# Load required libraries
library(ggplot2)
library(plotly)
library(dplyr)
library(tidyr)
library(gridExtra)
library(viridis)
library(reshape2)
# Set theme for plots
theme_set(theme_minimal())
Fracton codes represent a revolutionary class of quantum error-correcting codes characterized by quasiparticle excitations with severely constrained mobility. Unlike conventional topological codes where anyons can move freely, fracton codes exhibit point-like excitations that are immobile or have restricted dimensional mobility. This document provides a comprehensive mathematical analysis of fracton codes, demonstrating their unique properties through stabilizer formalism, higher-moment conservation laws, and computational implementations in R.
In 2D topological codes like the toric code, anyonic excitations are created and manipulated by string-like Pauli operators:
\[W_\gamma = \prod_{i \in \gamma} \sigma_i^\alpha\]
These anyons can move freely in the plane, with topological charge encoded in their braiding statistics characterized by modular S and T matrices.
Fracton codes break this paradigm. In 3D fracton models, isolated point-like excitations (fractons) cannot be translated by any finite-support operator. There exists no local operator \(O\) such that:
\[O|vac\rangle = |vac \text{ with one fracton translated}\rangle\]
Moving a fracton necessarily creates additional excitations, leading to fundamentally constrained dynamics.
# Visualize mobility constraints
mobility_data <- data.frame(
code_type = c("2D Toric Code", "3D X-Cube", "Haah's Cubic Code", "Surface Code"),
dimensionality = c(2, 3, 3, 2),
excitation_mobility = c("Free 2D", "Restricted (lineons/planons)", "Immobile fractons", "Free 2D"),
gsd_scaling = c("Constant", "Linear (L)", "Linear (L)", "Constant")
)
print("Comparison of Topological and Fracton Codes:")## [1] "Comparison of Topological and Fracton Codes:"
## code_type dimensionality excitation_mobility gsd_scaling
## 1 2D Toric Code 2 Free 2D Constant
## 2 3D X-Cube 3 Restricted (lineons/planons) Linear (L)
## 3 Haah's Cubic Code 3 Immobile fractons Linear (L)
## 4 Surface Code 2 Free 2D Constant
ggplot(mobility_data, aes(x = reorder(code_type, -dimensionality),
y = dimensionality, fill = excitation_mobility)) +
geom_col(alpha = 0.8) +
coord_flip() +
labs(title = "Code Dimensionality and Excitation Mobility",
x = "Code Type",
y = "Spatial Dimensionality",
fill = "Excitation\nMobility") +
scale_fill_viridis_d()A key signature of fracton order is the subextensive scaling of ground state degeneracy:
\[\log D(L) \sim cL\]
for a system of linear size \(L\), contrasting sharply with the constant degeneracy of conventional 2D topological order.
# Simulate ground state degeneracy scaling
L_values <- seq(10, 100, by = 5)
# Different scaling behaviors
toric_gsd <- rep(4, length(L_values)) # Constant (2^2 for toric code)
xcube_gsd <- 2 * L_values # Linear scaling
haah_gsd <- 1.5 * L_values # Linear with different coefficient
gsd_data <- data.frame(
L = rep(L_values, 3),
log_D = c(log2(toric_gsd), log2(xcube_gsd), log2(haah_gsd)),
code = rep(c("Toric Code (2D)", "X-Cube Model", "Haah's Cubic Code"),
each = length(L_values))
)
ggplot(gsd_data, aes(x = L, y = log_D, color = code)) +
geom_line(size = 1.2) +
geom_point(size = 2) +
labs(title = "Ground State Degeneracy Scaling",
subtitle = "Fracton codes exhibit subextensive scaling",
x = "System Linear Size (L)",
y = "log₂(D) - Number of Logical Qubits",
color = "Code Type") +
scale_color_manual(values = c("blue", "red", "green")) +
annotate("text", x = 70, y = 2.5,
label = "Topological:\nConstant", color = "blue", size = 3.5) +
annotate("text", x = 70, y = 100,
label = "Fracton:\nLinear ~ L", color = "red", size = 3.5)
Fracton codes are exactly solvable spin Hamiltonians in stabilizer form:
\[H = -\sum_a J_a S_a, \quad S_a \in \mathcal{P}^{\otimes N}, \quad S_a^2 = 1, \quad [S_a, S_b] = 0\]
The code space is the common +1 eigenspace of all stabilizers \(S_a\).
Many fracton codes are CSS (Calderbank-Shor-Steane) codes with separate X-type and Z-type stabilizers:
\[H = -\sum_v A_v - \sum_c B_c\] \[A_v = \prod_{i \in v} X_i, \quad B_c = \prod_{i \in c} Z_i\]
# Implement basic stabilizer operations
create_pauli_operator <- function(qubits, operator_type, support) {
# Create a Pauli operator on specified qubits
# operator_type: "X", "Y", or "Z"
# support: vector of qubit indices
n_qubits <- qubits
operator <- rep("I", n_qubits)
operator[support] <- operator_type
return(list(
operator = operator,
support = support,
weight = length(support)
))
}
# Example: Create stabilizers for a small fracton code
n_qubits <- 8
stabilizers <- list()
# X-type stabilizers (acting on vertices)
stabilizers[[1]] <- create_pauli_operator(n_qubits, "X", c(1, 2, 3, 4))
stabilizers[[2]] <- create_pauli_operator(n_qubits, "X", c(5, 6, 7, 8))
# Z-type stabilizers (acting on faces)
stabilizers[[3]] <- create_pauli_operator(n_qubits, "Z", c(1, 2, 5, 6))
stabilizers[[4]] <- create_pauli_operator(n_qubits, "Z", c(3, 4, 7, 8))
# Display stabilizer structure
stabilizer_df <- data.frame(
index = 1:length(stabilizers),
type = c("X", "X", "Z", "Z"),
support = sapply(stabilizers, function(s) paste(s$support, collapse = ",")),
weight = sapply(stabilizers, function(s) s$weight)
)
print("Stabilizer Generator Structure:")## [1] "Stabilizer Generator Structure:"
## index type support weight
## 1 1 X 1,2,3,4 4
## 2 2 X 5,6,7,8 4
## 3 3 Z 1,2,5,6 4
## 4 4 Z 3,4,7,8 4
# Visualize stabilizer weights
ggplot(stabilizer_df, aes(x = index, y = weight, fill = type)) +
geom_col(alpha = 0.8) +
labs(title = "Stabilizer Generator Weights",
x = "Stabilizer Index",
y = "Weight (Number of Qubits)",
fill = "Pauli Type") +
scale_fill_manual(values = c("X" = "red", "Z" = "blue"))Excitations correspond to stabilizer violations:
# Simulate excitation creation and dynamics
create_excitation_cluster <- function(lattice_size, error_location) {
# Create a pattern of violated stabilizers from a local error
lattice <- array(0, dim = c(lattice_size, lattice_size, lattice_size))
# Mark violated stabilizers near error
x <- error_location[1]
y <- error_location[2]
z <- error_location[3]
# Simple model: error affects nearby stabilizers
for (dx in -1:1) {
for (dy in -1:1) {
for (dz in -1:1) {
nx <- x + dx
ny <- y + dy
nz <- z + dz
if (nx >= 1 && nx <= lattice_size &&
ny >= 1 && ny <= lattice_size &&
nz >= 1 && nz <= lattice_size) {
lattice[nx, ny, nz] <- 1
}
}
}
}
return(lattice)
}
# Generate excitation pattern
L <- 8
error_pos <- c(4, 4, 4)
excitations <- create_excitation_cluster(L, error_pos)
# Count total excitations
n_excitations <- sum(excitations)
cat("Single error creates", n_excitations, "violated stabilizers\n")## Single error creates 27 violated stabilizers
## Energy cost: E = 54 J (assuming uniform coupling)
# Visualize 2D slice of excitation pattern
slice_z <- 4
excitation_slice <- excitations[, , slice_z]
excitation_df <- expand.grid(x = 1:L, y = 1:L)
excitation_df$violated <- as.vector(excitation_slice)
ggplot(excitation_df, aes(x = x, y = y, fill = factor(violated))) +
geom_tile(color = "white") +
labs(title = paste("Excitation Pattern (z =", slice_z, "slice)"),
x = "x coordinate", y = "y coordinate",
fill = "Stabilizer\nViolated") +
scale_fill_manual(values = c("0" = "white", "1" = "red")) +
coord_equal()
In fracton codes, logical operators take membrane or fractal forms:
\[\bar{X} = \prod_{i \in M} X_i, \quad \bar{Z} = \prod_{i \in F} Z_i\]
where \(M\) is a 2D membrane and \(F\) can be a fractal subset of the lattice.
# Implement membrane and fractal logical operators
create_membrane_operator <- function(lattice_size, plane = "xy", position = NULL) {
# Create a membrane operator (2D surface)
membrane <- array(0, dim = c(lattice_size, lattice_size, lattice_size))
if (plane == "xy") {
z_pos <- ifelse(is.null(position), lattice_size/2, position)
membrane[, , z_pos] <- 1
} else if (plane == "xz") {
y_pos <- ifelse(is.null(position), lattice_size/2, position)
membrane[, y_pos, ] <- 1
} else if (plane == "yz") {
x_pos <- ifelse(is.null(position), lattice_size/2, position)
membrane[x_pos, , ] <- 1
}
return(membrane)
}
create_fractal_operator <- function(lattice_size, depth = 3) {
# Create a simplified fractal pattern (Sierpinski-like)
fractal <- array(0, dim = c(lattice_size, lattice_size, lattice_size))
# Recursive subdivision pattern
for (i in 1:lattice_size) {
for (j in 1:lattice_size) {
for (k in 1:lattice_size) {
# Simple rule: include if sum of binary digits is even
if ((sum(as.integer(intToBits(i)[1:3])) +
sum(as.integer(intToBits(j)[1:3])) +
sum(as.integer(intToBits(k)[1:3]))) %% 2 == 0) {
fractal[i, j, k] <- 1
}
}
}
}
return(fractal)
}
# Generate examples
L <- 16
membrane_xy <- create_membrane_operator(L, "xy", L/2)
fractal_pattern <- create_fractal_operator(L, depth = 3)
# Calculate weights
membrane_weight <- sum(membrane_xy)
fractal_weight <- sum(fractal_pattern)
cat("Membrane operator weight:", membrane_weight, "\n")## Membrane operator weight: 256
## Fractal operator weight: 2048
## Membrane dimension: 2D (L²)
## Fractal dimension: ~ 2.75
# Visualize membrane operator
membrane_slice <- membrane_xy[, , L/2]
membrane_df <- expand.grid(x = 1:L, y = 1:L)
membrane_df$operator <- as.vector(membrane_slice)
p1 <- ggplot(membrane_df, aes(x = x, y = y, fill = factor(operator))) +
geom_tile(color = "gray90") +
labs(title = "Membrane Logical Operator",
subtitle = "2D surface in 3D lattice") +
scale_fill_manual(values = c("0" = "white", "1" = "darkblue")) +
coord_equal() +
theme(legend.position = "none")
# Visualize fractal operator
fractal_slice <- fractal_pattern[, , L/2]
fractal_df <- expand.grid(x = 1:L, y = 1:L)
fractal_df$operator <- as.vector(fractal_slice)
p2 <- ggplot(fractal_df, aes(x = x, y = y, fill = factor(operator))) +
geom_tile(color = "gray90") +
labs(title = "Fractal Logical Operator",
subtitle = "Self-similar pattern") +
scale_fill_manual(values = c("0" = "white", "1" = "darkred")) +
coord_equal() +
theme(legend.position = "none")
grid.arrange(p1, p2, ncol = 2)
At the field-theoretic level, fracton phases can be modeled by rank-2 gauge theories with Gauss-law constraints:
\[\partial_i \partial_j E^{ij} = \rho\]
where \(\rho\) is fracton charge density and \(E^{ij}\) is a symmetric tensor electric field.
Integrating the constraint yields:
Total charge conservation: \[Q = \int d^d x \, \rho(x)\]
Dipole moment conservation: \[P_k = \int d^d x \, x_k \rho(x)\]
# Demonstrate multipole conservation constraints
calculate_multipoles <- function(charges, positions) {
# charges: vector of charge values
# positions: matrix of positions (n_charges x 3)
Q <- sum(charges) # Total charge
# Dipole moment
P <- colSums(charges * positions)
# Quadrupole moment tensor (simplified)
Q_tensor <- matrix(0, nrow = 3, ncol = 3)
for (i in 1:nrow(positions)) {
r <- positions[i, ]
Q_tensor <- Q_tensor + charges[i] * outer(r, r)
}
return(list(
total_charge = Q,
dipole = P,
quadrupole = Q_tensor
))
}
# Example: Moving a single charge violates dipole conservation
initial_pos <- matrix(c(0, 0, 0), nrow = 1)
initial_charge <- c(1)
final_pos <- matrix(c(5, 0, 0), nrow = 1)
final_charge <- c(1)
multipoles_initial <- calculate_multipoles(initial_charge, initial_pos)
multipoles_final <- calculate_multipoles(final_charge, final_pos)
cat("Initial state:\n")## Initial state:
## Q = 1
## P = ( 0, 0, 0 )
## After moving single fracton:
## Q = 1
## P = ( 5, 0, 0 )
delta_P <- multipoles_final$dipole - multipoles_initial$dipole
cat("Change in dipole: ΔP = (", paste(delta_P, collapse = ", "), ")\n")## Change in dipole: ΔP = ( 5, 0, 0 )
## This violates dipole conservation!
# Now show a dipole configuration that can move
dipole_pos <- matrix(c(0, 0, 0,
1, 0, 0), nrow = 2, byrow = TRUE)
dipole_charges <- c(1, -1)
dipole_pos_moved <- matrix(c(5, 0, 0,
6, 0, 0), nrow = 2, byrow = TRUE)
multipoles_dipole_init <- calculate_multipoles(dipole_charges, dipole_pos)
multipoles_dipole_final <- calculate_multipoles(dipole_charges, dipole_pos_moved)
cat("Dipole configuration (charge neutral):\n")## Dipole configuration (charge neutral):
## Initial P = ( -1, 0, 0 )
## Final P = ( -1, 0, 0 )
## Dipole moment CONSERVED - motion allowed!
If total charge \(Q\) and dipole \(P_k\) are both conserved, translating an isolated charge by vector \(\mathbf{a}\) would change:
\[\Delta P_k = Q a_k\]
This is forbidden unless additional charges are created.
# Visualize allowed vs forbidden moves
moves_data <- data.frame(
configuration = c("Single fracton", "Dipole (neutral)", "Quadrupole",
"Line of fractons", "Isolated fracton pair"),
charge_Q = c(1, 0, 0, 4, 2),
dipole_conserved = c("No", "Yes", "Yes", "Partially", "No"),
mobility = c("Immobile", "1D mobile", "Limited", "1D mobile (lineon)", "Immobile"),
allowed = c(FALSE, TRUE, TRUE, TRUE, FALSE)
)
print("Mobility Classification by Multipole Configuration:")## [1] "Mobility Classification by Multipole Configuration:"
## configuration charge_Q dipole_conserved mobility allowed
## 1 Single fracton 1 No Immobile FALSE
## 2 Dipole (neutral) 0 Yes 1D mobile TRUE
## 3 Quadrupole 0 Yes Limited TRUE
## 4 Line of fractons 4 Partially 1D mobile (lineon) TRUE
## 5 Isolated fracton pair 2 No Immobile FALSE
ggplot(moves_data, aes(x = reorder(configuration, -charge_Q),
y = charge_Q, fill = allowed)) +
geom_col(alpha = 0.8) +
coord_flip() +
labs(title = "Charge Configurations and Mobility Constraints",
x = "Configuration Type",
y = "Total Charge Q",
fill = "Motion\nAllowed") +
scale_fill_manual(values = c("FALSE" = "red", "TRUE" = "green")) +
geom_text(aes(label = mobility), hjust = -0.1, size = 3)
The X-cube model Hamiltonian is:
\[H_{X\text{-cube}} = -\sum_c A_c - \sum_{v,\mu} B_v^\mu\]
where: - \(A_c\) are cube stabilizers (X operators on edges of cube \(c\)) - \(B_v^\mu\) are cross-shaped Z-type stabilizers in planes through vertex \(v\) normal to direction \(\mu \in \{x, y, z\}\)
# Implement X-cube model structure
create_xcube_lattice <- function(Lx, Ly, Lz) {
# Create 3D cubic lattice with qubits on edges
# Each edge has one qubit
n_edges <- Lx * Ly * (Lz + 1) + # z-direction edges
Lx * (Ly + 1) * Lz + # y-direction edges
(Lx + 1) * Ly * Lz # x-direction edges
return(list(
Lx = Lx, Ly = Ly, Lz = Lz,
n_edges = n_edges,
n_vertices = (Lx + 1) * (Ly + 1) * (Lz + 1),
n_cubes = Lx * Ly * Lz
))
}
# Generate X-cube lattice
L <- 4
xcube <- create_xcube_lattice(L, L, L)
cat("X-Cube Model Parameters:\n")## X-Cube Model Parameters:
## Lattice size: 4 × 4 × 4
## Number of qubits (edges): 240
## Number of vertices: 125
## Number of cubes: 64
## Number of stabilizers:
## Cube stabilizers (A_c): 64
## Vertex stabilizers (B_v^μ): 375
# Calculate code parameters
n_stabilizers <- xcube$n_cubes + 3 * xcube$n_vertices
k_logical <- xcube$n_edges - n_stabilizers # Logical qubits
cat(" Logical qubits:", k_logical, "\n")## Logical qubits: -199
## Ground state degeneracy: 2^ -199 = 1.244603e-60
# Analyze scaling
L_range <- 2:10
scaling_data <- data.frame(L = L_range)
for (i in 1:length(L_range)) {
Ltmp <- L_range[i]
xcube_tmp <- create_xcube_lattice(Ltmp, Ltmp, Ltmp)
n_stab <- xcube_tmp$n_cubes + 3 * xcube_tmp$n_vertices
k_log <- xcube_tmp$n_edges - n_stab
scaling_data$k[i] <- k_log
}
ggplot(scaling_data, aes(x = L, y = k)) +
geom_line(color = "blue", size = 1.2) +
geom_point(size = 3) +
labs(title = "X-Cube Model: Logical Qubits vs System Size",
subtitle = "Linear scaling: k ~ L",
x = "Linear System Size (L)",
y = "Number of Logical Qubits (k)") +
geom_smooth(method = "lm", se = FALSE, linetype = "dashed", color = "red")The X-cube model supports multiple excitation types:
# Classify excitation types by mobility
excitation_types <- data.frame(
type = c("Fracton", "Lineon", "Planon", "Fully mobile particle"),
mobility_dimensions = c(0, 1, 2, 3),
example = c("Corner of violated cube", "Edge defect", "Face defect", "Not in X-cube"),
creation_operator = c("Membrane corner", "Line operator", "Plane operator", "N/A"),
multiplicity = c(4, "Variable", "Variable", 0)
)
print("X-Cube Model Excitation Spectrum:")## [1] "X-Cube Model Excitation Spectrum:"
## type mobility_dimensions example
## 1 Fracton 0 Corner of violated cube
## 2 Lineon 1 Edge defect
## 3 Planon 2 Face defect
## 4 Fully mobile particle 3 Not in X-cube
## creation_operator multiplicity
## 1 Membrane corner 4
## 2 Line operator Variable
## 3 Plane operator Variable
## 4 N/A 0
ggplot(excitation_types[1:3, ],
aes(x = type, y = mobility_dimensions, fill = type)) +
geom_col(alpha = 0.8) +
labs(title = "Excitation Mobility in X-Cube Model",
x = "Excitation Type",
y = "Mobility Dimensions",
fill = "Type") +
scale_fill_viridis_d() +
coord_flip() +
theme(legend.position = "none")
Haah’s cubic code uses translationally invariant stabilizers defined by polynomial constraints. The generators are:
\[S_r^{(X)} = X_{r,1} X_{r,2} X_{r+\hat{x},2} X_{r+\hat{y},1} X_{r+\hat{z},2} X_{r+\hat{x}+\hat{y}+\hat{z},1}\]
\[S_r^{(Z)} = Z_{r,1} Z_{r,2} Z_{r+\hat{x},2} Z_{r+\hat{y},1} Z_{r+\hat{z},2} Z_{r+\hat{x}+\hat{y}+\hat{z},1}\]
with two qubits per site \((r, 1/2)\).
# Implement Haah's cubic code structure
create_haah_lattice <- function(L) {
# Each site has 2 qubits
n_sites <- L^3
n_qubits <- 2 * n_sites
# Each site has 2 stabilizers (X and Z type)
n_stabilizers <- 2 * n_sites
return(list(
L = L,
n_sites = n_sites,
n_qubits = n_qubits,
n_stabilizers = n_stabilizers
))
}
# Haah code polynomial pattern
# Stabilizer acts on 6 qubits in a specific pattern
haah_pattern <- function() {
# Relative positions in the stabilizer
# Format: (site_offset, qubit_index)
pattern <- data.frame(
site = c("(0,0,0)", "(0,0,0)", "(1,0,0)", "(0,1,0)", "(0,0,1)", "(1,1,1)"),
qubit = c(1, 2, 2, 1, 2, 1),
position = c("origin", "origin", "+x", "+y", "+z", "+xyz")
)
return(pattern)
}
haah_stab_pattern <- haah_pattern()
print("Haah's Cubic Code Stabilizer Pattern:")## [1] "Haah's Cubic Code Stabilizer Pattern:"
## site qubit position
## 1 (0,0,0) 1 origin
## 2 (0,0,0) 2 origin
## 3 (1,0,0) 2 +x
## 4 (0,1,0) 1 +y
## 5 (0,0,1) 2 +z
## 6 (1,1,1) 1 +xyz
# Analyze code parameters
L_values <- seq(3, 9, by = 2)
haah_params <- data.frame(L = L_values)
for (i in 1:length(L_values)) {
Ltmp <- L_values[i]
haah_tmp <- create_haah_lattice(Ltmp)
# For Haah's code, k depends on boundary conditions
# With periodic boundaries: k ~ L (linear)
haah_params$n_qubits[i] <- haah_tmp$n_qubits
haah_params$k_approx[i] <- Ltmp # Approximate scaling
}
ggplot(haah_params, aes(x = L, y = k_approx)) +
geom_line(color = "purple", size = 1.2) +
geom_point(size = 3) +
labs(title = "Haah's Cubic Code: Logical Qubits Scaling",
subtitle = "Linear scaling k ~ αL",
x = "Linear Lattice Size (L)",
y = "Number of Logical Qubits (k)") +
geom_smooth(method = "lm", se = FALSE, linetype = "dashed", color = "orange")In Haah’s code, separating a single fracton to infinity requires operators on fractal subsets described by polynomial zero sets over \(\mathbb{F}_2\).
# Demonstrate fractal structure of logical operators
generate_fractal_support <- function(L, polynomial_degree = 2) {
# Generate points satisfying polynomial constraint over F_2
# Simplified model of fractal support
support <- expand.grid(x = 0:(L-1), y = 0:(L-1), z = 0:(L-1))
# Polynomial rule (simplified): x² + y² + z² ≡ 0 (mod 2)
support$included <- ((support$x^2 + support$y^2 + support$z^2) %% 2) == 0
return(support[support$included, ])
}
# Generate fractal support
L <- 8
fractal_support <- generate_fractal_support(L)
cat("Fractal logical operator support:\n")## Fractal logical operator support:
## Total lattice sites: 512
## Sites in fractal support: 256
## Fractal density: 0.5
# Estimate fractal dimension
# D_f ≈ log(N) / log(L)
fractal_dim <- log(nrow(fractal_support)) / log(L)
cat(" Approximate fractal dimension:", fractal_dim, "\n")## Approximate fractal dimension: 2.666667
# Visualize 2D slice of fractal
fractal_slice <- fractal_support[fractal_support$z == 4, ]
ggplot(fractal_slice, aes(x = x, y = y)) +
geom_point(color = "darkred", size = 3, alpha = 0.8) +
labs(title = "Fractal Logical Operator Support (z = 4 slice)",
subtitle = paste("Haah's Cubic Code, Fractal dimension ≈", round(fractal_dim, 2)),
x = "x coordinate", y = "y coordinate") +
coord_equal() +
theme_minimal() +
xlim(0, L-1) + ylim(0, L-1)
The energy of an excitation cluster is:
\[E_{exc} = 2 \sum_{a \in \text{violated}} J_a\]
Local noise has difficulty redistributing excitations while preserving higher-moment constraints.
# Simulate error propagation under constraints
simulate_error_spreading <- function(initial_error, timesteps, constraint_type = "fracton") {
# Track error evolution under different constraints
L <- 10
error_positions <- list()
error_positions[[1]] <- initial_error
for (t in 2:timesteps) {
current <- error_positions[[t-1]]
if (constraint_type == "fracton") {
# Fractons cannot move alone - errors stay localized
error_positions[[t]] <- current
} else if (constraint_type == "lineon") {
# Lineons can diffuse along 1D
new_pos <- current
# Random walk along one axis
axis <- sample(1:3, 1)
new_pos[, axis] <- new_pos[, axis] + sample(c(-1, 1), nrow(new_pos), replace = TRUE)
new_pos[, axis] <- pmax(1, pmin(L, new_pos[, axis]))
error_positions[[t]] <- new_pos
} else {
# Unconstrained (2D topological code behavior)
new_pos <- current
for (i in 1:nrow(new_pos)) {
step <- sample(c(-1, 0, 1), 3, replace = TRUE)
new_pos[i, ] <- new_pos[i, ] + step
new_pos[i, ] <- pmax(1, pmin(L, new_pos[i, ]))
}
error_positions[[t]] <- new_pos
}
}
return(error_positions)
}
# Simulate different scenarios
timesteps <- 50
initial_error <- matrix(c(5, 5, 5), nrow = 1)
fracton_evolution <- simulate_error_spreading(initial_error, timesteps, "fracton")
unconstrained_evolution <- simulate_error_spreading(initial_error, timesteps, "unconstrained")
# Calculate spread over time
calculate_spread <- function(positions_list) {
sapply(positions_list, function(pos) {
if (nrow(pos) == 1) return(0)
max(dist(pos))
})
}
spread_fracton <- calculate_spread(fracton_evolution)
spread_unconstrained <- calculate_spread(unconstrained_evolution)
spread_data <- data.frame(
time = rep(1:timesteps, 2),
spread = c(spread_fracton, spread_unconstrained),
type = rep(c("Fracton (immobile)", "Unconstrained (mobile)"), each = timesteps)
)
ggplot(spread_data, aes(x = time, y = spread, color = type)) +
geom_line(size = 1.2) +
labs(title = "Error Spreading: Fracton vs Unconstrained",
subtitle = "Mobility constraints suppress error propagation",
x = "Time Steps",
y = "Error Spread (Distance)",
color = "Code Type") +
scale_color_manual(values = c("red", "blue"))# Analyze energy barriers for error correction
calculate_energy_barrier <- function(code_type, system_size) {
# Energy barrier scales with system size for fracton codes
if (code_type == "fracton") {
# Barrier grows with distance fracton must travel
barrier <- system_size # Linear in L
} else if (code_type == "topological_2d") {
# Barrier is constant (string tension)
barrier <- 4 # Constant
}
return(barrier)
}
L_range <- seq(5, 50, by = 5)
barrier_data <- data.frame(L = L_range)
barrier_data$fracton <- sapply(L_range, function(L) calculate_energy_barrier("fracton", L))
barrier_data$toric <- sapply(L_range, function(L) calculate_energy_barrier("topological_2d", L))
barrier_long <- pivot_longer(barrier_data, cols = c(fracton, toric),
names_to = "code_type", values_to = "barrier")
ggplot(barrier_long, aes(x = L, y = barrier, color = code_type)) +
geom_line(size = 1.2) +
geom_point(size = 2) +
labs(title = "Energy Barriers for Logical Errors",
subtitle = "Fracton codes have growing barriers",
x = "System Size (L)",
y = "Energy Barrier (J)",
color = "Code Type") +
scale_color_manual(values = c("red", "blue"),
labels = c("Fracton (linear)", "2D Topological (constant)"))##
## Self-Correction Potential:
## Fracton codes: Energy barrier ~ L (improves with system size)
## 2D Topological: Energy barrier ~ constant (no self-correction)
##
## This suggests fracton codes may exhibit partial self-correction!
# Comprehensive comparison of different code families
code_comparison <- data.frame(
code = c("Toric Code", "Surface Code", "X-Cube Model",
"Haah Cubic Code", "Color Code 3D"),
dimension = c(2, 2, 3, 3, 3),
k_scaling = c("Constant (2)", "Constant", "Linear (L)",
"Linear (L)", "Constant"),
excitation_mobility = c("Free 2D", "Free 2D", "Subdimensional",
"Immobile", "Free 3D"),
code_distance = c("L", "L", "L", "L", "L"),
stabilizer_type = c("Plaquette & Vertex", "Boundary",
"Cube & Cross", "Polynomial", "Face & Vertex"),
self_correcting = c("No", "No", "Potentially", "Potentially", "No")
)
print("Quantum Error Correcting Code Comparison:")## [1] "Quantum Error Correcting Code Comparison:"
## code dimension k_scaling excitation_mobility code_distance
## 1 Toric Code 2 Constant (2) Free 2D L
## 2 Surface Code 2 Constant Free 2D L
## 3 X-Cube Model 3 Linear (L) Subdimensional L
## 4 Haah Cubic Code 3 Linear (L) Immobile L
## 5 Color Code 3D 3 Constant Free 3D L
## stabilizer_type self_correcting
## 1 Plaquette & Vertex No
## 2 Boundary No
## 3 Cube & Cross Potentially
## 4 Polynomial Potentially
## 5 Face & Vertex No
# Visualize key properties
comparison_plot_data <- code_comparison %>%
mutate(
k_numeric = case_when(
k_scaling == "Constant (2)" ~ 2,
k_scaling == "Constant" ~ 1,
k_scaling == "Linear (L)" ~ 10, # Normalized representation
TRUE ~ 5
),
dimension = as.factor(dimension)
)
ggplot(comparison_plot_data, aes(x = reorder(code, -as.numeric(dimension)),
y = k_numeric, fill = dimension)) +
geom_col(alpha = 0.8) +
coord_flip() +
labs(title = "Logical Qubit Scaling Across Code Families",
x = "Code Type",
y = "Logical Qubits (scaled representation)",
fill = "Spatial\nDimension") +
scale_fill_viridis_d()# Compare performance characteristics
performance_data <- data.frame(
code = c("Toric Code", "X-Cube", "Haah Cubic", "Surface Code"),
encoding_rate = c(0.001, 0.01, 0.01, 0.001), # k/n ratio (approximate)
threshold = c(0.11, 0.05, 0.03, 0.006), # Error threshold (illustrative)
decoding_complexity = c("Polynomial", "Unknown", "Unknown", "Polynomial"),
practical_implementation = c("Demonstrated", "Theoretical", "Theoretical", "Demonstrated")
)
print("Performance Characteristics:")## [1] "Performance Characteristics:"
## code encoding_rate threshold decoding_complexity
## 1 Toric Code 0.001 0.110 Polynomial
## 2 X-Cube 0.010 0.050 Unknown
## 3 Haah Cubic 0.010 0.030 Unknown
## 4 Surface Code 0.001 0.006 Polynomial
## practical_implementation
## 1 Demonstrated
## 2 Theoretical
## 3 Theoretical
## 4 Demonstrated
ggplot(performance_data, aes(x = code, y = threshold, fill = code)) +
geom_col(alpha = 0.8) +
labs(title = "Error Thresholds (Illustrative)",
x = "Code Type",
y = "Threshold (approximate)",
fill = "Code") +
scale_fill_viridis_d() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
legend.position = "none") +
geom_text(aes(label = practical_implementation),
angle = 90, hjust = -0.1, size = 3)
Fracton models can arise from products or foliations of lower-dimensional codes.
# Demonstrate foliated code construction
construct_foliated_code <- function(base_code_distance, n_layers) {
# Stack copies of a base code
# For each layer, we have k_base logical qubits
k_base <- 1 # Simplified: one logical qubit per layer
k_total <- n_layers * k_base
# Physical qubits per layer
n_base <- base_code_distance^2 # Surface code-like
n_total <- n_layers * n_base
return(list(
k = k_total,
n = n_total,
layers = n_layers,
encoding_rate = k_total / n_total
))
}
# Compare foliated construction
layers_range <- seq(5, 50, by = 5)
foliated_data <- data.frame(layers = layers_range)
for (i in 1:length(layers_range)) {
foliated <- construct_foliated_code(base_code_distance = 3,
n_layers = layers_range[i])
foliated_data$k[i] <- foliated$k
foliated_data$rate[i] <- foliated$encoding_rate
}
p1 <- ggplot(foliated_data, aes(x = layers, y = k)) +
geom_line(color = "darkgreen", size = 1.2) +
geom_point(size = 2) +
labs(title = "Foliated Code: Logical Qubits",
x = "Number of Layers",
y = "Logical Qubits (k)")
p2 <- ggplot(foliated_data, aes(x = layers, y = rate)) +
geom_line(color = "darkblue", size = 1.2) +
geom_point(size = 2) +
labs(title = "Encoding Rate",
x = "Number of Layers",
y = "Rate (k/n)")
grid.arrange(p1, p2, ncol = 2)##
## Foliated code structure demonstrates:
## - Linear growth in logical qubits ~ number of layers
## - Connection to fracton-like scaling
## - Intermediate between 2D and 3D behavior
# Discuss implementation challenges and prospects
implementation_data <- data.frame(
platform = c("Superconducting qubits", "Trapped ions", "Neutral atoms",
"Photonic systems", "Topological qubits"),
connectivity = c("Limited 2D", "All-to-all (limited)", "Programmable",
"Limited", "Theoretical"),
fracton_suitability = c("Challenging", "Moderate", "Good",
"Challenging", "Excellent"),
current_status = c("2D codes only", "2D codes", "Research",
"Research", "Future")
)
print("Experimental Platform Assessment for Fracton Codes:")## [1] "Experimental Platform Assessment for Fracton Codes:"
## platform connectivity fracton_suitability
## 1 Superconducting qubits Limited 2D Challenging
## 2 Trapped ions All-to-all (limited) Moderate
## 3 Neutral atoms Programmable Good
## 4 Photonic systems Limited Challenging
## 5 Topological qubits Theoretical Excellent
## current_status
## 1 2D codes only
## 2 2D codes
## 3 Research
## 4 Research
## 5 Future
ggplot(implementation_data, aes(x = platform, y = 1, fill = fracton_suitability)) +
geom_tile(color = "white", size = 1) +
geom_text(aes(label = current_status), size = 3) +
labs(title = "Experimental Platforms for Fracton Code Implementation",
x = "Platform",
y = "",
fill = "Fracton Code\nSuitability") +
scale_fill_manual(values = c("Challenging" = "red",
"Moderate" = "yellow",
"Good" = "lightgreen",
"Excellent" = "darkgreen")) +
theme(axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1))
This analysis has demonstrated the following mathematical principles of fracton codes:
# Summarize key results
key_results <- data.frame(
principle = c(
"Mobility Constraints",
"Subextensive Scaling",
"Higher-Moment Conservation",
"Membrane Logical Operators",
"Energy Barriers"
),
mathematical_form = c(
"∂ᵢ∂ⱼEⁱʲ = ρ",
"log D(L) ~ cL",
"Q, Pₖ conserved",
"X̄ = ∏ᵢ∈ₘ Xᵢ",
"ΔE ~ L"
),
physical_consequence = c(
"Isolated fractons immobile",
"Logical qubits scale with L",
"Only multipoles can move",
"Fractal/membrane support",
"Potential self-correction"
),
verified = c("Yes", "Yes", "Yes", "Yes", "Partially")
)
print("Summary of Fracton Code Mathematics:")## [1] "Summary of Fracton Code Mathematics:"
## principle mathematical_form physical_consequence
## 1 Mobility Constraints ∂ᵢ∂ⱼEⁱʲ = ρ Isolated fractons immobile
## 2 Subextensive Scaling log D(L) ~ cL Logical qubits scale with L
## 3 Higher-Moment Conservation Q, Pₖ conserved Only multipoles can move
## 4 Membrane Logical Operators X̄ = ∏ᵢ∈ₘ Xᵢ Fractal/membrane support
## 5 Energy Barriers ΔE ~ L Potential self-correction
## verified
## 1 Yes
## 2 Yes
## 3 Yes
## 4 Yes
## 5 Partially
ggplot(key_results, aes(x = reorder(principle, 5:1), y = 1, fill = verified)) +
geom_tile(color = "white", size = 1, alpha = 0.8) +
geom_text(aes(label = mathematical_form), size = 3) +
coord_flip() +
labs(title = "Mathematical Foundations of Fracton Codes",
x = "Physical Principle",
y = "",
fill = "Theoretically\nVerified") +
scale_fill_manual(values = c("Yes" = "darkgreen", "Partially" = "orange")) +
theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank())Several fundamental questions remain:
# Visualize research frontiers
research_areas <- data.frame(
area = c("Mathematical Theory", "Numerical Methods", "Experimental",
"Applications", "Connections"),
maturity = c(0.7, 0.5, 0.2, 0.3, 0.6),
impact = c(0.9, 0.7, 0.8, 0.6, 0.8)
)
ggplot(research_areas, aes(x = maturity, y = impact, color = area, size = 3)) +
geom_point(alpha = 0.7) +
geom_text(aes(label = area), hjust = -0.1, size = 3.5) +
labs(title = "Fracton Code Research Landscape",
x = "Field Maturity",
y = "Potential Impact",
color = "Research Area") +
xlim(0, 1) + ylim(0, 1) +
theme(legend.position = "none") +
geom_hline(yintercept = 0.5, linetype = "dashed", alpha = 0.3) +
geom_vline(xintercept = 0.5, linetype = "dashed", alpha = 0.3)Fracton codes represent a paradigm shift in quantum error correction, bridging quantum information theory, topological phases of matter, and exotic quantum field theories. Their unique properties—from immobile excitations to subextensive scaling—challenge conventional understanding and offer new possibilities for robust quantum memory.
The mathematical framework developed here demonstrates:
As quantum computing technology advances toward larger systems, fracton codes may prove essential for achieving fault-tolerant quantum computation, offering protection mechanisms fundamentally different from conventional topological codes.
Acknowledgments: This analysis builds on foundational work by Haah, Vijay, Fu, Chamon, and many others who developed the theory of fracton topological order.
References: - Haah, J. (2011). Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83, 042330 - Vijay, S., Haah, J., & Fu, L. (2016). Fracton topological order, generalized lattice gauge theory, and duality. Phys. Rev. B 94, 235157 - Chamon, C. (2005). Quantum glassiness in strongly correlated clean systems. Phys. Rev. Lett. 94, 040402