library(metafor)
## Zorunlu paket yükleniyor: Matrix
## Zorunlu paket yükleniyor: metadat
## Zorunlu paket yükleniyor: numDeriv
##
## Loading the 'metafor' package (version 4.8-0). For an
## introduction to the package please type: help(metafor)
library(readxl)
veri <- read_excel("C:/Users/Salih/Desktop/mut.xlsx")
## New names:
## • `` -> `...1`
res3 <- rma(measure = "ABT",
ai = ai,
mi = mi,
ni = ni,
data = veri)
res3
##
## Random-Effects Model (k = 28; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.2025 (SE = 0.0580)
## tau (square root of estimated tau^2 value): 0.4500
## I^2 (total heterogeneity / total variability): 96.61%
## H^2 (total variability / sampling variability): 29.50
##
## Test for Heterogeneity:
## Q(df = 27) = 1090.0171, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 1.6028 0.0873 18.3677 <.0001 1.4317 1.7738 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
predict(res3, transf = transf.ilogit)
##
## pred ci.lb ci.ub pi.lb pi.ub
## 0.8324 0.8072 0.8549 0.6692 0.9242
c(
Ortalama_Alfa = mean(veri$ai, na.rm = TRUE),
Standart_Hata = sd(veri$ai, na.rm = TRUE) / sqrt(sum(!is.na(veri$ai))),
Medyan_Alfa = median(veri$ai, na.rm = TRUE)
)
## Ortalama_Alfa Standart_Hata Medyan_Alfa
## 0.77964286 0.01615469 0.76500000
forest(
res3,
slab = veri$Calisma,
atransf = transf.ilogit,
xlab = "Cronbach Alfa",
mlab = "Rastgele Etki Modeli (Bonett)",
addpred = TRUE,
header = c("Yazar(lar) ve Yıl", "Cronbach Alfa [95% GA]")
)
funnel(res3,
atransf = transf.ilogit,
xlab = " Cronbach Alfa (Bonett, 2002)",
ylab = "Standart Hata")
fsn(res3, type = "Rosenthal")
## Warning: Setting type='General' when using fsn() on a model object.
##
## Fail-safe N Calculation Using the General Approach
##
## Average Effect Size: 1.6028 (with file drawer: 0.0211)
## Amount of Heterogeneity: 0.2025 (with file drawer: 0.2363)
## Observed Significance Level: <.0001 (with file drawer: 0.0500)
## Target Significance Level: 0.05
##
## Fail-safe N: 2062
ranktest(res3)
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = 0.0318, p = 0.8125
regtest(res3, model = "rma")
##
## Regression Test for Funnel Plot Asymmetry
##
## Model: mixed-effects meta-regression model
## Predictor: standard error
##
## Test for Funnel Plot Asymmetry: z = -0.1892, p = 0.8499
## Limit Estimate (as sei -> 0): b = 1.6516 (CI: 1.1164, 2.1868)
res3_yayim <- update(res3,
mods = ~ factor(yayim))
summary(res3_yayim)
##
## Mixed-Effects Model (k = 28; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -17.2266 34.4531 40.4531 44.2274 41.5440
##
## tau^2 (estimated amount of residual heterogeneity): 0.2100 (SE = 0.0612)
## tau (square root of estimated tau^2 value): 0.4583
## I^2 (residual heterogeneity / unaccounted variability): 96.69%
## H^2 (unaccounted variability / sampling variability): 30.20
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 26) = 1087.2590, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0859, p-val = 0.7694
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.6132 0.0957 16.8535 <.0001 1.4256 1.8009 ***
## factor(yayim)tez -0.0751 0.2562 -0.2932 0.7694 -0.5773 0.4271
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
predict(
res3_yayim,
newmods = model.matrix(~ factor(yayim),
data = data.frame(yayim = c("Makale", "Tez")))[, -1],
transf = transf.ilogit
)
##
## pred ci.lb ci.ub pi.lb pi.ub
## 1 0.8339 0.8062 0.8583 0.6672 0.9263
## 2 0.8232 0.7450 0.8812 0.6286 0.9276
veri_kat <- veri[-25, ]
res3_kat <- update(
res3,
mods = ~ factor(katilim),
data = veri_kat
)
summary(res3_kat)
##
## Mixed-Effects Model (k = 27; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -16.5551 33.1102 41.1102 45.8224 43.2155
##
## tau^2 (estimated amount of residual heterogeneity): 0.2215 (SE = 0.0670)
## tau (square root of estimated tau^2 value): 0.4706
## I^2 (residual heterogeneity / unaccounted variability): 96.87%
## H^2 (unaccounted variability / sampling variability): 31.95
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 24) = 1066.0003, p-val < .0001
##
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.4154, p-val = 0.8124
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.7412 0.2809 6.1975 <.0001 1.1905 2.2918
## factor(katilim)universite -0.1032 0.3134 -0.3293 0.7419 -0.7174 0.5110
## factor(katilim)yetiskin -0.1863 0.3135 -0.5944 0.5522 -0.8007 0.4280
##
## intrcpt ***
## factor(katilim)universite
## factor(katilim)yetiskin
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
predict(
res3_kat,
newmods = model.matrix(~ factor(katilim),
data = data.frame(
katilim = c("yetiskin", "karma", "universite")
))[, -1],
transf = transf.ilogit
)
##
## pred ci.lb ci.ub pi.lb pi.ub
## 1 0.8256 0.7828 0.8614 0.6441 0.9253
## 2 0.8508 0.7668 0.9082 0.6608 0.9435
## 3 0.8373 0.7967 0.8710 0.6629 0.9308
*********sürekli değişkenler için moderatör analizi**********
res_kadin <- rma(measure = "ABT",
ai = ai,
mi = mi,
ni = ni,
mods = ~ kadin,
data = veri,
method = "REML")
## Warning: 1 study with NAs omitted from model fitting.
summary(res_kadin)
##
## Mixed-Effects Model (k = 27; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -16.6631 33.3263 39.3263 42.9829 40.4692
##
## tau^2 (estimated amount of residual heterogeneity): 0.2117 (SE = 0.0629)
## tau (square root of estimated tau^2 value): 0.4601
## I^2 (residual heterogeneity / unaccounted variability): 96.70%
## H^2 (unaccounted variability / sampling variability): 30.29
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 25) = 1026.0401, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0405, p-val = 0.8406
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.6835 0.3365 5.0027 <.0001 1.0239 2.3431 ***
## kadin -0.0010 0.0049 -0.2012 0.8406 -0.0106 0.0087
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_kadnull <- rma(measure = "ABT",
ai = ai,
mi = mi,
ni = ni,
data = veri,
method = "REML")
R2_kad <- (res_kadnull$QE - res_kadin$QE) / res_kadnull$QE
R2_kad
## [1] 0.05869353
res_yil <- rma(measure = "ABT",
ai = ai,
mi = mi,
ni = ni,
mods = ~ yil,
data = veri,
method = "REML")
summary(res_yil)
##
## Mixed-Effects Model (k = 28; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -17.0091 34.0183 40.0183 43.7926 41.1092
##
## tau^2 (estimated amount of residual heterogeneity): 0.2056 (SE = 0.0600)
## tau (square root of estimated tau^2 value): 0.4535
## I^2 (residual heterogeneity / unaccounted variability): 96.61%
## H^2 (unaccounted variability / sampling variability): 29.52
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 26) = 1061.0205, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5500, p-val = 0.4583
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 35.2140 45.3231 0.7770 0.4372 -53.6177 124.0457
## yil -0.0166 0.0224 -0.7416 0.4583 -0.0606 0.0273
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_yilnull <- rma(measure = "ABT",
ai = ai,
mi = mi,
ni = ni,
data = veri,
method = "REML")
R2_yil <- (res_yilnull$QE - res_yil$QE) / res_yilnull$QE
R2_yil
## [1] 0.02660196
res_mi <- rma(measure = "ABT",
ai = ai,
mi = mi,
ni = ni,
mods = ~ mi,
data = veri,
method = "REML")
summary(res_mi)
##
## Mixed-Effects Model (k = 28; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -17.2128 34.4256 40.4256 44.1999 41.5165
##
## tau^2 (estimated amount of residual heterogeneity): 0.2095 (SE = 0.0611)
## tau (square root of estimated tau^2 value): 0.4577
## I^2 (residual heterogeneity / unaccounted variability): 96.72%
## H^2 (unaccounted variability / sampling variability): 30.52
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 26) = 1081.6913, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1475, p-val = 0.7009
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.8804 1.8828 0.4676 0.6401 -2.8099 4.5706
## mi 0.1823 0.4745 0.3841 0.7009 -0.7477 1.1122
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_minull <- rma(measure = "ABT",
ai = ai,
mi = mi,
ni = ni,
data = veri,
method = "REML")
R2_mi <- (res_minull$QE - res_mi$QE) / res_minull$QE
R2_mi
## [1] 0.007638216
res_ni <- rma(measure = "ABT",
ai = ai,
mi = mi,
ni = ni,
mods = ~ ni,
data = veri,
method = "REML")
summary(res_ni)
##
## Mixed-Effects Model (k = 28; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -16.7256 33.4513 39.4513 43.2256 40.5422
##
## tau^2 (estimated amount of residual heterogeneity): 0.2006 (SE = 0.0586)
## tau (square root of estimated tau^2 value): 0.4479
## I^2 (residual heterogeneity / unaccounted variability): 96.32%
## H^2 (unaccounted variability / sampling variability): 27.15
## R^2 (amount of heterogeneity accounted for): 0.91%
##
## Test for Residual Heterogeneity:
## QE(df = 26) = 865.2573, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.1555, p-val = 0.2824
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.4800 0.1435 10.3171 <.0001 1.1989 1.7612 ***
## ni 0.0003 0.0003 1.0749 0.2824 -0.0003 0.0009
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res_ninull <- rma(measure = "ABT",
ai = ai,
mi = mi,
ni = ni,
data = veri,
method = "REML")
R2_ni <- (res_ninull$QE - res_ni$QE) / res_ninull$QE
R2_ni
## [1] 0.2061984
res_full <- rma(measure = "ABT", # Güvenirlik katsayıları için uygun dönüşüm
ai = ai, # Gözlenen güvenirlik katsayıları (Alpha gibi)
mi = mi, # Madde sayısı
ni = ni, # Örneklem büyüklüğü
mods = ~ kadin + yil + mi + ni, # Moderatörler
data = veri)
## Warning: 1 study with NAs omitted from model fitting.
# Sonuçları inceleyin
summary(res_full)
##
## Mixed-Effects Model (k = 27; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -15.2952 30.5904 42.5904 49.1367 48.1904
##
## tau^2 (estimated amount of residual heterogeneity): 0.2233 (SE = 0.0706)
## tau (square root of estimated tau^2 value): 0.4726
## I^2 (residual heterogeneity / unaccounted variability): 96.59%
## H^2 (unaccounted variability / sampling variability): 29.29
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 22) = 795.1838, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 1.6820, p-val = 0.7940
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 23.4348 50.0112 0.4686 0.6394 -74.5853 121.4549
## kadin -0.0034 0.0058 -0.5852 0.5584 -0.0148 0.0080
## yil -0.0113 0.0247 -0.4577 0.6472 -0.0597 0.0371
## mi 0.2749 0.5107 0.5383 0.5903 -0.7260 1.2758
## ni 0.0004 0.0003 1.1009 0.2709 -0.0003 0.0010
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1