load required libraries

library(forecast)
Registered S3 method overwritten by 'quantmod':
  method            from
  as.zoo.data.frame zoo 
library(tseries)
library(lubridate)

Attaching package: 'lubridate'
The following objects are masked from 'package:base':

    date, intersect, setdiff, union
library(ggplot2)

sample sales data

data<-c(100,110,120,115,130,140,150,145,160,170,180,175)
dates<-seq(as.Date("2024-01-01"),by="month",length.out=12)

create time series object

ts_data<-ts(data,start = c(2024,1),frequency = 12)

plot the data to visualize the trend

autoplot(ts_data)+labs(title="monthly sales data")

forecast with ARIMA

forecast_model<-auto.arima(ts_data)
forecast_values<-forecast(forecast_model,h=6)

plot forecast series

autoplot(forecast_values)+labs(title="sales forecast")

From the plot above the forecasted sales for the next 6 months is expected to increase.