load packages and data
calculate summary statistics
CT_summ <- CT_raw %>% # assign summary statistics to a new data frame
group_by(
Concentration, Day) %>% # group data by G418 concentration and day
summarize( # create new data frame by summarizing grouped data
Mean = mean(Confluence), # calculate the average confluence
Stdev = sd(Confluence), # calculate the standard deviation
Low_CI = Mean - 2*Stdev, # calculate the low confidence interval
High_CI = Mean + 2*Stdev, # calculate the high confidence interval
)
## `summarise()` has grouped output by 'Concentration'. You can override using the
## `.groups` argument.
make a line plot showing each treatment’s mean confluence over
time
ggplot( # create a plot using ggplot2
data = CT_summ, # use summarized confluence data
aes( # set plot aesthetics
x = Day, # x-axis = time point (day)
y = Mean*100, # y-axis = mean confluence at that time point; *100 for %
color = factor(Concentration)) # groups data by concentration
) +
geom_line() + # add line geometries to the plot
geom_errorbar( # add error bars to the plot
aes( # set error bar aesthetics
ymin = Low_CI*100, # assigns low confidence interval to the error bars; *100 for %
ymax = High_CI*100), # assigns high confidence interval to the error bars; *100 for %
width = 0.2) + # set the thickness of the error bars
geom_point( # adds dots for days 0, 3, 5, and 7 for each concentration
size = 3 # set dot sizes
) +
scale_x_continuous(breaks = seq(0, 7, by = 1)) + # x-axis tick mark values
scale_y_continuous(breaks = seq(0, 100, by = 20)) + # y-axis tick mark values
labs(
x = "Time (days)", # label x-axis
y = "Mean Confluence (%)", # label y-axis
color = "Concentration (µg/ml)" # legend title
) +
theme( # change theme elements
axis.title = element_text(size = 20), # x and y-axis text size
axis.text = element_text(size = 16), # x and y tick mark text size
legend.text = element_text(size = 16), # legend text size
legend.title = element_text(size = 20) # legend title size
)
