Bu ödevin amacı nedir? kentleşme sadece nüfusun artmasıyla açıklanabilecek bir kavram değildir. sanayileşme , milli gelir istihdam düzeyi gibi makroekonomik olgularla açıklamak daha doğrudur. Ekonomik büyüme ve kentleşme arasındaki ilişki çift yönlüdür: Bir yandan ekonomik gelişme şehirlerde daha fazla iş imkânı ve yaşam standardı sunarak kentleşmeyi hızlandırırken, diğer yandan kentleşme; verimlilik artışı, ölçek ekonomileri ve bilgi yayılımı kanalları aracılığıyla ekonomik büyümeyi destekleyebilir.
Bu çalışmada Türkiye ve Almanya’nın seçilmesinin temel nedeni, iki ülkenin ekonomik ve kentleşme yapılarının birbirinden farklı olmasıdır. Almanya gelişmiş, ekonomik olarak daha istikrarlı ve kentleşme sürecini büyük ölçüde tamamlamış bir ülkedir. Türkiye ise gelişmekte olan, ekonomik göstergeleri daha dalgalı ve kentleşme süreci hâlâ devam eden bir ülkedir.
işsizlik oranı gsyh oranı enflasyon oranı kentleşme oranlarını baz alınmıştır.
Bu hazırlamış olduğum projede (2000 - 2022) yılları arasındaki veriler baz alınmıştır.
İşsizlik oranı kentleşmeyi hem doğrudan hem dolaylı olarak etkiler. Düşük işsizlik oranı, şehirlerde iş imkânlarının fazla olduğunu gösterdiği için kırsal kesimde yaşayan insanların kente göç etmesini teşvik eder.Buna karşılık yüksek işsizlik oranı, kentleşmeyi tamamen durdurmaz; ancak plansız, düzensiz ve düşük nitelikli bir kentleşme sürecine yol açabilir.
Bu çalışmada işsizlik, kişi başı GSYH, enflasyon ve kentleşme oranları kullanılarak ekonomik göstergelerin kentleşme üzerindeki etkisi incelenmiştir. Grafikler Türkiye ve Almanya için karşılaştırmalı olarak değerlendirilmiştir.
İşsizlik grafiklerine göre Türkiye’de işsizlik oranı daha dalgalı ve genellikle daha yüksektir. Almanya’da ise işsizlik daha istikrarlı bir şekilde düşmüştür. Bu durum Almanya’da kentleşmenin daha planlı ilerlediğini, Türkiye’de ise daha düzensiz olduğunu göstermektedir.
GSYH grafiklerinde Almanya’nın kişi başı gelirinin tüm dönem boyunca Türkiye’den yüksek olduğu görülmektedir. Türkiye’de artış olsa da dalgalanmalar fazladır. Almanya’da ise ekonomik yapı daha sabittir.
Enflasyon grafiklerine bakıldığında Türkiye’de enflasyonun Almanya’ya göre daha yüksek ve oynak olduğu görülmektedir. Almanya’da ise enflasyon genel olarak düşük ve istikrarlıdır. Bu fark, kentleşme sürecinin Türkiye’de daha plansız ilerlemesine neden olabilmektedir.
Kentleşme oranı grafiklerinde Türkiye’de şehirleşmenin hızlı arttığı, Almanya’da ise artışın sınırlı kaldığı görülmektedir. Bunun nedeni Almanya’nın kentleşme sürecini büyük ölçüde tamamlamış olmasıdır.
Sonuç olarak grafikler, ekonomik istikrarın kentleşmenin düzenini belirlediğini göstermektedir. Almanya’da istikrarlı ekonomik yapı daha dengeli bir kentleşme yaratırken, Türkiye’de ekonomik dalgalanmalar kentleşmenin daha hızlı ancak daha düzensiz ilerlemesine yol açmaktadır.
issizlik <- read.csv(
"issizlik.csv",
skip = 4,
header = TRUE,
check.names = FALSE
)
readLines("issizlik.csv", n = 10)
## [1] "\"Data Source\",\"World Development Indicators\","
## [2] ""
## [3] "\"Last Updated Date\",\"2025-12-19\","
## [4] ""
## [5] "\"Country Name\",\"Country Code\",\"Indicator Name\",\"Indicator Code\",\"1960\",\"1961\",\"1962\",\"1963\",\"1964\",\"1965\",\"1966\",\"1967\",\"1968\",\"1969\",\"1970\",\"1971\",\"1972\",\"1973\",\"1974\",\"1975\",\"1976\",\"1977\",\"1978\",\"1979\",\"1980\",\"1981\",\"1982\",\"1983\",\"1984\",\"1985\",\"1986\",\"1987\",\"1988\",\"1989\",\"1990\",\"1991\",\"1992\",\"1993\",\"1994\",\"1995\",\"1996\",\"1997\",\"1998\",\"1999\",\"2000\",\"2001\",\"2002\",\"2003\",\"2004\",\"2005\",\"2006\",\"2007\",\"2008\",\"2009\",\"2010\",\"2011\",\"2012\",\"2013\",\"2014\",\"2015\",\"2016\",\"2017\",\"2018\",\"2019\",\"2020\",\"2021\",\"2022\",\"2023\",\"2024\","
## [6] "\"Aruba\",\"ABW\",\"Unemployment, total (% of total labor force) (modeled ILO estimate)\",\"SL.UEM.TOTL.ZS\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\","
## [7] "\"Africa Eastern and Southern\",\"AFE\",\"Unemployment, total (% of total labor force) (modeled ILO estimate)\",\"SL.UEM.TOTL.ZS\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"8.17962867204006\",\"8.27072384795289\",\"8.26632715332635\",\"8.13829095077232\",\"7.90844555546911\",\"7.8239078932856\",\"7.78365441542562\",\"7.81273363600731\",\"7.84987781203905\",\"7.78831690275509\",\"7.67695520899306\",\"7.63233006754872\",\"7.58688283691332\",\"7.39564818381754\",\"7.21879262795258\",\"7.15895834527989\",\"7.10223115357479\",\"7.07670978821918\",\"7.15588066169117\",\"7.40306130661224\",\"7.42793993618157\",\"7.18160807948002\",\"6.98673270309414\",\"6.94701073401333\",\"7.03635682492423\",\"7.19466599460041\",\"7.34633063442169\",\"7.3605131044333\",\"7.58441879909928\",\"8.19139491127414\",\"8.57738499231761\",\"7.98520225155097\",\"7.80641078366466\",\"7.7727048111679\","
## [8] "\"Afghanistan\",\"AFG\",\"Unemployment, total (% of total labor force) (modeled ILO estimate)\",\"SL.UEM.TOTL.ZS\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"8.07\",\"8.011\",\"7.888\",\"7.822\",\"7.817\",\"7.867\",\"7.863\",\"7.89\",\"7.903\",\"7.935\",\"7.953\",\"7.93\",\"7.88\",\"7.899\",\"7.885\",\"7.914\",\"7.817\",\"7.878\",\"7.754\",\"7.753\",\"7.784\",\"7.856\",\"7.93\",\"7.915\",\"9.052\",\"10.133\",\"11.184\",\"11.196\",\"11.185\",\"11.71\",\"11.994\",\"14.1\",\"13.991\",\"13.295\","
## [9] "\"Africa Western and Central\",\"AFW\",\"Unemployment, total (% of total labor force) (modeled ILO estimate)\",\"SL.UEM.TOTL.ZS\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"4.15868027881975\",\"4.25110173142729\",\"4.36980488975891\",\"4.39378131016295\",\"4.39974946558807\",\"4.34069121352357\",\"4.31373545449228\",\"4.32404850194229\",\"4.51215767270693\",\"4.55111905984559\",\"4.47997712328447\",\"4.2858537189934\",\"4.18011071095659\",\"4.09473808884134\",\"4.10069950284306\",\"3.97409484853549\",\"3.95064260570811\",\"3.96854217730079\",\"4.000386882162\",\"3.9915945374515\",\"3.96902733010755\",\"3.98216256621059\",\"3.70385320108226\",\"3.88139571396106\",\"4.16446707837468\",\"4.15757437388452\",\"4.27419620395302\",\"4.32363095413829\",\"4.39527121076193\",\"4.8523927005513\",\"4.73673176237333\",\"3.65857318082157\",\"3.27724546605141\",\"3.21831342109344\","
## [10] "\"Angola\",\"AGO\",\"Unemployment, total (% of total labor force) (modeled ILO estimate)\",\"SL.UEM.TOTL.ZS\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"\",\"16.855\",\"16.978\",\"17.399\",\"17.4\",\"16.987\",\"16.275\",\"16.172\",\"16.371\",\"16.593\",\"16.682\",\"16.7\",\"16.488\",\"16.498\",\"16.378\",\"16.36\",\"16.206\",\"16.153\",\"16.228\",\"16.431\",\"16.618\",\"16.77\",\"16.562\",\"16.492\",\"16.406\",\"16.49\",\"16.575\",\"16.61\",\"16.594\",\"16.497\",\"16.69\",\"15.799\",\"14.602\",\"14.537\",\"14.464\","
Dünya bankasından indirdiğim verileri daha kolay analiz edebilmek için 2000-2022 yılları arsaını baz alıcam.
issizlik_2000_2022 <- issizlik[, c(
"Country Name",
"Country Code",
"2000":"2022"
)]
head(issizlik_2000_2022)
## Country Name Country Code 2000 2001 2002
## 1 Aruba ABW NA NA NA
## 2 Africa Eastern and Southern AFE 7.788317 7.676955 7.632330
## 3 Afghanistan AFG 7.935000 7.953000 7.930000
## 4 Africa Western and Central AFW 4.551119 4.479977 4.285854
## 5 Angola AGO 16.682000 16.700000 16.488000
## 6 Albania ALB 19.023000 18.570000 17.891000
## 2003 2004 2005 2006 2007 2008 2009
## 1 NA NA NA NA NA NA NA
## 2 7.586883 7.395648 7.218793 7.158958 7.102231 7.076710 7.155881
## 3 7.880000 7.899000 7.885000 7.914000 7.817000 7.878000 7.754000
## 4 4.180111 4.094738 4.100700 3.974095 3.950643 3.968542 4.000387
## 5 16.498000 16.378000 16.360000 16.206000 16.153000 16.228000 16.431000
## 6 16.985000 16.306000 15.966000 15.626000 15.966000 13.060000 13.674000
## 2010 2011 2012 2013 2014 2015 2016
## 1 NA NA NA NA NA NA NA
## 2 7.403061 7.427940 7.181608 6.986733 6.947011 7.036357 7.194666
## 3 7.753000 7.784000 7.856000 7.930000 7.915000 9.052000 10.133000
## 4 3.991595 3.969027 3.982163 3.703853 3.881396 4.164467 4.157574
## 5 16.618000 16.770000 16.562000 16.492000 16.406000 16.490000 16.575000
## 6 14.086000 13.481000 13.376000 15.866000 18.055000 17.193000 15.418000
## 2017 2018 2019 2020 2021 2022
## 1 NA NA NA NA NA NA
## 2 7.346331 7.360513 7.584419 8.191395 8.577385 7.985202
## 3 11.184000 11.196000 11.185000 11.710000 11.994000 14.100000
## 4 4.274196 4.323631 4.395271 4.852393 4.736732 3.658573
## 5 16.610000 16.594000 16.497000 16.690000 15.799000 14.602000
## 6 13.616000 12.304000 11.466000 11.690000 11.474000 10.137000
Daha iyi analiz edebilmek için 2000-2022 yıllarını aldım.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
turkiye_issizlik <- issizlik_2000_2022 %>%
filter(`Country Code` == "TUR")
head(turkiye_issizlik)
## Country Name Country Code 2000 2001 2002 2003 2004 2005 2006
## 1 Turkiye TUR 6.495 8.381 10.358 10.542 10.838 10.636 10.227
## 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
## 1 10.285 10.965 14.026 11.879 9.789 9.21 9.713 9.901 10.304 10.899 10.919
## 2018 2019 2020 2021 2022
## 1 10.956 13.73 13.148 11.969 10.465
Analizin daha doğru olması için Türkiyenin işsizlik verisini datadan çıkardım.
Bu aşamada yapacağım şey Türkiyenin işsizlik verisini almanyanın işsizlik verisi ile karşılaştırmaktır. Bu karşılaştırmaktan sonra türkiyenin avrupanın önemli bir ülkesi olan almanya ile ne farkı olduğunu öğrenmiş olacağız.
library(dplyr)
tr_de_issizlik <- issizlik_2000_2022 %>%
filter(`Country Code` %in% c("TUR", "DEU"))
nrow(tr_de_issizlik)
## [1] 2
Almanya ve Türkiyeyi seçmiş bulunmaktayız.
library(tidyr)
tr_de_long <- tr_de_issizlik %>%
pivot_longer(
cols = `2000`:`2022`,
names_to = "year",
values_to = "unemployment"
) %>%
mutate(year = as.integer(year))
tr_de_long %>% filter(`Country Code` == "TUR")
## # A tibble: 23 × 4
## `Country Name` `Country Code` year unemployment
## <chr> <chr> <int> <dbl>
## 1 Turkiye TUR 2000 6.50
## 2 Turkiye TUR 2001 8.38
## 3 Turkiye TUR 2002 10.4
## 4 Turkiye TUR 2003 10.5
## 5 Turkiye TUR 2004 10.8
## 6 Turkiye TUR 2005 10.6
## 7 Turkiye TUR 2006 10.2
## 8 Turkiye TUR 2007 10.3
## 9 Turkiye TUR 2008 11.0
## 10 Turkiye TUR 2009 14.0
## # ℹ 13 more rows
tr_de_long %>% filter(`Country Code` == "DEU")
## # A tibble: 23 × 4
## `Country Name` `Country Code` year unemployment
## <chr> <chr> <int> <dbl>
## 1 Germany DEU 2000 7.92
## 2 Germany DEU 2001 7.77
## 3 Germany DEU 2002 8.48
## 4 Germany DEU 2003 9.78
## 5 Germany DEU 2004 10.7
## 6 Germany DEU 2005 11.2
## 7 Germany DEU 2006 10.3
## 8 Germany DEU 2007 8.73
## 9 Germany DEU 2008 7.51
## 10 Germany DEU 2009 7.88
## # ℹ 13 more rows
ortalama_ulke <- tr_de_long %>%
group_by(`Country Name`) %>%
summarise(ort_issizlik = mean(unemployment, na.rm = TRUE))
ortalama_ulke
## # A tibble: 2 × 2
## `Country Name` ort_issizlik
## <chr> <dbl>
## 1 Germany 6.46
## 2 Turkiye 10.7
names(ortalama_ulke)
## [1] "Country Name" "ort_issizlik"
library(dplyr)
library(tidyr)
library(ggplot2)
issizlik <- read.csv("issizlik.csv", skip = 4, stringsAsFactors = FALSE)
names(issizlik) <- make.names(names(issizlik))
year_cols <- grep("^(X)?(2000|2001|2002|2003|2004|2005|2006|2007|2008|2009|2010|2011|2012|2013|2014|2015|2016|2017|2018|2019|2020|2021|2022)$",
names(issizlik), value = TRUE)
issizlik_2000_2022 <- issizlik[, c("Country.Name", "Country.Code", year_cols)]
tr_de_long <- issizlik_2000_2022 %>%
filter(Country.Code %in% c("TUR", "DEU")) %>%
pivot_longer(
cols = all_of(year_cols),
names_to = "year",
values_to = "unemployment"
) %>%
mutate(
year = as.integer(sub("^X", "", year)),
unemployment = as.numeric(unemployment)
) %>%
filter(!is.na(unemployment))
ggplot(tr_de_long,
aes(x = year, y = unemployment, color = Country.Name, group = Country.Name)) +
geom_line(linewidth = 1) +
geom_point(size = 2) +
labs(
title = "Issizlik Oranlari: Turkiye ve Almanya (2000-2022)",
x = "Yil",
y = "Issizlik Orani (%)"
) +
theme_minimal()
Grafiğe baktığımda Türkiye’de işsizlik oranının yıllar boyunca dalgalı ve genellikle yüksek olduğunu görüyorum. Kriz dönemlerinde işsizlik artarken düşüşler kalıcı olmamıştır. Almanya’da ise işsizlik oranı özellikle 2005 sonrası düzenli olarak azalmış ve daha istikrarlı bir seyir izlemiştir.
GSYH ile kentleşme arasında pozitif ve çift yönlü bir ilişki vardır. Ekonomik büyüme şehirlerde yoğunlaştığı için kentleşmeyi artırırken, kentleşme de işgücü verimliliği ve üretim artışı yoluyla GSYH’yi destekler.
gsyh <- read.csv(
"gsyh_wdi.csv",
skip = 4,
header = TRUE,
sep = ",",
fill = TRUE,
stringsAsFactors = FALSE
)
colnames(gsyh)[1:5]
## [1] "Country.Name" "Country.Code" "Indicator.Name" "Indicator.Code"
## [5] "X1960"
head(gsyh[, 1:6])
## Country.Name Country.Code Indicator.Name Indicator.Code
## 1 Aruba ABW GDP (current US$) NY.GDP.MKTP.CD
## 2 Africa Eastern and Southern AFE GDP (current US$) NY.GDP.MKTP.CD
## 3 Afghanistan AFG GDP (current US$) NY.GDP.MKTP.CD
## 4 Africa Western and Central AFW GDP (current US$) NY.GDP.MKTP.CD
## 5 Angola AGO GDP (current US$) NY.GDP.MKTP.CD
## 6 Albania ALB GDP (current US$) NY.GDP.MKTP.CD
## X1960 X1961
## 1 NA NA
## 2 24205688712 24958886027
## 3 NA NA
## 4 11904805742 12707719291
## 5 NA NA
## 6 NA NA
Dünya genelindeki her ülkenin yıllık ortalama gayri safi yurt içi hasılası bu dataların içindedir.
year_cols <- paste0("X", 2000:2022)
gsyh_2000_2022 <- gsyh[, c(
"Country.Name",
"Country.Code",
year_cols
)]
names(gsyh)[names(gsyh) %in% year_cols]
## [1] "X2000" "X2001" "X2002" "X2003" "X2004" "X2005" "X2006" "X2007" "X2008"
## [10] "X2009" "X2010" "X2011" "X2012" "X2013" "X2014" "X2015" "X2016" "X2017"
## [19] "X2018" "X2019" "X2020" "X2021" "X2022"
Analizin doğru çıkması için türkiyeyi bu verisetinden çıkartmalıyız.
gsyh_tr_2000_2022 <- gsyh_2000_2022[gsyh_2000_2022$Country.Code == "TUR", ]
gsyh_tr_2000_2022
## Country.Name Country.Code X2000 X2001 X2002
## 245 Turkiye TUR 274748463179 202195080239 2.40778e+11
## X2003 X2004 X2005 X2006 X2007
## 245 315392899922 410156784496 508314210213 559668118237 685228481017
## X2008 X2009 X2010 X2011 X2012
## 245 775415944333 653894449921 782545664268 844192507381 885327622479
## X2013 X2014 X2015 X2016 X2017 X2018
## 245 962167643589 942343431929 865460050684 8.70818e+11 863874522365 7.88357e+11
## X2019 X2020 X2021 X2022
## 245 775853144223 733628247119 839938668172 926097476914
library(dplyr)
library(tidyr)
library(ggplot2)
gsyh <- read.csv("gsyh_wdi.csv", skip = 4)
year_cols <- paste0("X", 2000:2022)
gsyh_2000_2022 <- gsyh[, c("Country.Name", "Country.Code", year_cols)]
gsyh_long <- pivot_longer(
gsyh_2000_2022,
cols = starts_with("X"),
names_to = "year",
values_to = "gsyh"
)
gsyh_long$year <- as.numeric(sub("X", "", gsyh_long$year))
gsyh_tr_long <- gsyh_long[gsyh_long$Country.Code == "TUR", ]
gsyh_tr_de <- subset(gsyh_long, Country.Code %in% c("TUR","DEU"))
unique(gsyh_tr_de$Country.Code)
## [1] "DEU" "TUR"
library(dplyr)
tr_de_gsyh <- gsyh_2000_2022 %>%
filter(`Country.Code` %in% c("TUR", "DEU"))
tr_de_gsyh
## Country.Name Country.Code X2000 X2001 X2002 X2003
## 1 Germany DEU 1.966981e+12 1.966381e+12 2.102351e+12 2.534716e+12
## 2 Turkiye TUR 2.747485e+11 2.021951e+11 2.407780e+11 3.153929e+11
## X2004 X2005 X2006 X2007 X2008 X2009
## 1 2.852318e+12 2.893393e+12 3.046309e+12 3.484057e+12 3.808198e+12 3.478546e+12
## 2 4.101568e+11 5.083142e+11 5.596681e+11 6.852285e+11 7.754159e+11 6.538944e+11
## X2010 X2011 X2012 X2013 X2014 X2015
## 1 3.467094e+12 3.823576e+12 3.596483e+12 3.807024e+12 3.964871e+12 3.425100e+12
## 2 7.825457e+11 8.441925e+11 8.853276e+11 9.621676e+11 9.423434e+11 8.654601e+11
## X2016 X2017 X2018 X2019 X2020 X2021
## 1 3.536788e+12 3.765352e+12 4.055433e+12 3.959895e+12 3.941399e+12 4.355252e+12
## 2 8.708180e+11 8.638745e+11 7.883570e+11 7.758531e+11 7.336282e+11 8.399387e+11
## X2022
## 1 4.201022e+12
## 2 9.260975e+11
gsyh_de_2000_2022 <- gsyh_2000_2022[gsyh_2000_2022$Country.Code == "DEU", ]
ort_gsyh_de <- mean(
as.numeric(gsyh_de_2000_2022[, startsWith(names(gsyh_de_2000_2022), "X")]),
na.rm = TRUE
)
ort_gsyh_de
## [1] 3.392719e+12
gsyh_tr_2000_2022 <- gsyh_2000_2022[gsyh_2000_2022$Country.Code == "TUR", ]
ort_gsyh_tr <- mean(
as.numeric(gsyh_tr_2000_2022[, startsWith(names(gsyh_tr_2000_2022), "X")]),
na.rm = TRUE
)
ort_gsyh_tr
## [1] 682886800949
library(dplyr)
library(tidyr)
library(ggplot2)
gsyh_tr_de_wide <- gsyh_2000_2022[gsyh_2000_2022$Country.Code %in% c("TUR", "DEU"), ]
gsyh_tr_de_long <- gsyh_tr_de_wide %>%
pivot_longer(
cols = starts_with("X"),
names_to = "year",
values_to = "gsyh"
) %>%
mutate(
year = as.numeric(sub("X", "", year)),
gsyh = as.numeric(gsyh),
ulke = ifelse(Country.Code == "TUR", "Turkiye", "Almanya")
) %>%
filter(!is.na(gsyh), gsyh > 0)
ggplot(gsyh_tr_de_long, aes(x = year, y = log(gsyh), color = ulke, group = ulke)) +
geom_line(linewidth = 1) +
geom_point(size = 2) +
labs(
title = "GSYH: Turkiye ve Almanya (2000-2022)",
x = "Yil",
y = "Log(GSYH)"
) +
theme_minimal()
Grafiğe baktığımda Almanya’nın GSYH’sinin bütün yıllarda Türkiye’den daha yüksek olduğunu görüyorum. Türkiye’de GSYH zamanla artmış olsa da dalgalanmalar daha fazladır. Almanya’da ise GSYH daha istikrarlı bir seyir izlemektedir. Bu da Almanya ekonomisinin Türkiye’ye göre daha güçlü ve daha az kırılgan olduğunu göstermektedir.
Enflasyon, kentleşme sürecini dolaylı olarak etkileyen ekonomik bir faktördür. Yüksek enflasyon köyde yaşama maliyetlerini artırdığı için köyden kente geçişi kontrolsüz şekilde artırır bu da plansız kentleşmeye sebep olur ama düşük ve istikrarlı enflasyon köyden kente geçişlerii daha istikrarlı tutup daha planlı bir şehir düzeni sağlar.
enflasyon <- read.csv("enflasyon_dunya_wdi.csv", skip = 4, check.names = FALSE)
names(enflasyon)
## [1] "Country Name" "Country Code" "Indicator Name" "Indicator Code"
## [5] "1960" "1961" "1962" "1963"
## [9] "1964" "1965" "1966" "1967"
## [13] "1968" "1969" "1970" "1971"
## [17] "1972" "1973" "1974" "1975"
## [21] "1976" "1977" "1978" "1979"
## [25] "1980" "1981" "1982" "1983"
## [29] "1984" "1985" "1986" "1987"
## [33] "1988" "1989" "1990" "1991"
## [37] "1992" "1993" "1994" "1995"
## [41] "1996" "1997" "1998" "1999"
## [45] "2000" "2001" "2002" "2003"
## [49] "2004" "2005" "2006" "2007"
## [53] "2008" "2009" "2010" "2011"
## [57] "2012" "2013" "2014" "2015"
## [61] "2016" "2017" "2018" "2019"
## [65] "2020" "2021" "2022" "2023"
## [69] "2024" ""
head(enflasyon)
## Country Name Country Code
## 1 Aruba ABW
## 2 Africa Eastern and Southern AFE
## 3 Afghanistan AFG
## 4 Africa Western and Central AFW
## 5 Angola AGO
## 6 Albania ALB
## Indicator Name Indicator Code 1960 1961 1962 1963 1964
## 1 Inflation, consumer prices (annual %) FP.CPI.TOTL.ZG NA NA NA NA NA
## 2 Inflation, consumer prices (annual %) FP.CPI.TOTL.ZG NA NA NA NA NA
## 3 Inflation, consumer prices (annual %) FP.CPI.TOTL.ZG NA NA NA NA NA
## 4 Inflation, consumer prices (annual %) FP.CPI.TOTL.ZG NA NA NA NA NA
## 5 Inflation, consumer prices (annual %) FP.CPI.TOTL.ZG NA NA NA NA NA
## 6 Inflation, consumer prices (annual %) FP.CPI.TOTL.ZG NA NA NA NA NA
## 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
## 1 NA NA NA NA NA NA NA NA NA NA NA NA
## 2 NA NA NA NA NA NA NA NA NA 19.59839 15.2241 11.21648
## 3 NA NA NA NA NA NA NA NA NA NA NA NA
## 4 NA NA NA NA NA NA NA NA NA NA NA NA
## 5 NA NA NA NA NA NA NA NA NA NA NA NA
## 6 NA NA NA NA NA NA NA NA NA NA NA NA
## 1977 1978 1979 1980 1981 1982 1983 1984
## 1 NA NA NA NA NA NA NA NA
## 2 14.23806 12.52689 15.06985 15.06651 14.461591 12.13992 11.56752 10.98386
## 3 NA NA NA NA NA NA NA NA
## 4 NA NA NA NA 8.799211 12.05977 10.67194 11.25000
## 5 NA NA NA NA NA NA NA NA
## 6 NA NA NA NA NA NA NA NA
## 1985 1986 1987 1988 1989 1990 1991
## 1 4.032258 1.073966 3.6430455 3.121868 3.991628 5.836688 5.555556
## 2 13.006566 13.891972 12.5634432 12.522258 12.558202 12.457914 17.678100
## 3 NA NA NA NA NA NA NA
## 4 7.354926 5.950965 0.2487886 2.523659 0.869287 1.057361 1.741888
## 5 NA NA NA NA NA NA 83.783784
## 6 NA NA NA NA NA NA NA
## 1992 1993 1994 1995 1996 1997
## 1 3.87337537 5.2155600 6.31108 3.361391 3.225288 2.999948
## 2 16.16761240 13.1356608 14.85281 12.288591 9.706586 10.249599
## 3 NA NA NA NA NA NA
## 4 -0.06299901 0.5534557 31.84102 10.563289 4.914240 3.997142
## 5 299.50980392 1378.5276074 949.79253 2666.450593 4145.105982 219.176721
## 6 226.00542125 85.0047512 22.56505 7.793219 12.725478 33.180274
## 1998 1999 2000 2001 2002 2003
## 1 1.869489 2.2803720 4.04402131 2.883604 3.315247 3.6563651
## 2 7.495255 7.8198648 8.60148515 5.840354 8.763755 7.4497001
## 3 NA NA NA NA NA NA
## 4 4.471125 0.3722662 2.53077517 4.361529 3.188693 1.7609041
## 5 107.284822 248.1959024 324.99687160 152.561022 108.897436 98.2241437
## 6 20.642859 0.3894377 0.05001814 3.107588 7.770526 0.4840026
## 2004 2005 2006 2007 2008 2009 2010
## 1 2.5291295 3.397787 3.608024 5.392568 8.955987 -2.135429 2.078141
## 2 5.0234207 8.558038 8.898164 8.450775 12.566645 8.954218 5.537538
## 3 NA 12.686269 6.784597 8.680571 26.418664 -6.811161 2.178538
## 4 0.6943363 5.631634 4.415900 3.607368 8.452976 3.282440 1.784844
## 5 43.5421068 22.953514 13.305210 12.251497 12.475829 13.730284 14.469656
## 6 2.2800192 2.366582 2.370728 2.932682 3.320871 2.266922 3.627101
## 2011 2012 2013 2014 2015 2016 2017
## 1 4.316297 0.627472 -2.372065 0.4214409 0.4747636 -0.931196 -1.028282
## 2 8.971206 9.158708 5.748831 5.5258192 5.0985616 6.446877 6.221375
## 3 11.804186 6.441213 7.385772 4.6739960 -0.6617092 4.383892 4.975952
## 4 4.018699 4.578375 2.439201 1.7684358 2.1308174 1.487416 1.725486
## 5 13.482468 10.277905 8.777814 7.2803873 9.3559722 30.694415 29.844480
## 6 3.428071 2.031593 1.937621 1.6258650 1.8961740 1.275432 1.986661
## 2018 2019 2020 2021 2022 2023 2024
## 1 3.6260414 4.257462 NA NA NA NA NA NA
## 2 4.6898065 4.102851 5.191629 6.824727 10.883478 7.399186 4.489789 NA
## 3 0.6261491 2.302373 5.601888 5.133203 13.712102 -4.644709 -6.601186 NA
## 4 1.7840499 1.983092 2.490378 3.745568 7.949251 5.221168 3.608044 NA
## 5 19.6289380 17.080954 22.271539 25.754295 21.355290 13.644102 28.240495 NA
## 6 2.0280596 1.411091 1.620887 2.041472 6.725203 4.758346 2.215874 NA
(2000 - 2002)
tr_de <- enflasyon[enflasyon$`Country Code` %in% c("TUR", "DEU"), ]
tr_de[, c("Country Name", "Country Code")][1:2, ]
## Country Name Country Code
## 56 Germany DEU
## 245 Turkiye TUR
tr_de_2000_2022 <- tr_de[, c("Country Name", "Country Code", "2000", "2022")]
Burada baz alınan yıllar (2000 - 2022) arası yılları aldık öncesinde Türkiye ve Almanyayı bu datadan ayırdık.
library(dplyr)
library(tidyr)
names(enflasyon) <- make.names(names(enflasyon), unique = TRUE)
tr_de_enflasyon <- enflasyon[enflasyon$Country.Code %in% c("TUR", "DEU"), ]
tr_de_long <- pivot_longer(
tr_de_enflasyon,
cols = matches("^X\\d{4}$"),
names_to = "year",
values_to = "inflation"
)
head(tr_de_long)
## # A tibble: 6 × 7
## Country.Name Country.Code Indicator.Name Indicator.Code X year inflation
## <chr> <chr> <chr> <chr> <lgl> <chr> <dbl>
## 1 Germany DEU Inflation, con… FP.CPI.TOTL.ZG NA X1960 1.54
## 2 Germany DEU Inflation, con… FP.CPI.TOTL.ZG NA X1961 2.29
## 3 Germany DEU Inflation, con… FP.CPI.TOTL.ZG NA X1962 2.84
## 4 Germany DEU Inflation, con… FP.CPI.TOTL.ZG NA X1963 2.97
## 5 Germany DEU Inflation, con… FP.CPI.TOTL.ZG NA X1964 2.34
## 6 Germany DEU Inflation, con… FP.CPI.TOTL.ZG NA X1965 3.24
library(dplyr)
tr_de_enflasyon <- enflasyon %>%
filter(`Country.Code` %in% c("TUR", "DEU"))
tr_de_enflasyon
## Country.Name Country.Code Indicator.Name
## 1 Germany DEU Inflation, consumer prices (annual %)
## 2 Turkiye TUR Inflation, consumer prices (annual %)
## Indicator.Code X1960 X1961 X1962 X1963 X1964 X1965 X1966
## 1 FP.CPI.TOTL.ZG 1.536612 2.293695 2.84327 2.966960 2.335736 3.242319 3.533060
## 2 FP.CPI.TOTL.ZG 5.664740 3.172857 3.88832 6.362707 1.119638 4.555534 8.471996
## X1967 X1968 X1969 X1970 X1971 X1972 X1973 X1974
## 1 1.79605 1.470289 1.912678 3.450249 5.240974 5.484933 7.032024 6.986431
## 2 13.97489 6.046240 4.924194 7.923952 19.011409 15.416456 13.938165 23.898162
## X1975 X1976 X1977 X1978 X1979 X1980 X1981
## 1 5.910336 4.246631 3.734162 2.718697 4.04362 5.441058 6.344243
## 2 21.227355 17.455689 25.985338 61.897044 63.54311 94.260860 37.614783
## X1982 X1983 X1984 X1985 X1986 X1987 X1988
## 1 5.241045 3.293415 2.405793 2.066233 -0.1294134 0.2499061 1.274119
## 2 29.137515 31.390271 48.392323 44.961730 34.6100760 38.8558435 68.809643
## X1989 X1990 X1991 X1992 X1993 X1994 X1995
## 1 2.78057 2.696468 4.047033 5.056978 4.474577 2.693056 1.70616
## 2 63.27255 60.303869 65.978568 70.076104 66.093843 105.214986 89.11332
## X1996 X1997 X1998 X1999 X2000 X2001 X2002
## 1 1.449727 1.939372 0.9111835 0.5854331 1.440268 1.983857 1.420806
## 2 80.412151 85.669362 84.6413435 64.8674876 54.915371 54.400189 44.964121
## X2003 X2004 X2005 X2006 X2007 X2008 X2009 X2010
## 1 1.034222 1.665737 1.546911 1.577426 2.298344 2.62838 0.312739 1.103810
## 2 21.602438 8.598262 8.179160 9.597242 8.756181 10.44413 6.250977 8.566444
## X2011 X2012 X2013 X2014 X2015 X2016 X2017 X2018
## 1 2.075173 2.008489 1.504723 0.906794 0.5144261 0.491747 1.509495 1.732169
## 2 6.471880 8.891570 7.493090 8.854573 7.6708536 7.775134 11.144311 16.332464
## X2019 X2020 X2021 X2022 X2023 X2024 X
## 1 1.44566 0.1448779 3.066667 6.872574 5.946437 2.256498 NA
## 2 15.17682 12.2789574 19.596493 72.308836 53.859409 58.506451 NA
ortalama_ulke <- tr_de_long %>%
group_by(Country.Name) %>%
summarise(
ort_enflasyon = mean(inflation, na.rm = TRUE)
)
ortalama_ulke
## # A tibble: 2 × 2
## Country.Name ort_enflasyon
## <chr> <dbl>
## 1 Germany 2.69
## 2 Turkiye 32.8
library(dplyr)
library(tidyr)
library(ggplot2)
names(enflasyon) <- make.names(names(enflasyon), unique = TRUE)
c_col <- if ("Country.Code" %in% names(enflasyon)) "Country.Code" else
if ("Country.Name" %in% names(enflasyon)) "Country.Name" else stop("Country column yok")
tr_de_long <- enflasyon %>%
filter(.data[[c_col]] %in% c("TUR","DEU","Turkey","Germany","Türkiye","Almanya")) %>%
pivot_longer(
cols = matches("^X?\\d{4}$"),
names_to = "year",
values_to = "inflation"
) %>%
mutate(
year = as.integer(gsub("^X","", year)),
inflation = as.numeric(inflation)
) %>%
filter(year >= 2000, year <= 2020)
ggplot(tr_de_long, aes(x = year, y = inflation, color = .data[[c_col]], group = .data[[c_col]])) +
geom_line(linewidth = 1) +
geom_point(size = 2) +
labs(
title = "Enflasyon Oranları: Türkiye ve Almanya (2000–2020)",
x = "Yıl",
y = "Enflasyon Oranı (%)",
color = "Ülke"
) +
theme_minimal()
Grafik, 2000–2020 döneminde Türkiye’de enflasyonun Almanya’ya göre daha yüksek ve daha dalgalı olduğunu gösteriyor. Türkiye’de enflasyon 2000’li yılların başında çok yüksekken zamanla düşmüş, ancak yine de Almanya’nın üzerinde kalmıştır. Almanya’da ise enflasyon genel olarak düşük ve daha istikrarlı ilerlemiştir.
Ekonomik büyüme arttıkça şehirlerdeki iş ve yaşam olanakları artmakta, bu durum kentleşme oranını yükseltmektedir. Bu nedenle kentleşme oranı, ekonominin kentleşme üzerindeki etkisini incelemek için kullanılmıştır.
kentlesme <- read.csv(
"urbanization.csv",
skip = 4,
header = TRUE,
check.names = FALSE
)
readLines("urbanization.csv", n = 10)
## [1] "\"Data Source\",\"World Development Indicators\","
## [2] ""
## [3] "\"Last Updated Date\",\"2025-12-19\","
## [4] ""
## [5] "\"Country Name\",\"Country Code\",\"Indicator Name\",\"Indicator Code\",\"1960\",\"1961\",\"1962\",\"1963\",\"1964\",\"1965\",\"1966\",\"1967\",\"1968\",\"1969\",\"1970\",\"1971\",\"1972\",\"1973\",\"1974\",\"1975\",\"1976\",\"1977\",\"1978\",\"1979\",\"1980\",\"1981\",\"1982\",\"1983\",\"1984\",\"1985\",\"1986\",\"1987\",\"1988\",\"1989\",\"1990\",\"1991\",\"1992\",\"1993\",\"1994\",\"1995\",\"1996\",\"1997\",\"1998\",\"1999\",\"2000\",\"2001\",\"2002\",\"2003\",\"2004\",\"2005\",\"2006\",\"2007\",\"2008\",\"2009\",\"2010\",\"2011\",\"2012\",\"2013\",\"2014\",\"2015\",\"2016\",\"2017\",\"2018\",\"2019\",\"2020\",\"2021\",\"2022\",\"2023\",\"2024\","
## [6] "\"Aruba\",\"ABW\",\"Urban population (% of total population)\",\"SP.URB.TOTL.IN.ZS\",\"59.0236701687155\",\"59.0727998569268\",\"59.2122712335815\",\"59.4323593543099\",\"59.7233404762133\",\"60.075490856393\",\"60.4790867519502\",\"60.9244044199862\",\"61.4017201176024\",\"61.9013101019\",\"62.4134506299803\",\"62.9284179589446\",\"63.4364883458941\",\"63.9279380479301\",\"64.393043322154\",\"64.822080425667\",\"65.2053256155704\",\"65.5330551489654\",\"65.7955452829535\",\"65.9830722746357\",\"66.0859123811135\",\"66.0991174416016\",\"66.0706191076215\",\"66.0149065385293\",\"65.9393526607032\",\"65.85044772886\",\"65.7546819977163\",\"65.6585457219888\",\"65.5685291563943\",\"65.4911225556494\",\"65.4328161744708\",\"65.4009220636969\",\"65.3905890889858\",\"65.3844666218501\",\"65.3800478100985\",\"65.376703433065\",\"65.3738042700838\",\"65.3707211004889\",\"65.3668247036146\",\"65.3614858587949\",\"65.3545497799987\",\"65.3351137913914\",\"65.2820691308217\",\"65.1982922587168\",\"65.0886533661558\",\"64.9580226442175\",\"64.811270283981\",\"64.6532664765254\",\"64.4888814129295\",\"64.3229852842726\",\"64.1612965549477\",\"63.9992605838571\",\"63.8252085199599\",\"63.6382914355326\",\"63.4392531303795\",\"63.2288374043053\",\"63.0077880571142\",\"62.7768488886109\",\"62.5367636985996\",\"62.288276286885\",\"62.0028837566365\",\"61.9275339886843\",\"61.8811657924257\",\"61.8351492675589\",\"61.7909396819594\","
## [7] "\"Africa Eastern and Southern\",\"AFE\",\"Urban population (% of total population)\",\"SP.URB.TOTL.IN.ZS\",\"14.6403707377234\",\"14.8677302411759\",\"15.1073674819099\",\"15.3538988801913\",\"15.6071524444076\",\"15.8722457974654\",\"16.1491586540483\",\"16.4300857616442\",\"16.7177015787169\",\"17.0202368912783\",\"17.3391453677373\",\"17.6776253340453\",\"18.0414446048655\",\"18.4165839044054\",\"18.7846219299136\",\"19.1466187210624\",\"19.4953455274938\",\"19.8365091026403\",\"20.1682614121293\",\"20.4981090939751\",\"20.8433172860217\",\"21.1670112648211\",\"21.4903837159971\",\"21.8611551587153\",\"22.2807384756766\",\"22.7402422863894\",\"23.239144785621\",\"23.7646148522235\",\"24.2951116720964\",\"24.8181998844666\",\"25.3020442054102\",\"25.7041334837666\",\"26.0300551735773\",\"26.3471822105264\",\"26.717769359466\",\"27.0426760218554\",\"27.2782744312251\",\"27.5210299379438\",\"27.8207453137344\",\"28.1370584222489\",\"28.4686879776452\",\"28.8315061435738\",\"29.2210306166309\",\"29.6390356014361\",\"30.0878370669042\",\"30.5372758629303\",\"30.9876495544836\",\"31.3629773942904\",\"31.848999584948\",\"32.2400677597918\",\"32.5903609820214\",\"32.9380985869792\",\"33.2867060801392\",\"33.6673142772775\",\"34.0775774023013\",\"34.4906809355644\",\"34.8812106693274\",\"35.2829868326458\",\"35.714718464725\",\"36.0973307017698\",\"36.4883219609866\",\"36.9085426088519\",\"37.3605781096471\",\"37.7723012408349\",\"38.2414414289603\","
## [8] "\"Afghanistan\",\"AFG\",\"Urban population (% of total population)\",\"SP.URB.TOTL.IN.ZS\",\"8.12255149340207\",\"8.38959494931345\",\"8.66266423654956\",\"8.94270943787613\",\"9.23113447844093\",\"9.52934328339171\",\"9.83873977787624\",\"10.1607278870423\",\"10.4967115360376\",\"10.84809465001\",\"11.2297657038792\",\"11.6660355418459\",\"12.1619847549558\",\"12.6916916731915\",\"13.2347712388712\",\"13.7708383943132\",\"14.2795080818354\",\"14.7403952437562\",\"15.1331148223937\",\"15.4376007470002\",\"15.6809994542625\",\"15.9037575307894\",\"16.1073778271006\",\"16.2936657965111\",\"16.4644268923362\",\"16.6214665678908\",\"16.7665902764903\",\"16.9016034714497\",\"17.0283116060842\",\"17.1485201337089\",\"17.264034507639\",\"17.3766601811896\",\"17.4882026076758\",\"17.6004672404128\",\"17.7152595327158\",\"17.8343849378999\",\"17.9596489092802\",\"18.0928569001719\",\"18.2358143638901\",\"18.3903267537499\",\"18.5581995230666\",\"18.7412381251552\",\"18.9412480133309\",\"19.1600346409089\",\"19.3993593959593\",\"19.7059095753667\",\"20.1104530189181\",\"20.5906579215423\",\"21.1241481349633\",\"21.6885475109053\",\"22.2614799010924\",\"22.8205691572485\",\"23.3434391310979\",\"23.8077136743646\",\"24.1910166387726\",\"24.4649118421568\",\"24.6588345720126\",\"24.8352821238871\",\"24.9991645191406\",\"25.1437258839803\",\"25.2622103446137\",\"25.3478620272481\",\"25.3939250580909\",\"25.4730529631167\",\"25.7007352636188\","
## [9] "\"Africa Western and Central\",\"AFW\",\"Urban population (% of total population)\",\"SP.URB.TOTL.IN.ZS\",\"13.9464796319237\",\"14.4684194613816\",\"15.0173831298384\",\"15.5923183426511\",\"16.1905796791817\",\"16.8140021254874\",\"17.4551581819258\",\"18.1087862979014\",\"18.7697462631749\",\"19.4321890289079\",\"20.0933868634688\",\"20.7651763837474\",\"21.4553113682415\",\"22.1633184323239\",\"22.8790717519111\",\"23.5915342754525\",\"24.3075217812842\",\"25.0204379256049\",\"25.7004183433547\",\"26.3470822456633\",\"26.9948200878929\",\"27.642396137502\",\"28.2718342958921\",\"28.8881184192432\",\"29.5063947392951\",\"30.1199828666771\",\"30.685381137267\",\"31.3283131705547\",\"31.9238676728795\",\"32.5138102760429\",\"33.0930636884506\",\"33.7814486014057\",\"34.3395386620038\",\"34.8835982098551\",\"35.4144051313368\",\"35.9446681439035\",\"36.4981681695156\",\"37.0809510066527\",\"37.6704912498054\",\"38.2592965198451\",\"38.8524684384581\",\"39.4529459668409\",\"40.049367409183\",\"40.6448482782766\",\"41.2398201335762\",\"41.836459455774\",\"42.4399258811784\",\"43.0123127292741\",\"43.5798873927202\",\"44.1512095621441\",\"44.7260198444584\",\"45.2987995750013\",\"45.8732546944015\",\"46.4463309133392\",\"47.0221646001768\",\"47.6023892615338\",\"48.1739704033824\",\"48.7474138775856\",\"49.3179475986921\",\"49.8900751494997\",\"50.4763178807468\",\"51.0723969922682\",\"51.6816941134779\",\"52.2829081872902\",\"52.8595642244259\","
## [10] "\"Angola\",\"AGO\",\"Urban population (% of total population)\",\"SP.URB.TOTL.IN.ZS\",\"10.3871038748875\",\"10.8105449526381\",\"11.2070600250908\",\"11.5817203164711\",\"11.9451804039409\",\"12.308094864662\",\"12.6811182757965\",\"13.0749052145061\",\"13.5001102579529\",\"13.9673879832988\",\"14.4890356191567\",\"15.0758622803081\",\"15.7625860843817\",\"16.5450304427496\",\"17.4163699403863\",\"18.369779162266\",\"19.3984326933631\",\"20.4955051186518\",\"21.6541710231065\",\"22.8676049917016\",\"24.1289816094112\",\"25.4314754612098\",\"26.7682611320717\",\"28.1325132069711\",\"29.5174062708824\",\"30.91611490878\",\"32.321813705638\",\"33.727677246431\",\"35.1268801161331\",\"36.5125968997187\",\"37.878002182162\",\"39.2162705484376\",\"40.5205765835195\",\"41.7840948723822\",\"43\",\"44.2110025396864\",\"45.4556005898678\",\"46.7206500231881\",\"47.993006712291\",\"49.2595265298203\",\"50.5070653484197\",\"51.7224790407329\",\"52.8926234794038\",\"54.0043545370761\",\"55.0445280863936\",\"56\",\"56.8939032662772\",\"57.7564632930133\",\"58.5851745819614\",\"59.3775316348744\",\"60.1310289535053\",\"60.8431610396073\",\"61.5114223949332\",\"62.1333075212361\",\"62.723115793241\",\"63.51567832685\",\"64.2992302517989\",\"65.0850525086068\",\"65.8732136723372\",\"66.6637823180533\",\"67.4568270208187\",\"68.2524163556969\",\"69.0506188977513\",\"69.8515032220457\",\"70.6551379036435\","
Dünya genelindeki çoğu ülkenin kentleşme verileri bunlardır.
year_cols <- as.character(2000:2022)
kentlesme_2000_2022 <- kentlesme[, c(
names(kentlesme)[1], # Country Name
names(kentlesme)[2], # Country Code
year_cols
)]
head(kentlesme_2000_2022)
## Country Name Country Code 2000 2001 2002 2003
## 1 Aruba ABW 65.35455 65.33511 65.28207 65.19829
## 2 Africa Eastern and Southern AFE 28.46869 28.83151 29.22103 29.63904
## 3 Afghanistan AFG 18.55820 18.74124 18.94125 19.16003
## 4 Africa Western and Central AFW 38.85247 39.45295 40.04937 40.64485
## 5 Angola AGO 50.50707 51.72248 52.89262 54.00435
## 6 Albania ALB 41.61358 42.35451 43.15204 44.02951
## 2004 2005 2006 2007 2008 2009 2010 2011
## 1 65.08865 64.95802 64.81127 64.65327 64.48888 64.32299 64.16130 63.99926
## 2 30.08784 30.53728 30.98765 31.36298 31.84900 32.24007 32.59036 32.93810
## 3 19.39936 19.70591 20.11045 20.59066 21.12415 21.68855 22.26148 22.82057
## 4 41.23982 41.83646 42.43993 43.01231 43.57989 44.15121 44.72602 45.29880
## 5 55.04453 56.00000 56.89390 57.75646 58.58517 59.37753 60.13103 60.84316
## 6 44.97849 45.99377 47.07011 48.20228 49.38507 50.61324 51.88158 53.29174
## 2012 2013 2014 2015 2016 2017 2018 2019
## 1 63.82521 63.63829 63.43925 63.22884 63.00779 62.77685 62.53676 62.28828
## 2 33.28671 33.66731 34.07758 34.49068 34.88121 35.28299 35.71472 36.09733
## 3 23.34344 23.80771 24.19102 24.46491 24.65883 24.83528 24.99916 25.14373
## 4 45.87325 46.44633 47.02216 47.60239 48.17397 48.74741 49.31795 49.89008
## 5 61.51142 62.13331 62.72312 63.51568 64.29923 65.08505 65.87321 66.66378
## 6 53.86376 54.29797 54.73258 55.15793 55.57387 55.98028 56.37700 56.76391
## 2020 2021 2022
## 1 62.00288 61.92753 61.88117
## 2 36.48832 36.90854 37.36058
## 3 25.26221 25.34786 25.39393
## 4 50.47632 51.07240 51.68169
## 5 67.45683 68.25242 69.05062
## 6 57.14086 57.50772 57.86435
library(dplyr)
turkiye_kentlesme <- kentlesme_2000_2022 %>%
filter(`Country Code` == "TUR")
head(turkiye_kentlesme)
## Country Name Country Code 2000 2001 2002 2003 2004
## 1 Turkiye TUR 58.97061 59.87225 60.73853 61.58451 62.43885
## 2005 2006 2007 2008 2009 2010 2011 2012
## 1 63.33025 64.28739 65.33896 66.51365 67.84014 69.34713 71.00287 73.77887
## 2013 2014 2015 2016 2017 2018 2019 2020
## 1 78.52184 83.60249 87.21671 88.1021 88.03205 88.16557 88.66182 88.93031
## 2021 2022
## 1 89.1762 89.03812
library(dplyr)
almanya_kentlesme <- kentlesme_2000_2022 %>%
filter(`Country Code` == "DEU")
head(almanya_kentlesme)
## Country Name Country Code 2000 2001 2002 2003 2004
## 1 Germany DEU 80.09422 80.10708 80.1214 80.13731 80.15497
## 2005 2006 2007 2008 2009 2010 2011 2012
## 1 80.17452 80.1961 80.21986 80.24595 80.27452 80.3057 80.34058 80.39345
## 2013 2014 2015 2016 2017 2018 2019 2020
## 1 80.47323 80.57574 80.69744 80.83479 80.98425 81.1423 81.3054 81.47001
## 2021 2022
## 1 81.63259 81.78679
library(dplyr)
library(tidyr)
kent <- read.csv("urbanization.csv", skip = 4)
year_cols <- paste0("X", 2000:2022)
kent_2000_2022 <- kent[, c("Country.Name", "Country.Code", year_cols)]
kent_long <- pivot_longer(
kent_2000_2022,
cols = starts_with("X"),
names_to = "year",
values_to = "kentlesme"
)
kent_long$year <- as.numeric(sub("X", "", kent_long$year))
turkiye_ortalama_kent <- kent_long %>%
filter(Country.Code == "TUR") %>%
summarise(ort_kentlesme = mean(kentlesme, na.rm = TRUE))
turkiye_ortalama_kent
## # A tibble: 1 × 1
## ort_kentlesme
## <dbl>
## 1 74.5
almanya_ortalama_kent <- kent_long %>%
filter(Country.Code == "DEU") %>%
summarise(ort_kentlesme = mean(kentlesme, na.rm = TRUE))
almanya_ortalama_kent
## # A tibble: 1 × 1
## ort_kentlesme
## <dbl>
## 1 80.6
library(dplyr)
tr_de_kentlesme <- kent_2000_2022 %>%
filter(`Country.Code` %in% c("TUR", "DEU"))
tr_de_kentlesme
## Country.Name Country.Code X2000 X2001 X2002 X2003 X2004
## 1 Germany DEU 80.09422 80.10708 80.12140 80.13731 80.15497
## 2 Turkiye TUR 58.97061 59.87225 60.73853 61.58451 62.43885
## X2005 X2006 X2007 X2008 X2009 X2010 X2011 X2012
## 1 80.17452 80.19610 80.21986 80.24595 80.27452 80.30570 80.34058 80.39345
## 2 63.33025 64.28739 65.33896 66.51365 67.84014 69.34713 71.00287 73.77887
## X2013 X2014 X2015 X2016 X2017 X2018 X2019 X2020
## 1 80.47323 80.57574 80.69744 80.83479 80.98425 81.14230 81.30540 81.47001
## 2 78.52184 83.60249 87.21671 88.10210 88.03205 88.16557 88.66182 88.93031
## X2021 X2022
## 1 81.63259 81.78679
## 2 89.17620 89.03812
library(dplyr)
library(tidyr)
library(ggplot2)
kent <- read.csv("urbanization.csv", skip = 4)
year_cols <- paste0("X", 2000:2022)
kent_2000_2022 <- kent[, c("Country.Name", "Country.Code", year_cols)]
kent_tr_de_wide <- kent_2000_2022[kent_2000_2022$Country.Code %in% c("TUR", "DEU"), ]
kent_tr_de_long <- kent_tr_de_wide %>%
pivot_longer(
cols = starts_with("X"),
names_to = "year",
values_to = "kentlesme"
) %>%
mutate(
year = as.numeric(sub("X", "", year)),
kentlesme = suppressWarnings(as.numeric(kentlesme)),
ulke = ifelse(Country.Code == "TUR", "Turkiye", "Almanya")
) %>%
filter(!is.na(kentlesme))
ggplot(kent_tr_de_long, aes(x = year, y = kentlesme, color = ulke, group = ulke)) +
geom_line(size = 1) +
geom_point(size = 2) +
labs(
title = "Kentlesme Orani: Turkiye ve Almanya (2000-2022)",
x = "Yil",
y = "Kentlesme Orani (%)"
) +
theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Bu grafikte 2000–2022 döneminde Türkiye ve Almanya’nın kentleşme oranları karşılaştırılmıştır. Türkiye’de kentleşme oranı yıllar içinde hızlı bir şekilde artmıştır. Almanya’da ise kentleşme oranı zaten yüksek olduğu için artış daha sınırlı kalmıştır. Bu durum, Türkiye’de şehirleşme sürecinin Almanya’ya göre daha hızlı ilerlediğini göstermektedir.