IPV and Trails A Regression Models

Trails A Regression Model 1

## Loading required package: Matrix
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsAtestSec ~ (Age + IPVstatus + Sex + Race)^4 + (Age | HNDid) +      (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    962.6   1022.1   -460.3    920.6 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 7.04         
##           Age         0.20     1.00
##  subclass (Intercept) 1.85         
##  Residual             7.63         
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                     (Intercept)                              Age  
##                         29.0401                           0.3065  
##                      IPVstatus1                           SexMen  
##                         -0.0520                          -4.7692  
##                       RaceAfrAm                   Age:IPVstatus1  
##                         15.0198                          -0.0764  
##                      Age:SexMen                    Age:RaceAfrAm  
##                         -0.4153                           0.7334  
##               IPVstatus1:SexMen             IPVstatus1:RaceAfrAm  
##                         17.5731                           1.5937  
##                SexMen:RaceAfrAm            Age:IPVstatus1:SexMen  
##                         -2.5314                           0.9969  
##        Age:IPVstatus1:RaceAfrAm             Age:SexMen:RaceAfrAm  
##                          0.6192                           0.0895  
##     IPVstatus1:SexMen:RaceAfrAm  Age:IPVstatus1:SexMen:RaceAfrAm  
##                         -9.8200                          -1.0854
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## 
## Random effects:
##                         Chi.sq Chi.DF elim.num p.value
## (1 | subclass)            0.11      1        1  0.7382
## (Age | HNDid)             0.91      1        2  0.3398
##       (Age + 0 | HNDid)   0.00      1        3  1.0000
##       (1 | HNDid)        13.54      1     kept  0.0002
## 
## Fixed effects:
##                          Sum Sq  Mean Sq NumDF  DenDF F.value elim.num
## Age:IPVstatus:Sex:Race   32.410   32.410     1  97.30  0.5255        1
## IPVstatus:Sex:Race        1.375    1.375     1  52.92  0.0224        2
## Age:IPVstatus:Race        1.623    1.623     1  99.08  0.0320        3
## Age:Sex:Race              2.552    2.552     1  99.49  0.0331        4
## Age:IPVstatus:Sex        13.846   13.846     1  95.84  0.2420        5
## Age:Sex                  46.681   46.681     1 102.62  0.2731        6
## IPVstatus:Race           30.428   30.428     1  54.17  0.5885        7
## Sex:Race                 35.710   35.710     1  56.47  0.5556        8
## Age:IPVstatus           157.114  157.114     1  96.15  2.8413        9
## Age                    1855.248 1855.248     1 102.33 16.1443     kept
## IPVstatus                97.756   97.756     1  56.67  2.0191     kept
## Sex                      14.223   14.223     1  57.11  0.0285     kept
## Race                    433.600  433.600     1  81.23 10.8756     kept
## Age:Race                229.423  229.423     1 103.84  4.6166     kept
## IPVstatus:Sex           233.415  233.415     1  57.41  4.8137     kept
##                        Pr(>F)
## Age:IPVstatus:Sex:Race 0.4702
## IPVstatus:Sex:Race     0.8815
## Age:IPVstatus:Race     0.8584
## Age:Sex:Race           0.8559
## Age:IPVstatus:Sex      0.6239
## Age:Sex                0.6024
## IPVstatus:Race         0.4463
## Sex:Race               0.4591
## Age:IPVstatus          0.0951
## Age                    0.0001
## IPVstatus              0.1608
## Sex                    0.8664
## Race                   0.0014
## Age:Race               0.0340
## IPVstatus:Sex          0.0323
## 
## Least squares means:
##                        IPVstatus  Sex Race Estimate Standard Error   DF
## IPVstatus  0                 1.0   NA   NA    30.84           1.42 57.2
## IPVstatus  1                 2.0   NA   NA    34.20           1.96 56.9
## Sex  Women                    NA  2.0   NA    32.32           1.68 57.0
## Sex  Men                      NA  1.0   NA    32.72           1.76 57.4
## Race  White                   NA   NA  2.0    29.38           1.92 57.8
## Race  AfrAm                   NA   NA  1.0    35.66           1.45 56.9
## IPVstatus:Sex  0 Women       1.0  2.0   NA    33.27           2.14 56.9
## IPVstatus:Sex  1 Women       2.0  2.0   NA    31.36           2.55 57.1
## IPVstatus:Sex  0 Men         1.0  1.0   NA    28.40           1.85 58.8
## IPVstatus:Sex  1 Men         2.0  1.0   NA    37.04           2.95 56.7
##                        t-value Lower CI Upper CI p-value
## IPVstatus  0              21.7     28.0     33.7  <2e-16
## IPVstatus  1              17.4     30.3     38.1  <2e-16
## Sex  Women                19.2     29.0     35.7  <2e-16
## Sex  Men                  18.6     29.2     36.2  <2e-16
## Race  White               15.3     25.5     33.2  <2e-16
## Race  AfrAm               24.5     32.7     38.6  <2e-16
## IPVstatus:Sex  0 Women    15.6     29.0     37.6  <2e-16
## IPVstatus:Sex  1 Women    12.3     26.3     36.5  <2e-16
## IPVstatus:Sex  0 Men      15.3     24.7     32.1  <2e-16
## IPVstatus:Sex  1 Men      12.6     31.1     42.9  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error   DF t-value
## IPVstatus 0-1                       -3.4          2.368 56.7   -1.42
## Sex Women-Men                       -0.4          2.385 57.1   -0.17
## Race White-AfrAm                    -6.3          2.343 57.6   -2.68
## IPVstatus:Sex  0 Women- 1 Women      1.9          3.297 57.0    0.58
## IPVstatus:Sex  0 Women- 0 Men        4.9          2.814 58.2    1.73
## IPVstatus:Sex  0 Women- 1 Men       -3.8          3.589 56.8   -1.05
## IPVstatus:Sex  1 Women- 0 Men        3.0          3.116 57.0    0.95
## IPVstatus:Sex  1 Women- 1 Men       -5.7          3.877 56.8   -1.47
## IPVstatus:Sex  0 Men- 1 Men         -8.6          3.452 57.1   -2.50
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                     -8.108     1.38    0.16
## Sex Women-Men                     -5.179     4.37    0.87
## Race White-AfrAm                 -10.969    -1.59    0.01
## IPVstatus:Sex  0 Women- 1 Women   -4.691     8.51    0.56
## IPVstatus:Sex  0 Women- 0 Men     -0.758    10.51    0.09
## IPVstatus:Sex  0 Women- 1 Men    -10.956     3.42    0.30
## IPVstatus:Sex  1 Women- 0 Men     -3.278     9.20    0.35
## IPVstatus:Sex  1 Women- 1 Men    -13.443     2.08    0.15
## IPVstatus:Sex  0 Men- 1 Men      -15.554    -1.73    0.02
## 
## Final model:
## lme4::lmer(formula = TrailsAtestSec ~ Age + IPVstatus + Sex + 
##     Race + (1 | HNDid) + Age:Race + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run final Model 1

(mm1 = lmer(TrailsAtestSec ~ Age + IPVstatus + Sex + Race + (1 | HNDid) + Age:Race + 
    IPVstatus:Sex, data = IPVandCognitionDataSet2, REML = F))
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsAtestSec ~ Age + IPVstatus + Sex + Race + (1 | HNDid) +      Age:Race + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    945.2    970.7   -463.6    927.2 
## Random effects:
##  Groups   Name        Std.Dev.
##  HNDid    (Intercept) 6.20    
##  Residual             7.82    
## Number of obs: 126, groups: HNDid, 63
## Fixed Effects:
##       (Intercept)                Age         IPVstatus1  
##            32.279              0.325             -1.905  
##            SexMen          RaceAfrAm      Age:RaceAfrAm  
##            -4.872             11.151              0.745  
## IPVstatus1:SexMen  
##            10.542

summary(mm1)
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsAtestSec ~ Age + IPVstatus + Sex + Race + (1 | HNDid) +      Age:Race + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
##      AIC      BIC   logLik deviance 
##    945.2    970.7   -463.6    927.2 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 38.4     6.20    
##  Residual             61.2     7.82    
## Number of obs: 126, groups: HNDid, 63
## 
## Fixed effects:
##                   Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)         32.279      3.215  80.500   10.04  8.9e-16
## Age                  0.325      0.279 112.800    1.16  0.24725
## IPVstatus1          -1.905      3.126  63.000   -0.61  0.54433
## SexMen              -4.872      2.669  64.200   -1.83  0.07256
## RaceAfrAm           11.151      3.250  88.200    3.43  0.00092
## Age:RaceAfrAm        0.745      0.337 110.200    2.21  0.02906
## IPVstatus1:SexMen   10.542      4.560  63.400    2.31  0.02405
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen RcAfrA Ag:RAA
## Age          0.616                                   
## IPVstatus1  -0.382  0.083                            
## SexMen      -0.443  0.121  0.489                     
## RaceAfrAm   -0.718 -0.668 -0.005 -0.059              
## Age:RcAfrAm -0.473 -0.840 -0.096 -0.196  0.732       
## IPVstts1:SM  0.250 -0.116 -0.697 -0.592  0.032  0.143

plot(st)

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1


plot(mm1)

plot of chunk unnamed-chunk-1

Trails A Regression Model 2 (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/IPVandCognitionDataSet2.rda")

library(lme4)
library(lmerTest)

(mm2 = lmer(TrailsAtestSec ~ (Age + IPVstatus + Sex + Race + CES1)^5 + (Age | 
    HNDid) + (1 | subclass), data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsAtestSec ~ (Age + IPVstatus + Sex + Race + CES1)^5 + (Age |      HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    974.5   1079.4   -450.2    900.5 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 8.06e+00     
##           Age         5.30e-01 1.00
##  subclass (Intercept) 4.37e-05     
##  Residual             7.30e+00     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                           (Intercept)  
##                               27.0101  
##                                   Age  
##                               -0.3701  
##                            IPVstatus1  
##                               17.9899  
##                                SexMen  
##                               -2.1002  
##                             RaceAfrAm  
##                               17.2220  
##                                 CES11  
##                               -0.0101  
##                        Age:IPVstatus1  
##                                2.3701  
##                            Age:SexMen  
##                                0.5344  
##                         Age:RaceAfrAm  
##                                1.6667  
##                             Age:CES11  
##                                1.0368  
##                     IPVstatus1:SexMen  
##                                0.8834  
##                  IPVstatus1:RaceAfrAm  
##                              -12.1315  
##                      IPVstatus1:CES11  
##                              -19.3984  
##                      SexMen:RaceAfrAm  
##                               -4.8642  
##                          SexMen:CES11  
##                               -1.2683  
##                       RaceAfrAm:CES11  
##                               -0.0197  
##                 Age:IPVstatus1:SexMen  
##                               -1.6788  
##              Age:IPVstatus1:RaceAfrAm  
##                               -1.8567  
##                  Age:IPVstatus1:CES11  
##                               -3.1796  
##                  Age:SexMen:RaceAfrAm  
##                               -1.1907  
##                      Age:SexMen:CES11  
##                               -1.9039  
##                   Age:RaceAfrAm:CES11  
##                               -1.3374  
##           IPVstatus1:SexMen:RaceAfrAm  
##                               -6.0095  
##               IPVstatus1:SexMen:CES11  
##                               15.8937  
##            IPVstatus1:RaceAfrAm:CES11  
##                               12.1511  
##                SexMen:RaceAfrAm:CES11  
##                               -0.4474  
##       Age:IPVstatus1:SexMen:RaceAfrAm  
##                                0.5251  
##           Age:IPVstatus1:SexMen:CES11  
##                                4.1912  
##        Age:IPVstatus1:RaceAfrAm:CES11  
##                                3.4548  
##            Age:SexMen:RaceAfrAm:CES11  
##                                2.5378  
##     IPVstatus1:SexMen:RaceAfrAm:CES11  
##                                2.9370  
## Age:IPVstatus1:SexMen:RaceAfrAm:CES11  
##                               -2.3917

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | subclass)    0.0      1        1  1.0000
## (Age | HNDid)     6.5      1     kept  0.0108
## 
## Fixed effects:
##                               Sum Sq  Mean Sq NumDF DenDF F.value elim.num
## Age:IPVstatus:Sex:Race:CES1    7.797    7.797     1 61.93  0.1247        1
## Age:IPVstatus:Sex:Race        20.724   20.724     1 61.20  0.0306        2
## Age:Sex:Race:CES1             33.368   33.368     1 57.78  0.5596        3
## Age:Sex:Race                  25.615   25.615     1 46.82  0.4293        4
## Age:IPVstatus:Race:CES1       23.468   23.468     1 59.61  0.6472        5
## Age:IPVstatus:Race            13.590   13.590     1 58.43  0.0115        6
## Age:Race:CES1                 32.164   32.164     1 46.82  0.3185        7
## IPVstatus:Sex:Race:CES1       61.024   61.024     1 25.41  0.2965        8
## IPVstatus:Sex:Race            13.409   13.409     1 25.46  0.6953        9
## Age:IPVstatus:Sex:CES1         9.700    9.700     1 27.48  1.4031       10
## Age:IPVstatus:CES1             1.110    1.110     1 34.17  0.0170       11
## Age:Sex:CES1                  30.907   30.907     1 24.92  0.5388       12
## Age:CES1                       4.364    4.364     1 32.09  0.1780       13
## Age:IPVstatus:Sex             11.693   11.693     1 32.77  1.0107       14
## Age:Sex                       52.725   52.725     1 37.76  0.0001       15
## IPVstatus:Race:CES1           71.931   71.931     1 28.61  2.4394       16
## IPVstatus:Race                27.163   27.163     1 32.06  0.0250       17
## IPVstatus:Sex:CES1            95.565   95.565     1 40.65  2.0288       18
## Sex:Race:CES1                307.587  307.587     1 36.25  1.7969       19
## Sex:Race                       3.314    3.314     1 40.06  0.0753       20
## Sex:CES1                      11.055   11.055     1 48.88  0.9094       21
## Race:CES1                     99.815   99.815     1 34.04  1.1367       22
## IPVstatus:CES1               173.059  173.059     1 47.90  2.6503       23
## CES1                           9.410    9.410     1 46.38  0.6675       24
## Age:IPVstatus                 52.712   52.712     1 15.52  1.8633       25
## IPVstatus:Sex                151.129  151.129     1 52.37  3.3747       26
## Sex                            8.521    8.521     1 50.26  0.2922       27
## IPVstatus                     44.687   44.687     1 44.73  0.6145       28
## Age                         1031.579 1031.579     1 49.49  7.8819     kept
## Race                         265.864  265.864     1 39.09  8.4388     kept
## Age:Race                     249.551  249.551     1 49.49  4.7818     kept
##                             Pr(>F)
## Age:IPVstatus:Sex:Race:CES1 0.7252
## Age:IPVstatus:Sex:Race      0.8616
## Age:Sex:Race:CES1           0.4575
## Age:Sex:Race                0.5155
## Age:IPVstatus:Race:CES1     0.4243
## Age:IPVstatus:Race          0.9149
## Age:Race:CES1               0.5752
## IPVstatus:Sex:Race:CES1     0.5908
## IPVstatus:Sex:Race          0.4121
## Age:IPVstatus:Sex:CES1      0.2463
## Age:IPVstatus:CES1          0.8971
## Age:Sex:CES1                0.4698
## Age:CES1                    0.6759
## Age:IPVstatus:Sex           0.3221
## Age:Sex                     0.9907
## IPVstatus:Race:CES1         0.1293
## IPVstatus:Race              0.8755
## IPVstatus:Sex:CES1          0.1620
## Sex:Race:CES1               0.1884
## Sex:Race                    0.7852
## Sex:CES1                    0.3450
## Race:CES1                   0.2939
## IPVstatus:CES1              0.1101
## CES1                        0.4181
## Age:IPVstatus               0.1917
## IPVstatus:Sex               0.0719
## Sex                         0.5912
## IPVstatus                   0.4372
## Age                         0.0071
## Race                        0.0060
## Age:Race                    0.0335
## 
## Least squares means:
##             Race Estimate Standard Error   DF t-value Lower CI Upper CI
## Race  White  2.0    27.04           1.93 55.8   14.02     23.2     30.9
## Race  AfrAm  1.0    33.91           1.42 55.7   23.88     31.1     36.8
##             p-value
## Race  White  <2e-16
## Race  AfrAm  <2e-16
## 
##  Differences of LSMEANS:
##                  Estimate Standard Error   DF t-value Lower CI Upper CI
## Race White-AfrAm     -6.9           2.39 56.0   -2.87    -11.7    -2.07
##                  p-value
## Race White-AfrAm   0.006
## 
## Final model:
## lme4::lmer(formula = TrailsAtestSec ~ Age + Race + (Age | HNDid) + 
##     Age:Race, data = IPVandCognitionDataSet2, REML = reml, contrasts = l)

Re-run suggested final Model 2

(mm2 = lmer(TrailsAtestSec ~ Age + IPVstatus + Sex + Race + (Age | HNDid) + 
    Age:Race, data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsAtestSec ~ Age + IPVstatus + Sex + Race + (Age | HNDid) +      Age:Race 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    947.8    976.2   -463.9    927.8 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 9.989        
##           Age         0.764    0.92
##  Residual             7.446        
## Number of obs: 126, groups: HNDid, 63
## Fixed Effects:
##   (Intercept)            Age     IPVstatus1         SexMen      RaceAfrAm  
##        28.159          0.136          1.496         -1.153         12.727  
## Age:RaceAfrAm  
##         0.899

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsAtestSec ~ Age + IPVstatus + Sex + Race + (Age | HNDid) +      Age:Race 
##    Data: IPVandCognitionDataSet2 
## 
##      AIC      BIC   logLik deviance 
##    947.8    976.2   -463.9    927.8 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 99.784   9.989        
##           Age          0.584   0.764    0.92
##  Residual             55.444   7.446        
## Number of obs: 126, groups: HNDid, 63
## 
## Fixed effects:
##               Estimate Std. Error     df t value Pr(>|t|)
## (Intercept)     28.159      3.756 50.000    7.50    1e-09
## Age              0.136      0.324 57.400    0.42   0.6756
## IPVstatus1       1.496      2.142 49.700    0.70   0.4880
## SexMen          -1.153      2.087 54.000   -0.55   0.5831
## RaceAfrAm       12.727      4.167 37.100    3.05   0.0042
## Age:RaceAfrAm    0.899      0.392 49.600    2.29   0.0262
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen RcAfrA
## Age          0.814                            
## IPVstatus1  -0.237  0.022                     
## SexMen      -0.316  0.056  0.193              
## RaceAfrAm   -0.759 -0.755 -0.019 -0.070       
## Age:RcAfrAm -0.638 -0.832 -0.034 -0.155  0.870

plot(st)

plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3


plot(mm2)

plot of chunk unnamed-chunk-3