Mood Progress🥺😪😏🤩
Df Sum Sq Mean Sq F value Pr(>F)
month 2 50.53 25.267 58.31 6.6e-07 ***
Residuals 12 5.20 0.433
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
title: "🌻My 2025 Reflection Dashboard🌻"
output:
flexdashboard::flex_dashboard:
orientation: rows
social: menu
source_code: embed
self_contained: true
vertical_layout: fill
theme: flatly
---
```{r setup, include=FALSE}
library(flexdashboard)
```
# Overview
## row
### Goals Achieved
```{r}
valueBox(
value = 7,
caption = "Goals Achieved",
icon = "fa-check",
color = "green"
)
```
## row
### Goals Set
```{r}
valueBox(10,
caption = "Goals Set",
icon = "fa-bullseye",
color = "blue")
```
## row
### Energetic
```{r}
valueBox(320,
caption = "Active Days",
icon = "fa-calendar",
color = "orange")
```
## 📈 Mood Progress🥺😪😏🤩
Mood Progress🥺😪😏🤩
```{r}
months <- month.abb # "Jan", "Feb", ..., "Dec"
mood <- c(6,7,6,8,7,9,8,7,8,9,9,8)
plot(1:12, mood,
type = "o", # line with points
col = "purple", # line color
main = "Mood Progress", # chart title
ylab = "Mood Level", # y-axis label
xaxt = "n") # suppress default x-axis
axis(1, at = 1:12, labels = months)
```
# Queen of 2025🙍♀️
## January Look {width="50"}
.jpg){width="347"}
{width="346"}
{width="352"}
{width="392"}
## Demure Level
```{r}
Demure_Level = 100
gauge(Demure_Level,
min=0, max=98,
label= "Demure_Level"
)
```
# Professional confidence growth in 2025👩💻✈️
## row 1
### TESOL & Counselling
```{r}
valueBox(
value = "TESOL Excellence",
caption = "Diploma in TESOL (LTTC) | 3 A− grades, 1 A",
icon = "fa-graduation-cap",
color = "purple")
```
### Column
```{r}
valueBox(
value = "Advanced Counselling Certificate",
caption = "Confidence increases with experience, certification & practice",
icon = "fa-chart-line",
color = "lightblue")
```
## row 3
```{r}
Early_2025 <- c(5, 6, 6, 5, 6)
Late_2025 <- c(8, 9, 8, 9, 8)
confidence <- data.frame(
score = c(Early_2025, Late_2025),
period = factor(rep(c("Early_2025", "Late_2025"), each = 5))
)
```
```{r}
boxplot(score ~ period,
data = confidence,
main = "Confidence Growth: English Language Teaching",
xlab = "Time Period",
ylab = "Self-Rated Confidence",
col= "red")
```
```{r}
confidence <- c(5, 6, 6, 7, 8, 8, 9, 9, 9, 10)
# Predictors
months_experience <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
certification_level <- c(1, 1, 2, 2, 2, 3, 3, 3, 3, 3) # 1=Basic, 2=Intermediate, 3=Advanced
practice_hours <- c(5, 5, 5, 15, 15, 15, 15 , 15 , 20, 20)
df <- data.frame(confidence, months_experience, certification_level, practice_hours)
model <- lm(confidence ~ months_experience + certification_level + practice_hours, data = df)
plot(df$months_experience, df$confidence, pch=19, col="blue",
xlab="Months of Experience",
ylab="Self-Rated Confidence",
main="Confidence Growth: Counselling")
lines(df$months_experience, df$predicted_conf, col="red", lwd=2)
legend("topleft", legend=c("Actual", "Predicted"), col=c("blue","red"), pch=c(19, NA), lty=c(NA,1))
```
# Personal Reflection: Emotional Resilience
## row 4
```{r}
library(ggplot2)
library(plotly)
# Emotional resilience data
January <- c(5, 6, 6, 5, 6)
June <- c(4, 4, 3, 5, 5)
December <- c(9, 8, 9, 9, 8)
resilience <- data.frame(
score = c(January, June, December),
month = factor(rep(c("January", "June", "December"), each = 5))
)
resilience_anova <- aov(score ~ month, data = resilience)
summary(resilience_anova)
p <- ggplot(resilience, aes(x = month, y = score, fill = month)) +
geom_violin(alpha = 0.3) +
geom_boxplot(width = 0.1) +
theme_minimal() +
labs(title = "Emotional Resilience Growth in 2025",
x = "Month",
y = "Self-Rated Emotional Resilience")
ggplotly(p)
```