
Case Study 1
Area Between Curves – Furnace Cross-Section:
A metallurgical engineer wants to estimate the
vertical cross-sectional area of an industrial melting
furnace bounded by the inner and outer furnace walls. The
profiles of the two walls are modeled as:
\[
\begin{eqnarray*}
y_1(x) &=& 0.02x^2 + 5 \\
y_2(x) &=& 0.4x + 2
\end{eqnarray*}
\]
where \(x\) and \(y\) are measured in
meters.
Tasks
- Identify the limits of integration for the bounded
region.
- Compute the cross-sectional area of the furnace
using definite integrals.
Case Study 2
Area of Molten Metal Above the Slag Line:
The surface profile of molten metal inside a melting
furnace is modeled by:
\[
y = 20 - 0.01x^2
\]
The slag–metal interface (slag line) is located
at:
\[
y = 5
\]
Tasks
- Compute the cross-sectional area of the molten metal
zone.
- Adjust the area using an effective metal yield of
22%.
Case Study 3
Flow Area of Molten Metal in a Gating System:
The cross-sectional profile of molten metal flow in
a casting runner is approximated by:
\[
y = 12 - x^2
\]
Tasks
- Determine the flow cross-sectional area using
integration.
- Estimate the initial molten metal quantity if each
\(1\,m^2\) of area corresponds to
0.8 metric tons of metal.
Case Study 4
Crucible Volume – Disk Method:
The vertical cross-section of a crucible used for metal
melting is given by:
\[
y = 10 - 0.005x^2
\]
The region is rotated about the \(x\)-axis.
Tasks
- Identify the appropriate volume calculation
method.
- Compute the volume of the crucible.
Case Study 5
Volume of a Metal Casting Mold:
The profile of a metal casting mold cavity is
described by:
\[
y = 0.02x^2
\]
The curve is rotated about the \(y\)-axis from \(y = 0\) to \(y =
8\) meters.
Tasks
- Compute the mold volume.
- Determine the effective molten metal volume if the
mold is filled to 85% capacity.
Case Study 6
Volume of a Molten Metal Layer – Washer Method:
A layer of molten metal inside a furnace is bounded by:
\[
\begin{eqnarray*}
y_1(x) &=& 18 - 0.02x^2 \\
y_2(x) &=& 5
\end{eqnarray*}
\]
The region is rotated about the \(x\)-axis.
Tasks
- Identify the outer and inner radii for the washer
method.
- Compute the volume of the molten metal layer.
Case Study 7
Volume of a Metallurgical Reactor Vessel – Shell
Method:
The inner wall geometry of a metallurgical reactor
vessel is defined by:
\[
x = 0.5y^2
\]
The region is rotated about the \(y\)-axis from \(y = 0\) to \(y =
10\) meters.
Tasks
- Identify the shell radius and shell height.
- Compute the reactor vessel volume using the
shell method.
LS0tCnRpdGxlOiAiU3R1ZHkgQ2FzZXMiICAgICAgICAgICAgIyBNYWluIHRpdGxlIG9mIHRoZSBkb2N1bWVudApzdWJ0aXRsZTogIkFwcGxpY2F0aW9uIG9mIEludGVncmFsc34gV2VlayAxMyIgICMgU3VidGl0bGUgb3IgdG9waWMgZm9yIHdlZWsgMgphdXRob3I6ICJCYWt0aSBTaXJlZ2FyLCBNLlNjLiwgQ0RTLiIgICAgICAjIFJlcGxhY2Ugd2l0aCB5b3VyIGZ1bGwgbmFtZQpkYXRlOiAgImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJUIgJWQsICVZJylgIiAjIEF1dG8gZGlzcGxheXMgdGhlIGN1cnJlbnQgZGF0ZQpvdXRwdXQ6ICAgICAgICAgICAgICAgICAgICAgICAgICMgT3V0cHV0IHNlY3Rpb24gZGVmaW5lcyB0aGUgZm9ybWF0IGFuZCBsYXlvdXQgCiAgcm1kZm9ybWF0czo6cmVhZHRoZWRvd246ICAgICAgIyBodHRwczovL2dpdGh1Yi5jb20vanViYS9ybWRmb3JtYXRzCiAgICBzZWxmX2NvbnRhaW5lZDogdHJ1ZSAgICAgICAgIyBFbWJlZHMgYWxsIHJlc291cmNlcyAoQ1NTLCBKUywgaW1hZ2VzKSAKICAgIHRodW1ibmFpbHM6IHRydWUgICAgICAgICAgICAjIERpc3BsYXlzIGltYWdlIHRodW1ibmFpbHMgaW4gdGhlIGRvYwogICAgbGlnaHRib3g6IHRydWUgICAgICAgICAgICAgICMgRW5hYmxlcyBjbGljayB0byBlbmxhcmdlIGltYWdlcwogICAgZ2FsbGVyeTogdHJ1ZSAgICAgICAgICAgICAgICMgR3JvdXBzIGltYWdlcyBpbnRvIGFuIGludGVyYWN0aXZlIGdhbGxlcnkKICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZSAgICAgICAjIEF1dG9tYXRpY2FsbHkgbnVtYmVycyBhbGwgc2VjdGlvbnMKICAgIGxpYl9kaXI6IGxpYnMgICAgICAgICAgICAgICAjIERpcmVjdG9yeSB3aGVyZSBKYXZhU2NyaXB0L0NTUyBsaWJyYXJpZXMKICAgIGRmX3ByaW50OiAicGFnZWQiICAgICAgICAgICAjIERpc3BsYXlzIGRhdGEgZnJhbWVzIGFzIGludGVyYWN0aXZlIHBhZ2VkIAogICAgY29kZV9mb2xkaW5nOiAic2hvdyIgICAgICAgICMgQWxsb3dzIGZvbGRpbmcvdW5mb2xkaW5nIFIgY29kZSBibG9ja3MgCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMgICAgICAgICAgIyBBZGRzIGEgYnV0dG9uIHRvIGRvd25sb2FkIGFsbCBSIGNvZGUKLS0tCgoKPGltZyBpZD0iRm90byIgc3JjPSJodHRwczovL2dpdGh1Yi5jb20vZHNjaWVuY2VsYWJzL2ltYWdlcy9ibG9iL21hc3Rlci9Mb2dvX0RzY2llbmNlbGFic192MS5wbmc/cmF3PXRydWUiIGFsdD0iTG9nbyIgc3R5bGU9IndpZHRoOjIwMHB4OyBkaXNwbGF5OiBibG9jazsgbWFyZ2luOiBhdXRvOyI+CgotLS0KCiMjIENhc2UgU3R1ZHkgMQoKKipBcmVhIEJldHdlZW4gQ3VydmVzIOKAkyBGdXJuYWNlIENyb3NzLVNlY3Rpb246KioKCkEgKiptZXRhbGx1cmdpY2FsIGVuZ2luZWVyKiogd2FudHMgdG8gZXN0aW1hdGUgdGhlICoqdmVydGljYWwgY3Jvc3Mtc2VjdGlvbmFsIGFyZWEgb2YgYW4gaW5kdXN0cmlhbCBtZWx0aW5nIGZ1cm5hY2UqKiBib3VuZGVkIGJ5IHRoZSBpbm5lciBhbmQgb3V0ZXIgZnVybmFjZSB3YWxscy4gVGhlIHByb2ZpbGVzIG9mIHRoZSB0d28gd2FsbHMgYXJlIG1vZGVsZWQgYXM6CgokJApcYmVnaW57ZXFuYXJyYXkqfQp5XzEoeCkgJj0mIDAuMDJ4XjIgKyA1IFxcCnlfMih4KSAmPSYgMC40eCArIDIKXGVuZHtlcW5hcnJheSp9CiQkCgp3aGVyZSAkeCQgYW5kICR5JCBhcmUgbWVhc3VyZWQgaW4gKiptZXRlcnMqKi4KCioqVGFza3MqKgoKMS4gSWRlbnRpZnkgdGhlICoqbGltaXRzIG9mIGludGVncmF0aW9uKiogZm9yIHRoZSBib3VuZGVkIHJlZ2lvbi4KMi4gQ29tcHV0ZSB0aGUgKipjcm9zcy1zZWN0aW9uYWwgYXJlYSBvZiB0aGUgZnVybmFjZSoqIHVzaW5nIGRlZmluaXRlIGludGVncmFscy4KCi0tLQoKIyMgQ2FzZSBTdHVkeSAyCgoqKkFyZWEgb2YgTW9sdGVuIE1ldGFsIEFib3ZlIHRoZSBTbGFnIExpbmU6KioKClRoZSBzdXJmYWNlIHByb2ZpbGUgb2YgKiptb2x0ZW4gbWV0YWwqKiBpbnNpZGUgYSBtZWx0aW5nIGZ1cm5hY2UgaXMgbW9kZWxlZCBieToKCiQkCnkgPSAyMCAtIDAuMDF4XjIKJCQKClRoZSAqKnNsYWfigJNtZXRhbCBpbnRlcmZhY2UgKHNsYWcgbGluZSkqKiBpcyBsb2NhdGVkIGF0OgoKJCQKeSA9IDUKJCQKCioqVGFza3MqKgoKMS4gQ29tcHV0ZSB0aGUgKipjcm9zcy1zZWN0aW9uYWwgYXJlYSBvZiB0aGUgbW9sdGVuIG1ldGFsIHpvbmUqKi4KMi4gQWRqdXN0IHRoZSBhcmVhIHVzaW5nIGFuICoqZWZmZWN0aXZlIG1ldGFsIHlpZWxkIG9mIDIyJSoqLgoKLS0tCgojIyBDYXNlIFN0dWR5IDMKCioqRmxvdyBBcmVhIG9mIE1vbHRlbiBNZXRhbCBpbiBhIEdhdGluZyBTeXN0ZW06KioKClRoZSBjcm9zcy1zZWN0aW9uYWwgcHJvZmlsZSBvZiAqKm1vbHRlbiBtZXRhbCBmbG93KiogaW4gYSBjYXN0aW5nIHJ1bm5lciBpcyBhcHByb3hpbWF0ZWQgYnk6CgokJAp5ID0gMTIgLSB4XjIKJCQKCioqVGFza3MqKgoKMS4gRGV0ZXJtaW5lIHRoZSAqKmZsb3cgY3Jvc3Mtc2VjdGlvbmFsIGFyZWEqKiB1c2luZyBpbnRlZ3JhdGlvbi4KMi4gRXN0aW1hdGUgdGhlICoqaW5pdGlhbCBtb2x0ZW4gbWV0YWwgcXVhbnRpdHkqKiBpZiBlYWNoICQxXCxtXjIkIG9mIGFyZWEgY29ycmVzcG9uZHMgdG8gKiowLjggbWV0cmljIHRvbnMgb2YgbWV0YWwqKi4KCi0tLQoKIyMgQ2FzZSBTdHVkeSA0CgoqKkNydWNpYmxlIFZvbHVtZSDigJMgRGlzayBNZXRob2Q6KioKClRoZSB2ZXJ0aWNhbCBjcm9zcy1zZWN0aW9uIG9mIGEgKipjcnVjaWJsZSB1c2VkIGZvciBtZXRhbCBtZWx0aW5nKiogaXMgZ2l2ZW4gYnk6CgokJAp5ID0gMTAgLSAwLjAwNXheMgokJAoKVGhlIHJlZ2lvbiBpcyByb3RhdGVkIGFib3V0IHRoZSAqKiR4JC1heGlzKiouCgoqKlRhc2tzKioKCjEuIElkZW50aWZ5IHRoZSBhcHByb3ByaWF0ZSAqKnZvbHVtZSBjYWxjdWxhdGlvbiBtZXRob2QqKi4KMi4gQ29tcHV0ZSB0aGUgKip2b2x1bWUgb2YgdGhlIGNydWNpYmxlKiouCgotLS0KCiMjIENhc2UgU3R1ZHkgNQoKKipWb2x1bWUgb2YgYSBNZXRhbCBDYXN0aW5nIE1vbGQ6KioKClRoZSBwcm9maWxlIG9mIGEgKiptZXRhbCBjYXN0aW5nIG1vbGQgY2F2aXR5KiogaXMgZGVzY3JpYmVkIGJ5OgoKJCQKeSA9IDAuMDJ4XjIKJCQKClRoZSBjdXJ2ZSBpcyByb3RhdGVkIGFib3V0IHRoZSAqKiR5JC1heGlzKiogZnJvbSAkeSA9IDAkIHRvICR5ID0gOCQgbWV0ZXJzLgoKKipUYXNrcyoqCgoxLiBDb21wdXRlIHRoZSAqKm1vbGQgdm9sdW1lKiouCjIuIERldGVybWluZSB0aGUgKiplZmZlY3RpdmUgbW9sdGVuIG1ldGFsIHZvbHVtZSoqIGlmIHRoZSBtb2xkIGlzIGZpbGxlZCB0byAqKjg1JSBjYXBhY2l0eSoqLgoKLS0tCgojIyBDYXNlIFN0dWR5IDYKCioqVm9sdW1lIG9mIGEgTW9sdGVuIE1ldGFsIExheWVyIOKAkyBXYXNoZXIgTWV0aG9kOioqCgpBIGxheWVyIG9mIG1vbHRlbiBtZXRhbCBpbnNpZGUgYSBmdXJuYWNlIGlzIGJvdW5kZWQgYnk6CgokJApcYmVnaW57ZXFuYXJyYXkqfQp5XzEoeCkgJj0mIDE4IC0gMC4wMnheMiBcXAp5XzIoeCkgJj0mIDUKXGVuZHtlcW5hcnJheSp9CiQkCgpUaGUgcmVnaW9uIGlzIHJvdGF0ZWQgYWJvdXQgdGhlICoqJHgkLWF4aXMqKi4KCioqVGFza3MqKgoKMS4gSWRlbnRpZnkgdGhlICoqb3V0ZXIgYW5kIGlubmVyIHJhZGlpKiogZm9yIHRoZSB3YXNoZXIgbWV0aG9kLgoyLiBDb21wdXRlIHRoZSAqKnZvbHVtZSBvZiB0aGUgbW9sdGVuIG1ldGFsIGxheWVyKiouCgotLS0KCiMjIENhc2UgU3R1ZHkgNwoKKipWb2x1bWUgb2YgYSBNZXRhbGx1cmdpY2FsIFJlYWN0b3IgVmVzc2VsIOKAkyBTaGVsbCBNZXRob2Q6KioKClRoZSBpbm5lciB3YWxsIGdlb21ldHJ5IG9mIGEgKiptZXRhbGx1cmdpY2FsIHJlYWN0b3IgdmVzc2VsKiogaXMgZGVmaW5lZCBieToKCiQkCnggPSAwLjV5XjIKJCQKClRoZSByZWdpb24gaXMgcm90YXRlZCBhYm91dCB0aGUgKiokeSQtYXhpcyoqIGZyb20gJHkgPSAwJCB0byAkeSA9IDEwJCBtZXRlcnMuCgoqKlRhc2tzKioKCjEuIElkZW50aWZ5IHRoZSAqKnNoZWxsIHJhZGl1cyBhbmQgc2hlbGwgaGVpZ2h0KiouCjIuIENvbXB1dGUgdGhlICoqcmVhY3RvciB2ZXNzZWwgdm9sdW1lKiogdXNpbmcgdGhlICoqc2hlbGwgbWV0aG9kKiouCg==