May your holidays be filled with warmth, peace, and cherished moments. May the magic of the season inspire you and help you achieve success in all your endeavors. This Christmas, may you be blessed with success, prosperity, and happiness.
| iris | ||||||
| 150 rows x 5 cols | ||||||
| Column | Plot Overview | Missing | Mean | Median | SD | |
|---|---|---|---|---|---|---|
| Sepal.Length | 0.0% | 5.8 | 5.8 | 0.8 | ||
| Sepal.Width | 0.0% | 3.1 | 3.0 | 0.4 | ||
| Petal.Length | 0.0% | 3.8 | 4.3 | 1.8 | ||
| Petal.Width | 0.0% | 1.2 | 1.3 | 0.8 | ||
Speciessetosa, versicolor and virginica |
0.0% | — | — | — | ||
---
title: "Dashboard Webinar 2025"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill #scroll & fill
social: menu
source_code: embed
self_contained: true
theme: spacelab
#css: My.style.css
---
```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(plotly) # Added for interactive plots
```
# Introduction {data-icon="fa-home"}
## About Training
### Welcome to our Webinar 🥰
`May your holidays be filled with warmth, peace, and cherished moments. May the magic of the season inspire you and help you achieve success in all your endeavors. This Christmas, may you be blessed with success, prosperity, and happiness.`
{width="600"}
## About Training {data-width="400"}
### Total Participants
```{r}
flexdashboard::valueBox(
value=85,
caption= "Total Participants",
icon= "fa-users",
color= "plum"
)
```
### Training Progress
```{r}
Training_access =78
gauge(Training_access,
min = 0, max = 100,
label = "Success %",
symbol = "%",
# Color changes based on value
sectors = gaugeSectors(success = c(70, 100), warning = c(50, 69), danger = c(0, 49)))
```
### Let's get start
{width="400"}
# Plots {data-icon="fa-database"}
## Data {.tabset}
### About Iris dataset
```{r}
library(tidyverse)
iris |> gtExtras::gt_plt_summary()
```
### About Cars
```{r}
DT::datatable(cars, options = list(pageLength = 5))
```
## Plots
### Speed vs Displacement {.tabset}
```{r}
p <- ggplot(cars, aes(x = speed, y = dist)) +
geom_point(color = "darkred", size = 2, alpha = 0.6) +
geom_smooth(method = "lm", se = FALSE, color = "steelblue") +
theme_minimal() +
labs(title = "Speed vs Stopping Distance")
ggplotly(p)
```
### Distribution of Car Speed
```{r}
hist(cars$speed, col=rainbow(9),density=15, border=1)
```