$0.00" ...
## $ 12 Mo. DELIVERYPASS_USED: num [1:3000] 51 0 12 13 23 0 0 0 0 0 ...
## $ 12 Mo. DISCOUNT_AMOUNT
"$20.96" ...
: chr [1:3000] "$98.65" "$0.00" "$139.81"
## $ 12 Mo. Orders
...
: num [1:3000] 57 4 18 15 25 31 8 12 8 3
## $ 12 Mo. ORDERS_W_PROMO
## $ 12 Mo. Sales
$1,092" ...
: num [1:3000] 19 NA 16 7 4 2 5 1 8 NA ...
: chr [1:3000] "$25,195" "$84" "$1,496" "
## $ 24 Mo. DELIVERY_FEE_PAID: chr [1:3000] "$0.00" "$5.99" "$17.97" "
$17.97" ...
## $ 24 Mo. DELIVERYPASS_USED: num [1:3000] 103 0 26 13 46 0 0 0 0 0
...
## $ 24 Mo. DISCOUNT_AMOUNT
" "$50.92" ...
## $ 24 Mo. Orders
3 ...
## $ 24 Mo. Orders w. Promo
...
## $ 24 Mo. Sales
"$1,823" ...
: chr [1:3000] "$128.16" "$0.00" "$257.65
: num [1:3000] 105 1 39 21 46 35 9 24 18
: num [1:3000] 25 NA 33 14 8 9 6 3 15 NA
: chr [1:3000] "$37,999" "$130" "$3,273"
## $ SUNDAY ORDERS 12 MO.
## $ MONDAY ORDERS 12 MO.
## $ TUESDAY ORDERS 12 MO.
: num [1:3000] NA 2 2 1 NA 4 1 6 5 NA ...
: num [1:3000] 50 1 NA 1 3 3 1 1 NA NA ...
: num [1:3000] 2 NA 1 2 5 NA 3 NA 1 1 ...
## $ WEDNESDAY ORDERS 12 MO. : num [1:3000] NA NA 4 4 4 1 NA 1 NA NA
...
## $ THURSDAY ORDERS 12 MO.
## $ FRIDAY ORDERS 12 MO.
## $ SATURDAY ORDERS 12 MO.
: num [1:3000] NA NA 4 1 3 3 1 NA NA 1 ...
: num [1:3000] 2 NA 5 3 4 1 1 NA 1 1 ...
: num [1:3000] NA 1 2 1 4 19 1 4 1 NA ...
# Count number of missing values per column
missing_counts <- colSums(is.na(df))
# Display missing counts nicely
missing_counts
##
LOYALTY_SEGMENT
AGE
INCOME
##
543
##
DMA
##
0
GENDER
659
543
ZIP_CODE
0
0
##
E_PAID
##
GEOGRAPHY
0
ACQUIRED_DATE 12 Mo. DELIVERY_FE
0
0
## 12 Mo. DELIVERYPASS_USED
Orders
12 Mo. DISCOUNT_AMOUNT
12 Mo.