Overview

row

Goals Achieved

7

row

Goals Set

10

row

Energetic

320

📈 Mood Progress🥺😪😏🤩

Mood Progress🥺😪😏🤩

Queen of 2025🙍‍♀️

January Look

Youthfully Charmed in Jan
Youthfully Charmed in Jan
Say Hello to Ngwe Saung in June
Say Hello to Ngwe Saung in June
TESOL Grad: Memorable Trip to Mandalay in October
TESOL Grad: Memorable Trip to Mandalay in October
Elegant Lady in December
Elegant Lady in December

Demure Level

Professional confidence growth in 2025👩‍💻✈️

row 1

TESOL & Counselling

TESOL Excellence

Column

Advanced Counselling Certificate

row 3

Personal Reflection: Emotional Resilience

row 4

            Df Sum Sq Mean Sq F value  Pr(>F)    
month        2  50.53  25.267   58.31 6.6e-07 ***
Residuals   12   5.20   0.433                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
title: "🌻My 2025 Reflection Dashboard🌻"
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    social: menu
    source_code: embed
    self_contained: true
    vertical_layout: fill
    theme: flatly
---

```{r setup, include=FALSE}
library(flexdashboard)
```

# Overview

## row

### Goals Achieved

```{r}
valueBox(
  value = 7,
  caption = "Goals Achieved",
  icon = "fa-check",
  color = "green"
)

```

## row

### Goals Set

```{r}
valueBox(10,
         caption = "Goals Set",
         icon = "fa-bullseye",
         color = "blue")
```

## row

### Energetic

```{r}
valueBox(320,
         caption = "Active Days",
         icon = "fa-calendar",
         color = "orange")
```

## 📈 Mood Progress🥺😪😏🤩

Mood Progress🥺😪😏🤩

```{r}

months <- month.abb           # "Jan", "Feb", ..., "Dec"
mood <- c(6,7,6,8,7,9,8,7,8,9,9,8)


plot(1:12, mood,
     type = "o",             # line with points
     col = "purple",         # line color
     main = "Mood Progress", # chart title
     ylab = "Mood Level",    # y-axis label
     xaxt = "n")             # suppress default x-axis

axis(1, at = 1:12, labels = months)

```

# Queen of 2025🙍‍♀️

## January Look {width="50"}

![Youthfully Charmed in Jan](photo_2025-12-28_21-32-17 (2).jpg){width="347"}

![Say Hello to Ngwe Saung in June](photo_2025-12-31_00-05-49.jpg){width="346"}

![TESOL Grad: Memorable Trip to Mandalay in October](viber_image_2025-12-31_00-02-17-236.jpg){width="352"}

![Elegant Lady in December](images/clipboard-1262506124.jpeg){width="392"}

## Demure Level

```{r}
Demure_Level = 100
gauge(Demure_Level,
      min=0, max=98,
            label= "Demure_Level"
  )
```

# Professional confidence growth in 2025👩‍💻✈️

## row 1

### TESOL & Counselling

```{r}
valueBox(
  value = "TESOL Excellence",
  caption = "Diploma in TESOL (LTTC) | 3 A− grades, 1 A",
  icon = "fa-graduation-cap",
  color = "purple")
  
```

### Column

```{r}
valueBox(
  value = "Advanced Counselling Certificate",
  caption = "Confidence increases with experience, certification & practice",
  icon = "fa-chart-line",
  color = "lightblue")
```

## row 3

```{r}
Early_2025 <- c(5, 6, 6, 5, 6)
Late_2025  <- c(8, 9, 8, 9, 8)
confidence <- data.frame(
score = c(Early_2025, Late_2025),
period = factor(rep(c("Early_2025", "Late_2025"), each = 5))
)
```

```{r}
boxplot(score ~ period,
data = confidence,
main = "Confidence Growth: English Language Teaching",
xlab = "Time Period",
ylab = "Self-Rated Confidence",
col= "red")

```

```{r}

confidence <- c(5, 6, 6, 7, 8, 8, 9, 9, 9, 10)

# Predictors
months_experience <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
certification_level <- c(1, 1, 2, 2, 2, 3, 3, 3, 3, 3)  # 1=Basic, 2=Intermediate, 3=Advanced
practice_hours <- c(5, 5, 5, 15, 15, 15, 15 , 15 , 20, 20)

df <- data.frame(confidence, months_experience, certification_level, practice_hours)

model <- lm(confidence ~ months_experience + certification_level + practice_hours, data = df)

plot(df$months_experience, df$confidence, pch=19, col="blue",
     xlab="Months of Experience",
     ylab="Self-Rated Confidence",
     main="Confidence Growth: Counselling")

lines(df$months_experience, df$predicted_conf, col="red", lwd=2)

legend("topleft", legend=c("Actual", "Predicted"), col=c("blue","red"), pch=c(19, NA), lty=c(NA,1))


```

# Personal Reflection: Emotional Resilience

## row 4

```{r}
library(ggplot2)
library(plotly)

# Emotional resilience data
January   <- c(5, 6, 6, 5, 6)
June      <- c(4, 4, 3, 5, 5)
December  <- c(9, 8, 9, 9, 8)

resilience <- data.frame(
  score = c(January, June, December),
  month = factor(rep(c("January", "June", "December"), each = 5))
)

resilience_anova <- aov(score ~ month, data = resilience)
summary(resilience_anova)

p <- ggplot(resilience, aes(x = month, y = score, fill = month)) +
  geom_violin(alpha = 0.3) +
  geom_boxplot(width = 0.1) +
  theme_minimal() +
  labs(title = "Emotional Resilience Growth in 2025",
       x = "Month",
       y = "Self-Rated Emotional Resilience")

ggplotly(p)

```