreting literally.
##
## Null hypothesis, for each group, is a normal distribution of pcfat.
## Group F: Sample mean assumed normal because n > 30, so no test needed.
## Group M: Sample mean assumed normal because n > 30, so no test needed.
##
## Null hypothesis is equal variances of pcfat, homogeneous.
## Variance Ratio test: F = 33.223/26.909 = 1.235, df = 354;861, p-value = 0.016
## Levene's test, Brown-Forsythe: t = -2.232, df = 1215, p-value = 0.026
##
##
## ------ Infer ------
##
## --- Assume equal population variances of pcfat for each gender
##
## t-cutoff for 95% range of variation: tcut = 1.962
## Standard Error of Mean Difference: SE = 0.338
##
## Hypothesis Test of 0 Mean Diff: t-value = 31.101, df = 1215, p-value = 0.000
##
## Margin of Error for 95% Confidence Level: 0.663
## 95% Confidence Interval for Mean Difference: 9.853 to 11.180
##
##
## --- Do not assume equal population variances of pcfat for each gender
##
## t-cutoff: tcut = 1.964
## Standard Error of Mean Difference: SE = 0.353
##
## Hypothesis Test of 0 Mean Diff: t = 29.768, df = 602.015, p-value = 0.000
##
## Margin of Error for 95% Confidence Level: 0.694
## 95% Confidence Interval for Mean Difference: 9.823 to 11.210
##
##
## ------ Effect Size ------
##
## --- Assume equal population variances of pcfat for each gender
##
## Standardized Mean Difference of pcfat, Cohen's d: 1.961
##
##
## ------ Practical Importance ------
##
## Minimum Mean Difference of practical importance: mmd
## Minimum Standardized Mean Difference of practical importance: msmd
## Neither value specified, so no analysis
##
##
## ------ Graphics Smoothing Parameter ------
##
## Density bandwidth for gender F: 1.475
## Density bandwidth for gender M: 1.867
# Cách 1:
model <- lm(pcfat ~ gender, data = ob)
summary(model)
##
## Call:
## lm(formula = pcfat ~ gender, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.0724 -3.2724 0.1484 3.6276 14.8439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.6724 0.1826 189.9 <0.0000000000000002 ***
## genderM -10.5163 0.3381 -31.1 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.362 on 1215 degrees of freedom
## Multiple R-squared: 0.4432, Adjusted R-squared: 0.4428
## F-statistic: 967.3 on 1 and 1215 DF, p-value: < 0.00000000000000022
# Cách 2:
Regression(pcfat ~ gender, data = ob, graphics = TRUE)
##
## >>> gender is not numeric. Converted to indicator variables.
## >>> Suggestion
## # Create an R markdown file for interpretative output with Rmd = "file_name"
## Regression(my_formula=pcfat ~ gender, data=ob, graphics=TRUE, Rmd="eg")
##
##
## BACKGROUND
##
## Data Frame: ob
##
## Response Variable: pcfat
## Predictor Variable: genderM
##
## Number of cases (rows) of data: 1217
## Number of cases retained for analysis: 1217
##
##
## BASIC ANALYSIS
##
## Estimate Std Err t-value p-value Lower 95% Upper 95%
## (Intercept) 34.672413 0.182622 189.859 0.000 34.314123 35.030703
## genderM -10.516344 0.338131 -31.101 0.000 -11.179729 -9.852959
##
## Standard deviation of pcfat: 7.182862
##
## Standard deviation of residuals: 5.361759 for df=1215
## 95% range of residuals: 21.038669 = 2 * (1.962 * 5.361759)
##
## R-squared: 0.443 Adjusted R-squared: 0.443 PRESS R-squared: 0.441
##
## Null hypothesis of all 0 population slope coefficients:
## F-statistic: 967.297 df: 1 and 1215 p-value: 0.000
##
## -- Analysis of Variance
##
## df Sum Sq Mean Sq F-value p-value
## Model 1 27808.311497 27808.311497 967.297285 0.000
## Residuals 1215 34929.384159 28.748464
## pcfat 1216 62737.695656 51.593500
##
##
## K-FOLD CROSS-VALIDATION
##
##
## RELATIONS AMONG THE VARIABLES
##
## pcfat genderM
## pcfat 1.00 -0.67
## genderM -0.67 1.00
##
##
## RESIDUALS AND INFLUENCE
##
## -- Data, Fitted, Residual, Studentized Residual, Dffits, Cook's Distance
## [sorted by Cook's Distance]
## [n_res_rows = 20, out of 1217 rows of data, or do n_res_rows="all"]
## ---------------------------------------------------------------------------
## genderM pcfat fitted resid rstdnt dffits cooks
## 210 1 9.200000 24.156069 -14.956069 -2.801192 -0.148882 0.011020
## 509 1 39.000000 24.156069 14.843931 2.780055 0.147758 0.010860
## 179 1 38.700000 24.156069 14.543931 2.723523 0.144754 0.010420
## 518 1 9.700000 24.156069 -14.456069 -2.706970 -0.143874 0.010300
## 200 1 9.800000 24.156069 -14.356069 -2.688132 -0.142873 0.010150
## 563 1 38.300000 24.156069 14.143931 2.648179 0.140749 0.009860
## 318 1 10.300000 24.156069 -13.856069 -2.593980 -0.137869 0.009460
## 972 1 10.300000 24.156069 -13.856069 -2.593980 -0.137869 0.009460
## 388 1 10.700000 24.156069 -13.456069 -2.518700 -0.133867 0.008920
## 203 1 11.000000 24.156069 -13.156069 -2.462262 -0.130868 0.008530
## 1137 0 14.600000 34.672413 -20.072413 -3.766065 -0.128347 0.008150
## 893 0 14.700000 34.672413 -19.972413 -3.747085 -0.127700 0.008070
## 688 1 11.400000 24.156069 -12.756069 -2.387042 -0.126870 0.008020
## 403 1 11.700000 24.156069 -12.456069 -2.330649 -0.123873 0.007640
## 858 1 11.900000 24.156069 -12.256069 -2.293064 -0.121875 0.007400
## 158 1 36.300000 24.156069 12.143931 2.271993 0.120755 0.007270
## 1106 1 36.300000 24.156069 12.143931 2.271993 0.120755 0.007270
## 827 1 36.000000 24.156069 11.843931 2.215637 0.117760 0.006910
## 756 1 12.400000 24.156069 -11.756069 -2.199135 -0.116883 0.006810
## 196 1 12.500000 24.156069 -11.656069 -2.180355 -0.115885 0.006690
##
##
## PREDICTION ERROR
##
## -- Data, Predicted, Standard Error of Prediction, 95% Prediction Intervals
## [sorted by lower bound of prediction interval]
## [to see all intervals add n_pred_rows="all"]
## ----------------------------------------------
##
## genderM pcfat pred s_pred pi.lwr pi.upr width
## 2 1 16.800000 24.156069 5.369306 13.621929 34.690209 21.068280
## 5 1 14.800000 24.156069 5.369306 13.621929 34.690209 21.068280
## ...
## 1209 1 26.400000 24.156069 5.369306 13.621929 34.690209 21.068280
## 1 0 37.300000 34.672413 5.364869 24.146979 45.197847 21.050869
## 3 0 34.000000 34.672413 5.364869 24.146979 45.197847 21.050869
## ...
## 1215 0 34.400000 34.672413 5.364869 24.146979 45.197847 21.050869
## 1216 0 41.300000 34.672413 5.364869 24.146979 45.197847 21.050869
## 1217 0 33.200000 34.672413 5.364869 24.146979 45.197847 21.050869
##
## ----------------------------------
## Plot 1: Distribution of Residuals
## Plot 2: Residuals vs Fitted Values
## ----------------------------------
par(mfrow = c(2, 2))
plot(model)
PROMPT: Tôi có dữ liệu ‘df’ gồm 11 biến số trong đó có tỉ trọng mỡ ‘pcfat’ và giới tính ‘gender’. Bạn giúp viết lệnh R để (i) xây dựng mô hình hổi qui tuyến tính để so sánh tỉ trọng mỡ (pcfat) giữa nam và nữ (gender), và (ii) kiểm tra giả định của mô hình bằng biểu đồ
Plot(pcfat, weight, data = ob, fit = "lm",
main = "Mối liên hệ giữa cân nặng và tỉ trọng mỡ",
xlab = "Cân nặng (kg)",
ylab = "Tỉ trọng mỡ (%)")
##
## >>> Suggestions or enter: style(suggest=FALSE)
## Plot(pcfat, weight, enhance=TRUE) # many options
## Plot(pcfat, weight, fill="skyblue") # interior fill color of points
## Plot(pcfat, weight, out_cut=.10) # label top 10% from center as outliers
##
##
## >>> Pearson's product-moment correlation
##
## Number of paired values with neither missing, n = 1217
## Sample Correlation of pcfat and weight: r = 0.057
##
## Hypothesis Test of 0 Correlation: t = 1.975, df = 1215, p-value = 0.049
## 95% Confidence Interval for Correlation: 0.000 to 0.112
##
##
## Line: b0 = 52.80 b1 = 0.07 Fit: MSE = 88.243 Rsq = 0.003
##
# Cách 1:
model <- lm(pcfat ~ weight, data = ob)
par(mfrow = c(2, 2))
plot(model)
summary(model)
##
## Call:
## lm(formula = pcfat ~ weight, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.3122 -4.5234 0.8902 5.2695 16.9742
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.22295 1.22370 23.881 <0.0000000000000002 ***
## weight 0.04319 0.02188 1.975 0.0485 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.174 on 1215 degrees of freedom
## Multiple R-squared: 0.003199, Adjusted R-squared: 0.002378
## F-statistic: 3.899 on 1 and 1215 DF, p-value: 0.04855
# Cách 2:
Regression(pcfat ~ weight, data = ob, graphics = TRUE)
## >>> Suggestion
## # Create an R markdown file for interpretative output with Rmd = "file_name"
## Regression(my_formula=pcfat ~ weight, data=ob, graphics=TRUE, Rmd="eg")
##
##
## BACKGROUND
##
## Data Frame: ob
##
## Response Variable: pcfat
## Predictor Variable: weight
##
## Number of cases (rows) of data: 1217
## Number of cases retained for analysis: 1217
##
##
## BASIC ANALYSIS
##
## Estimate Std Err t-value p-value Lower 95% Upper 95%
## (Intercept) 29.222947 1.223696 23.881 0.000 26.822156 31.623738
## weight 0.043193 0.021875 1.975 0.049 0.000276 0.086111
##
## Standard deviation of pcfat: 7.182862
##
## Standard deviation of residuals: 7.174316 for df=1215
## 95% range of residuals: 28.150843 = 2 * (1.962 * 7.174316)
##
## R-squared: 0.003 Adjusted R-squared: 0.002 PRESS R-squared: 0.000
##
## Null hypothesis of all 0 population slope coefficients:
## F-statistic: 3.899 df: 1 and 1215 p-value: 0.049
##
## -- Analysis of Variance
##
## df Sum Sq Mean Sq F-value p-value
## Model 1 200.669670 200.669670 3.898709 0.049
## Residuals 1215 62537.025985 51.470803
## pcfat 1216 62737.695656 51.593500
##
##
## K-FOLD CROSS-VALIDATION
##
##
## RELATIONS AMONG THE VARIABLES
##
## pcfat weight
## pcfat 1.00 0.06
## weight 0.06 1.00
##
##
## RESIDUALS AND INFLUENCE
##
## -- Data, Fitted, Residual, Studentized Residual, Dffits, Cook's Distance
## [sorted by Cook's Distance]
## [n_res_rows = 20, out of 1217 rows of data, or do n_res_rows="all"]
## ----------------------------------------------------------------------------
## weight pcfat fitted resid rstdnt dffits cooks
## 373 85 47.400000 32.894372 14.505628 2.033775 0.194997 0.018960
## 923 95 43.500000 33.326305 10.173695 1.429871 0.179944 0.016180
## 972 42 10.300000 31.037063 -20.737063 -2.902805 -0.143205 0.010190
## 716 74 17.600000 32.419246 -14.819246 -2.072679 -0.133434 0.008880
## 858 42 11.900000 31.037063 -19.137063 -2.677456 -0.132088 0.008680
## 177 38 15.700000 30.864290 -15.164290 -2.120502 -0.126644 0.008000
## 1071 70 48.100000 32.246474 15.853526 2.216504 0.118990 0.007060
## 943 73 18.700000 32.376053 -13.676053 -1.911957 -0.117867 0.006930
## 876 34 18.800000 30.691517 -11.891517 -1.662860 -0.117617 0.006910
## 245 35 18.400000 30.734710 -12.334710 -1.724650 -0.117167 0.006850
## 762 80 22.600000 32.678406 -10.078406 -1.409997 -0.114628 0.006560
## 88 68 15.300000 32.160087 -16.860087 -2.357246 -0.114610 0.006540
## 200 47 9.800000 31.253029 -21.453029 -3.002259 -0.113942 0.006450
## 688 46 11.400000 31.209836 -19.809836 -2.771011 -0.110895 0.006120
## 184 39 17.200000 30.907483 -13.707483 -1.915842 -0.109309 0.005960
## 388 47 10.700000 31.253029 -20.553029 -2.875431 -0.109129 0.005920
## 895 65 13.600000 32.030507 -18.430507 -2.577138 -0.107125 0.005710
## 276 40 16.900000 30.950676 -14.050676 -1.963672 -0.106882 0.005700
## 528 39 17.600000 30.907483 -13.307483 -1.859774 -0.106110 0.005620
## 441 72 20.000000 32.332860 -12.332860 -1.723410 -0.101599 0.005150
##
##
## PREDICTION ERROR
##
## -- Data, Predicted, Standard Error of Prediction, 95% Prediction Intervals
## [sorted by lower bound of prediction interval]
## [to see all intervals add n_pred_rows="all"]
## ----------------------------------------------
##
## weight pcfat pred s_pred pi.lwr pi.upr width
## 876 34 18.800000 30.691517 7.192151 16.581104 44.801929 28.220825
## 55 35 27.100000 30.734710 7.190777 16.626993 44.842427 28.215435
## 245 35 18.400000 30.734710 7.190777 16.626993 44.842427 28.215435
## ...
## 1211 54 34.100000 31.555382 7.177306 17.474093 45.636670 28.162577
## 20 55 19.300000 31.598575 7.177263 17.517370 45.679779 28.162409
## 27 55 37.200000 31.598575 7.177263 17.517370 45.679779 28.162409
## ...
## 402 93 32.300000 33.239918 7.224879 19.065295 47.414541 28.349246
## 628 95 32.900000 33.326305 7.230024 19.141587 47.511022 28.369435
## 891 95 30.100000 33.326305 7.230024 19.141587 47.511022 28.369435
##
## ----------------------------------
## Plot 1: Distribution of Residuals
## Plot 2: Residuals vs Fitted Values
## ----------------------------------
PROMPT: Bạn viết lệnh R xây dựng mô hình tuyến tính đánh giá mối liên quan giữa cân nặng (weight) và tỉ trọng mỡ (pcfat)
# Cách 1:
model_adj <- lm(pcfat ~ weight + gender + age + height, data = ob)
par(mfrow = c(2, 2))
plot(model_adj)
summary(model_adj)
##
## Call:
## lm(formula = pcfat ~ weight + gender + age + height, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.208 -2.543 0.019 2.582 15.706
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48.368722 3.505431 13.798 < 0.0000000000000002 ***
## weight 0.439169 0.015594 28.163 < 0.0000000000000002 ***
## genderM -11.483254 0.344343 -33.348 < 0.0000000000000002 ***
## age 0.056166 0.007404 7.585 0.0000000000000658 ***
## height -0.257013 0.023768 -10.813 < 0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.974 on 1212 degrees of freedom
## Multiple R-squared: 0.695, Adjusted R-squared: 0.694
## F-statistic: 690.4 on 4 and 1212 DF, p-value: < 0.00000000000000022
# Cách 2:
Regression(pcfat ~ weight + gender + age + height, data = ob, graphics = TRUE)
##
## >>> gender is not numeric. Converted to indicator variables.
## >>> Suggestion
## # Create an R markdown file for interpretative output with Rmd = "file_name"
## Regression(my_formula=pcfat ~ weight + gender + age + height, data=ob, graphics=TRUE, Rmd="eg")
##
##
## BACKGROUND
##
## Data Frame: ob
##
## Response Variable: pcfat
## Predictor Variable 1: weight
## Predictor Variable 2: genderM
## Predictor Variable 3: age
## Predictor Variable 4: height
##
## Number of cases (rows) of data: 1217
## Number of cases retained for analysis: 1217
##
##
## BASIC ANALYSIS
##
## Estimate Std Err t-value p-value Lower 95% Upper 95%
## (Intercept) 48.368722 3.505431 13.798 0.000 41.491335 55.246110
## weight 0.439169 0.015594 28.163 0.000 0.408576 0.469763
## genderM -11.483254 0.344343 -33.348 0.000 -12.158828 -10.807679
## age 0.056166 0.007404 7.585 0.000 0.041639 0.070693
## height -0.257013 0.023768 -10.813 0.000 -0.303644 -0.210382
##
## Standard deviation of pcfat: 7.182862
##
## Standard deviation of residuals: 3.973577 for df=1212
## 95% range of residuals: 15.591705 = 2 * (1.962 * 3.973577)
##
## R-squared: 0.695 Adjusted R-squared: 0.694 PRESS R-squared: 0.692
##
## Null hypothesis of all 0 population slope coefficients:
## F-statistic: 690.357 df: 4 and 1212 p-value: 0.000
##
## -- Analysis of Variance
##
## df Sum Sq Mean Sq F-value p-value
## weight 1 200.669670 200.669670 12.709209 0.000
## genderM 1 38576.550161 38576.550161 2443.206529 0.000
## age 1 2977.577719 2977.577719 188.581853 0.000
## height 1 1846.251961 1846.251961 116.930488 0.000
##
## Model 4 43601.049512 10900.262378 690.357020 0.000
## Residuals 1212 19136.646144 15.789312
## pcfat 1216 62737.695656 51.593500
##
##
## K-FOLD CROSS-VALIDATION
##
##
## RELATIONS AMONG THE VARIABLES
##
## pcfat weight genderM age height
## pcfat 1.00 0.06 -0.67 0.31 -0.48
## weight 0.06 1.00 0.47 -0.05 0.60
## genderM -0.67 0.47 1.00 -0.13 0.67
## age 0.31 -0.05 -0.13 1.00 -0.37
## height -0.48 0.60 0.67 -0.37 1.00
##
## Tolerance VIF
## weight 0.604 1.656
## genderM 0.530 1.888
## age 0.794 1.260
## height 0.361 2.769
##
## weight genderM age height R2adj X's
## 1 1 1 1 0.694 4
## 1 1 0 1 0.680 3
## 1 1 1 0 0.665 3
## 1 1 0 0 0.617 2
## 0 1 1 1 0.494 3
## 0 1 1 0 0.492 2
## 0 1 0 1 0.444 2
## 0 1 0 0 0.443 1
## 1 0 1 1 0.414 3
## 1 0 0 1 0.413 2
## 0 0 1 1 0.248 2
## 0 0 0 1 0.230 1
## 1 0 1 0 0.098 2
## 0 0 1 0 0.094 1
## 1 0 0 0 0.002 1
##
## [based on Thomas Lumley's leaps function from the leaps package]
##
##
## RESIDUALS AND INFLUENCE
##
## -- Data, Fitted, Residual, Studentized Residual, Dffits, Cook's Distance
## [sorted by Cook's Distance]
## [n_res_rows = 20, out of 1217 rows of data, or do n_res_rows="all"]
## ----------------------------------------------------------------------------------------------------------
## weight genderM age height pcfat fitted resid rstdnt dffits cooks
## 563 50 1 48 150 38.300000 22.987969 15.312031 3.892904 0.365059 0.026350
## 923 95 0 57 160 43.500000 52.169213 -8.669213 -2.212032 -0.347600 0.024090
## 1000 51 1 43 148 35.200000 23.660335 11.539665 2.929329 0.308975 0.018970
## 509 67 1 13 167 39.000000 24.118827 14.881173 3.777390 0.300716 0.017890
## 1106 49 1 67 150 36.300000 23.615951 12.684049 3.218255 0.299627 0.017820
## 562 85 0 21 167 34.800000 43.956458 -9.156458 -2.327441 -0.298503 0.017760
## 377 76 1 40 148 26.900000 34.471075 -7.571075 -1.929208 -0.291924 0.017010
## 893 53 0 18 163 14.700000 30.762588 -16.062588 -4.078127 -0.283131 0.015830
## 245 35 0 80 145 18.400000 30.966052 -12.566052 -3.186550 -0.279949 0.015560
## 49 45 1 77 156 32.100000 20.878854 11.221146 2.845738 0.278598 0.015430
## 876 34 0 76 141 18.800000 31.330271 -12.530271 -3.177361 -0.278691 0.015420
## 1008 54 0 82 165 25.500000 34.282346 -8.782346 -2.228558 -0.257750 0.013240
## 316 62 1 19 176 32.100000 19.946858 12.153142 3.079313 0.250519 0.012460
## 1137 50 0 55 158 14.600000 32.808281 -18.208281 -4.627167 -0.243679 0.011680
## 269 52 1 36 156 34.000000 21.650241 12.349759 3.128488 0.241383 0.011570
## 16 70 1 49 150 24.300000 31.827525 -7.527525 -1.909655 -0.225639 0.010160
## 179 75 1 23 168 38.700000 27.936828 10.763172 2.724895 0.222502 0.009850
## 891 95 1 41 172 30.100000 36.703152 -6.603152 -1.676741 -0.215937 0.009310
## 135 52 1 72 160 33.200000 22.644159 10.555841 2.671843 0.215079 0.009210
## 264 55 1 78 154 35.600000 25.840740 9.759260 2.470316 0.212774 0.009020
##
##
## PREDICTION ERROR
##
## -- Data, Predicted, Standard Error of Prediction, 95% Prediction Intervals
## [sorted by lower bound of prediction interval]
## [to see all intervals add n_pred_rows="all"]
## ----------------------------------------------
##
## weight genderM age height pcfat pred s_pred pi.lwr pi.upr width
## 177 38 1 55 162 15.700000 15.026941 3.996117 7.186868 22.867015 15.680148
## 186 52 1 22 175 15.400000 15.980674 3.991308 8.150033 23.811315 15.661281
## 331 45 1 50 169 17.500000 16.021208 3.993505 8.186259 23.856158 15.669899
## ...
## 734 55 0 47 158 36.900000 34.554801 3.977017 26.752200 42.357403 15.605203
## 348 52 0 48 153 33.600000 34.578523 3.975890 26.778132 42.378915 15.600783
## 164 50 0 50 150 31.900000 34.583554 3.976421 26.782122 42.384987 15.602865
## ...
## 373 85 0 61 153 47.400000 49.801272 4.007267 41.939322 57.663223 15.723901
## 923 95 0 57 160 43.500000 52.169213 4.021169 44.279988 60.058439 15.778452
##
## ----------------------------------
## Plot 1: Distribution of Residuals
## Plot 2: Residuals vs Fitted Values
## ----------------------------------
pcfat = 48.4 + 0.4weight + 0.06age - 11.5genderM - 0.3height
PROMPT: Qua y văn bạn xác định các yếu tố có thể gây nhiễu (confounder) mối liên quan giữa cân nặng và tỉ trong mỡ là giới tính, tuổi, và chiều cao. Hãy xây dựng mô hình đa biến đánh giá mối liên quan độc lập giữa cân nặng và tỉ trọng mỡ sau khi hiệu chỉnh cho các yếu tố gây nhiễu.
library(gapminder)
vn = subset(gapminder, country=="Vietnam")
library(ggplot2)
ggplot(data=vn, aes(x=year, y=gdpPercap)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
# Tạo ra một điểm knot
vn$knot = ifelse(vn$year>1992, 1, 0)
vn$diff = vn$year - 1992
# Tao biến tương tác
vn$int = vn$diff * vn$knot
# Xây dựng mô hình splines
m = lm(gdpPercap ~ year + int, data=vn)
summary(m)
##
## Call:
## lm(formula = gdpPercap ~ year + int, data = vn)
##
## Residuals:
## Min 1Q Median 3Q Max
## -106.291 -54.225 -5.144 41.823 133.329
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11328.061 3963.982 -2.858 0.0188 *
## year 6.116 2.009 3.044 0.0139 *
## int 95.389 7.244 13.168 0.000000348 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 81.95 on 9 degrees of freedom
## Multiple R-squared: 0.9829, Adjusted R-squared: 0.9791
## F-statistic: 259.2 on 2 and 9 DF, p-value: 0.00000001107
PROMPT: tôi tạo dữ liệu ‘vn’ đánh giá thay đổi thu nhập ‘gpdPercap’ theo thời gian ‘year’ (từ 1954 đến 2007) của người Việt Nam từ dữ liệu ‘gapminder’ của gói lệnh R ‘gapminder’. Thu nhập người Việt Nam gia tăng đáng kể từ sau năm 1992 (xem biểu đồ kèm). Bạn giúp viết lệnh R để thực hiện mô hình splines để đánh giá thay đổi thu nhập của người Việt Nam theo thời gian.
data("mtcars")
dim(mtcars)
## [1] 32 11
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
summary(mtcars)
## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
ggplot(data=mtcars, aes(x=hp, y=mpg)) + geom_point()
m1 = lm(mpg ~ hp, data = mtcars)
summary(m1)
##
## Call:
## lm(formula = mpg ~ hp, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7121 -2.1122 -0.8854 1.5819 8.2360
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30.09886 1.63392 18.421 < 0.0000000000000002 ***
## hp -0.06823 0.01012 -6.742 0.000000179 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.863 on 30 degrees of freedom
## Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892
## F-statistic: 45.46 on 1 and 30 DF, p-value: 0.0000001788
library(ggfortify)
autoplot(m1)
mtcars$hp2 = mtcars$hp^2
m2 = lm(mpg ~ hp + hp2, data = mtcars)
summary(m2)
##
## Call:
## lm(formula = mpg ~ hp + hp2, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5512 -1.6027 -0.6977 1.5509 8.7213
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 40.40911720 2.74075944 14.744 0.00000000000000523 ***
## hp -0.21330826 0.03488387 -6.115 0.00000116297223609 ***
## hp2 0.00042082 0.00009844 4.275 0.000189 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.077 on 29 degrees of freedom
## Multiple R-squared: 0.7561, Adjusted R-squared: 0.7393
## F-statistic: 44.95 on 2 and 29 DF, p-value: 0.000000001301
mtcars$hp3 = mtcars$hp^3
m3 = lm(mpg ~ hp + hp2 + hp3, data = mtcars)
summary(m3)
##
## Call:
## lm(formula = mpg ~ hp + hp2 + hp3, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8605 -1.3972 -0.5736 1.6461 9.0738
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 44.2249297183 5.9608660401 7.419 0.0000000443 ***
## hp -0.2945288934 0.1177927926 -2.500 0.0185 *
## hp2 0.0009114683 0.0006863336 1.328 0.1949
## hp3 -0.0000008701 0.0000012043 -0.722 0.4760
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.103 on 28 degrees of freedom
## Multiple R-squared: 0.7606, Adjusted R-squared: 0.7349
## F-statistic: 29.65 on 3 and 28 DF, p-value: 0.000000007769
ggplot(data=mtcars, aes(x=hp, y=mpg)) + geom_point() +
geom_smooth(method="lm", formula=y~x+I(x^2))
PROMT: Tôi sử dụng dữ liệu ‘mtcars’ để đánh giá liên quan giữa hiệu quả ‘mpg’ (miles per gallon) và động cơ ‘hp’ (horsepower) bằng (i) mô hình tuyến tính, (ii) mô hình bậc 2, và (iii) mô hình bậc 3. Bạn giúp viết lệnh R để (1) xây dựng 3 mô hình này, (2) chọn mô hình tối ưu, và (3) vẽ biểu đồ tán xạ (scatterplot) biểu diễn mối liên quan giữa hiệu quả và động cơ.
library(BMA)
## Loading required package: survival
## Loading required package: leaps
## Loading required package: robustbase
##
## Attaching package: 'robustbase'
## The following object is masked from 'package:survival':
##
## heart
## Loading required package: inline
## Loading required package: rrcov
## Scalable Robust Estimators with High Breakdown Point (version 1.7-4)
X <- ob[, c("gender", "height", "weight", "bmi", "age")]
Y <- ob$pcfat
bma_model <- bicreg(x = X, y = Y)
summary(bma_model)
##
## Call:
## bicreg(x = X, y = Y)
##
##
## 3 models were selected
## Best 3 models (cumulative posterior probability = 1 ):
##
## p!=0 EV SD model 1 model 2 model 3
## Intercept 100.0 5.26146 4.582901 7.95773 -0.79279 8.13735
## genderM 100.0 -11.25139 0.429659 -11.44430 -11.42764 -10.80625
## height 31.4 0.01759 0.028494 . 0.05598 .
## weight 39.2 0.03102 0.042611 0.07921 . .
## bmi 100.0 1.01265 0.111625 0.89419 1.08852 1.08936
## age 100.0 0.05259 0.008048 0.05497 0.05473 0.04715
##
## nVar 4 4 3
## r2 0.697 0.696 0.695
## BIC -1423.06312 -1422.62198 -1422.49027
## post prob 0.392 0.314 0.294
m.bma = lm(pcfat ~ gender + age + weight + bmi, data = ob)
par(mfrow = c(2, 2))
plot(m.bma)
summary(m.bma)
##
## Call:
## lm(formula = pcfat ~ gender + age + weight + bmi, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.225 -2.557 0.033 2.608 15.646
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.957732 0.852500 9.335 < 0.0000000000000002 ***
## genderM -11.444303 0.342565 -33.408 < 0.0000000000000002 ***
## age 0.054966 0.007395 7.433 0.000000000000199 ***
## weight 0.079207 0.028620 2.768 0.00573 **
## bmi 0.894194 0.080297 11.136 < 0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.963 on 1212 degrees of freedom
## Multiple R-squared: 0.6966, Adjusted R-squared: 0.6956
## F-statistic: 695.7 on 4 and 1212 DF, p-value: < 0.00000000000000022
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following objects are masked from 'package:lessR':
##
## bc, recode, sp
vif(m.bma)
## gender age weight bmi
## 1.878778 1.263468 5.609651 4.663425
pcfat = 8.0 - 11.4genderM + 0.05age + 0.08weight + 0.89bmi
, c(“gender”, “height”, “weight”, “bmi”, “age”)] PROMPT: Qua y văn bạn xác định các yếu tố có khả năng dự báo tỉ trọng mỡ ‘pcfat’ là giới tính ‘gender’, chiều cao ‘height’, cân nặng ‘weight’, chỉ số khối ‘bmi’ và tuổi ‘age’. Bạn viết lệnh để tìm mô hình tối ưu dự báo tỉ trọng mỡ bằng phương pháp Bayesian Model Averaging bằng gói lệnh R ‘BMA’.