Code
Study Cases
Statistical Inferences~ Week 14
Case Study 1
One-Sample Z-Test
(Statistical Hypotheses)
A digital learning platform claims that the
average daily study time of its users is 120
minutes . Based on historical records, the population
standard deviation is known to be 15 minutes.
A random sample of 64 users shows an average study
time of 116 minutes .
\[
\begin{eqnarray*}
\mu_0 &=& 120 \\
\sigma &=& 15 \\
n &=& 64 \\
\bar{x} &=& 116
\end{eqnarray*}
\]
Tasks
Formulate the Null Hypothesis (H₀) and
Alternative Hypothesis (H₁) .
Identify the appropriate statistical test and
justify your choice.
Compute the test statistic and
p-value using \(\alpha =
0.05\) .
State the statistical decision .
Interpret the result in a business analytics
context .
Case Study 2
One-Sample T-Test (σ
Unknown, Small Sample)
A UX Research Team investigates whether the
average task completion time of a new application
differs from 10 minutes .
The following data are collected from 10 users :
\[
9.2,\; 10.5,\; 9.8,\; 10.1,\; 9.6,\; 10.3,\; 9.9,\; 9.7,\; 10.0,\; 9.5
\]
Tasks
Define H₀ and H₁
(two-tailed).
Determine the appropriate hypothesis test .
Calculate the t-statistic and
p-value at \(\alpha =
0.05\) .
Make a statistical decision .
Explain how sample size affects inferential
reliability.
Case Study 3
Two-Sample T-Test
(A/B Testing)
A product analytics team conducts an A/B
test to compare the average session duration
(minutes) between two versions of a landing page.
A
25
4.8
1.2
B
25
5.4
1.4
Tasks
Formulate the null and alternative hypotheses .
Identify the type of t-test required.
Compute the test statistic and
p-value .
Draw a statistical conclusion at \(\alpha = 0.05\) .
Interpret the result for product
decision-making .
Case Study 4
Chi-Square Test of
Independence
An e-commerce company examines whether
device type is associated with payment method
preference .
Mobile
120
80
50
Desktop
60
90
40
Tasks
State the Null Hypothesis (H₀) and
Alternative Hypothesis (H₁) .
Identify the appropriate statistical test .
Compute the Chi-Square statistic (χ²) .
Determine the p-value at \(\alpha = 0.05\) .
Interpret the results in terms of digital payment
strategy .
Case Study 5
Type I and Type II
Errors (Conceptual)
A fintech startup tests whether a new fraud
detection algorithm reduces fraudulent transactions.
H₀: The new algorithm does not reduce
fraud .
H₁: The new algorithm reduces
fraud .
Tasks
Explain a Type I Error (α) in this context.
Explain a Type II Error (β) in this context.
Identify which error is more costly from a business
perspective .
Discuss how sample size affects Type II Error.
Explain the relationship between α, β, and statistical
power .
Case Study 6
P-Value and
Statistical Decision Making
A churn prediction model evaluation yields the following results:
Test statistic = 2.31
p-value = 0.021
Significance level: \(\alpha =
0.05\)
Tasks
Explain the meaning of the p-value .
Make a statistical decision .
Translate the decision into non-technical language
for management.
Discuss the risk if the sample is not
representative .
Explain why the p-value does not measure effect
size .
LS0tCnRpdGxlOiAiU3R1ZHkgQ2FzZXMiICAgICAgICAgICAgIyBNYWluIHRpdGxlIG9mIHRoZSBkb2N1bWVudApzdWJ0aXRsZTogIlN0YXRpc3RpY2FsIEluZmVyZW5jZXN+IFdlZWsgMTQiICAjIFN1YnRpdGxlIG9yIHRvcGljIGZvciB3ZWVrIDIKYXV0aG9yOiAiQmFrdGkgU2lyZWdhciwgTS5TYy4sIENEUy4iICAgICAgIyBSZXBsYWNlIHdpdGggeW91ciBmdWxsIG5hbWUKZGF0ZTogICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCIgIyBBdXRvIGRpc3BsYXlzIHRoZSBjdXJyZW50IGRhdGUKb3V0cHV0OiAgICAgICAgICAgICAgICAgICAgICAgICAjIE91dHB1dCBzZWN0aW9uIGRlZmluZXMgdGhlIGZvcm1hdCBhbmQgbGF5b3V0IAogIHJtZGZvcm1hdHM6OnJlYWR0aGVkb3duOiAgICAgICMgaHR0cHM6Ly9naXRodWIuY29tL2p1YmEvcm1kZm9ybWF0cwogICAgc2VsZl9jb250YWluZWQ6IHRydWUgICAgICAgICMgRW1iZWRzIGFsbCByZXNvdXJjZXMgKENTUywgSlMsIGltYWdlcykgCiAgICB0aHVtYm5haWxzOiB0cnVlICAgICAgICAgICAgIyBEaXNwbGF5cyBpbWFnZSB0aHVtYm5haWxzIGluIHRoZSBkb2MKICAgIGxpZ2h0Ym94OiB0cnVlICAgICAgICAgICAgICAjIEVuYWJsZXMgY2xpY2sgdG8gZW5sYXJnZSBpbWFnZXMKICAgIGdhbGxlcnk6IHRydWUgICAgICAgICAgICAgICAjIEdyb3VwcyBpbWFnZXMgaW50byBhbiBpbnRlcmFjdGl2ZSBnYWxsZXJ5CiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUgICAgICAgIyBBdXRvbWF0aWNhbGx5IG51bWJlcnMgYWxsIHNlY3Rpb25zCiAgICBsaWJfZGlyOiBsaWJzICAgICAgICAgICAgICAgIyBEaXJlY3Rvcnkgd2hlcmUgSmF2YVNjcmlwdC9DU1MgbGlicmFyaWVzCiAgICBkZl9wcmludDogInBhZ2VkIiAgICAgICAgICAgIyBEaXNwbGF5cyBkYXRhIGZyYW1lcyBhcyBpbnRlcmFjdGl2ZSBwYWdlZCAKICAgIGNvZGVfZm9sZGluZzogInNob3ciICAgICAgICAjIEFsbG93cyBmb2xkaW5nL3VuZm9sZGluZyBSIGNvZGUgYmxvY2tzIAogICAgY29kZV9kb3dubG9hZDogeWVzICAgICAgICAgICMgQWRkcyBhIGJ1dHRvbiB0byBkb3dubG9hZCBhbGwgUiBjb2RlCi0tLQoKCjxpbWcgaWQ9IkZvdG8iIHNyYz0iaHR0cHM6Ly9naXRodWIuY29tL2RzY2llbmNlbGFicy9pbWFnZXMvYmxvYi9tYXN0ZXIvTG9nb19Ec2NpZW5jZWxhYnNfdjEucG5nP3Jhdz10cnVlIiBhbHQ9IkxvZ28iIHN0eWxlPSJ3aWR0aDoyMDBweDsgZGlzcGxheTogYmxvY2s7IG1hcmdpbjogYXV0bzsiPgoKLS0tCgojIENhc2UgU3R1ZHkgMQoKIyMgT25lLVNhbXBsZSBaLVRlc3QgKFN0YXRpc3RpY2FsIEh5cG90aGVzZXMpCgpBICoqZGlnaXRhbCBsZWFybmluZyBwbGF0Zm9ybSoqIGNsYWltcyB0aGF0IHRoZSAqKmF2ZXJhZ2UgZGFpbHkgc3R1ZHkgdGltZSoqIG9mIGl0cyB1c2VycyBpcyAqKjEyMCBtaW51dGVzKiouIEJhc2VkIG9uIGhpc3RvcmljYWwgcmVjb3JkcywgdGhlICoqcG9wdWxhdGlvbiBzdGFuZGFyZCBkZXZpYXRpb24gaXMga25vd24qKiB0byBiZSAxNSBtaW51dGVzLgoKQSByYW5kb20gc2FtcGxlIG9mICoqNjQgdXNlcnMqKiBzaG93cyBhbiBhdmVyYWdlIHN0dWR5IHRpbWUgb2YgKioxMTYgbWludXRlcyoqLgoKJCQKXGJlZ2lue2VxbmFycmF5Kn0KXG11XzAgJj0mIDEyMCBcXApcc2lnbWEgJj0mIDE1IFxcCm4gJj0mIDY0IFxcClxiYXJ7eH0gJj0mIDExNgpcZW5ke2VxbmFycmF5Kn0KJCQKCiMjIFRhc2tzCgoxLiBGb3JtdWxhdGUgdGhlICoqTnVsbCBIeXBvdGhlc2lzIChI4oKAKSoqIGFuZCAqKkFsdGVybmF0aXZlIEh5cG90aGVzaXMgKEjigoEpKiouCjIuIElkZW50aWZ5IHRoZSAqKmFwcHJvcHJpYXRlIHN0YXRpc3RpY2FsIHRlc3QqKiBhbmQganVzdGlmeSB5b3VyIGNob2ljZS4KMy4gQ29tcHV0ZSB0aGUgKip0ZXN0IHN0YXRpc3RpYyoqIGFuZCAqKnAtdmFsdWUqKiB1c2luZyAkXGFscGhhID0gMC4wNSQuCjQuIFN0YXRlIHRoZSAqKnN0YXRpc3RpY2FsIGRlY2lzaW9uKiouCjUuIEludGVycHJldCB0aGUgcmVzdWx0IGluIGEgKipidXNpbmVzcyBhbmFseXRpY3MgY29udGV4dCoqLgoKLS0tCgojIENhc2UgU3R1ZHkgMiAgCgojIyBPbmUtU2FtcGxlIFQtVGVzdCAoz4MgVW5rbm93biwgU21hbGwgU2FtcGxlKQoKQSAqKlVYIFJlc2VhcmNoIFRlYW0qKiBpbnZlc3RpZ2F0ZXMgd2hldGhlciB0aGUgKiphdmVyYWdlIHRhc2sgY29tcGxldGlvbiB0aW1lKiogb2YgYSBuZXcgYXBwbGljYXRpb24gZGlmZmVycyBmcm9tICoqMTAgbWludXRlcyoqLgoKVGhlIGZvbGxvd2luZyBkYXRhIGFyZSBjb2xsZWN0ZWQgZnJvbSAqKjEwIHVzZXJzKio6CgokJAo5LjIsXDsgMTAuNSxcOyA5LjgsXDsgMTAuMSxcOyA5LjYsXDsgMTAuMyxcOyA5LjksXDsgOS43LFw7IDEwLjAsXDsgOS41CiQkCgojIyBUYXNrcwoKMS4gRGVmaW5lICoqSOKCgCoqIGFuZCAqKkjigoEqKiAodHdvLXRhaWxlZCkuCjIuIERldGVybWluZSB0aGUgKiphcHByb3ByaWF0ZSBoeXBvdGhlc2lzIHRlc3QqKi4KMy4gQ2FsY3VsYXRlIHRoZSAqKnQtc3RhdGlzdGljKiogYW5kICoqcC12YWx1ZSoqIGF0ICRcYWxwaGEgPSAwLjA1JC4KNC4gTWFrZSBhICoqc3RhdGlzdGljYWwgZGVjaXNpb24qKi4KNS4gRXhwbGFpbiBob3cgKipzYW1wbGUgc2l6ZSoqIGFmZmVjdHMgaW5mZXJlbnRpYWwgcmVsaWFiaWxpdHkuCgotLS0KCiMgQ2FzZSBTdHVkeSAzIAoKIyMgVHdvLVNhbXBsZSBULVRlc3QgKEEvQiBUZXN0aW5nKQoKQSAqKnByb2R1Y3QgYW5hbHl0aWNzIHRlYW0qKiBjb25kdWN0cyBhbiAqKkEvQiB0ZXN0KiogdG8gY29tcGFyZSB0aGUgKiphdmVyYWdlIHNlc3Npb24gZHVyYXRpb24gKG1pbnV0ZXMpKiogYmV0d2VlbiB0d28gdmVyc2lvbnMgb2YgYSBsYW5kaW5nIHBhZ2UuCgp8IFZlcnNpb24gfCBTYW1wbGUgU2l6ZSAobikgfCBNZWFuIHwgU3RhbmRhcmQgRGV2aWF0aW9uIHwKfC0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLXwtLS0tLS0tLS0tLS0tLS0tLS0tLXwKfCBBIHwgMjUgfCA0LjggfCAxLjIgfAp8IEIgfCAyNSB8IDUuNCB8IDEuNCB8CgojIyBUYXNrcwoKMS4gRm9ybXVsYXRlIHRoZSAqKm51bGwgYW5kIGFsdGVybmF0aXZlIGh5cG90aGVzZXMqKi4KMi4gSWRlbnRpZnkgdGhlICoqdHlwZSBvZiB0LXRlc3QqKiByZXF1aXJlZC4KMy4gQ29tcHV0ZSB0aGUgKip0ZXN0IHN0YXRpc3RpYyoqIGFuZCAqKnAtdmFsdWUqKi4KNC4gRHJhdyBhICoqc3RhdGlzdGljYWwgY29uY2x1c2lvbioqIGF0ICRcYWxwaGEgPSAwLjA1JC4KNS4gSW50ZXJwcmV0IHRoZSByZXN1bHQgZm9yICoqcHJvZHVjdCBkZWNpc2lvbi1tYWtpbmcqKi4KCi0tLQoKIyBDYXNlIFN0dWR5IDQgCgojIyBDaGktU3F1YXJlIFRlc3Qgb2YgSW5kZXBlbmRlbmNlCgpBbiAqKmUtY29tbWVyY2UgY29tcGFueSoqIGV4YW1pbmVzIHdoZXRoZXIgKipkZXZpY2UgdHlwZSoqIGlzIGFzc29jaWF0ZWQgd2l0aCAqKnBheW1lbnQgbWV0aG9kIHByZWZlcmVuY2UqKi4KCnwgRGV2aWNlIC8gUGF5bWVudCB8IEUtV2FsbGV0IHwgQ3JlZGl0IENhcmQgfCBDYXNoIG9uIERlbGl2ZXJ5IHwKfC0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tLS0tfAp8IE1vYmlsZSB8IDEyMCB8IDgwIHwgNTAgfAp8IERlc2t0b3AgfCA2MCB8IDkwIHwgNDAgfAoKIyMgVGFza3MKCjEuIFN0YXRlIHRoZSAqKk51bGwgSHlwb3RoZXNpcyAoSOKCgCkqKiBhbmQgKipBbHRlcm5hdGl2ZSBIeXBvdGhlc2lzIChI4oKBKSoqLgoyLiBJZGVudGlmeSB0aGUgKiphcHByb3ByaWF0ZSBzdGF0aXN0aWNhbCB0ZXN0KiouCjMuIENvbXB1dGUgdGhlICoqQ2hpLVNxdWFyZSBzdGF0aXN0aWMgKM+HwrIpKiouCjQuIERldGVybWluZSB0aGUgKipwLXZhbHVlKiogYXQgJFxhbHBoYSA9IDAuMDUkLgo1LiBJbnRlcnByZXQgdGhlIHJlc3VsdHMgaW4gdGVybXMgb2YgKipkaWdpdGFsIHBheW1lbnQgc3RyYXRlZ3kqKi4KCi0tLQoKIyBDYXNlIFN0dWR5IDUgIAojIyBUeXBlIEkgYW5kIFR5cGUgSUkgRXJyb3JzIChDb25jZXB0dWFsKQoKQSAqKmZpbnRlY2ggc3RhcnR1cCoqIHRlc3RzIHdoZXRoZXIgYSAqKm5ldyBmcmF1ZCBkZXRlY3Rpb24gYWxnb3JpdGhtKiogcmVkdWNlcyBmcmF1ZHVsZW50IHRyYW5zYWN0aW9ucy4KCi0gKipI4oKAOioqIFRoZSBuZXcgYWxnb3JpdGhtIGRvZXMgKipub3QgcmVkdWNlIGZyYXVkKiouCi0gKipI4oKBOioqIFRoZSBuZXcgYWxnb3JpdGhtICoqcmVkdWNlcyBmcmF1ZCoqLgoKIyMgVGFza3MKCjEuIEV4cGxhaW4gYSAqKlR5cGUgSSBFcnJvciAozrEpKiogaW4gdGhpcyBjb250ZXh0LgoyLiBFeHBsYWluIGEgKipUeXBlIElJIEVycm9yICjOsikqKiBpbiB0aGlzIGNvbnRleHQuCjMuIElkZW50aWZ5IHdoaWNoIGVycm9yIGlzICoqbW9yZSBjb3N0bHkgZnJvbSBhIGJ1c2luZXNzIHBlcnNwZWN0aXZlKiouCjQuIERpc2N1c3MgaG93ICoqc2FtcGxlIHNpemUqKiBhZmZlY3RzIFR5cGUgSUkgRXJyb3IuCjUuIEV4cGxhaW4gdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuICoqzrEsIM6yLCBhbmQgc3RhdGlzdGljYWwgcG93ZXIqKi4KCi0tLQoKIyBDYXNlIFN0dWR5IDYgIAojIyBQLVZhbHVlIGFuZCBTdGF0aXN0aWNhbCBEZWNpc2lvbiBNYWtpbmcKCkEgY2h1cm4gcHJlZGljdGlvbiBtb2RlbCBldmFsdWF0aW9uIHlpZWxkcyB0aGUgZm9sbG93aW5nIHJlc3VsdHM6CgotIFRlc3Qgc3RhdGlzdGljID0gMi4zMSAgCi0gcC12YWx1ZSA9IDAuMDIxICAKLSBTaWduaWZpY2FuY2UgbGV2ZWw6ICRcYWxwaGEgPSAwLjA1JAoKIyMgVGFza3MKCjEuIEV4cGxhaW4gdGhlICoqbWVhbmluZyBvZiB0aGUgcC12YWx1ZSoqLgoyLiBNYWtlIGEgKipzdGF0aXN0aWNhbCBkZWNpc2lvbioqLgozLiBUcmFuc2xhdGUgdGhlIGRlY2lzaW9uIGludG8gKipub24tdGVjaG5pY2FsIGxhbmd1YWdlKiogZm9yIG1hbmFnZW1lbnQuCjQuIERpc2N1c3MgdGhlIHJpc2sgaWYgdGhlICoqc2FtcGxlIGlzIG5vdCByZXByZXNlbnRhdGl2ZSoqLgo1LiBFeHBsYWluIHdoeSB0aGUgcC12YWx1ZSBkb2VzICoqbm90IG1lYXN1cmUgZWZmZWN0IHNpemUqKi4KCi0tLQo=