#Data Wrangling for Negators Selection

raw60 <- read.csv('CriticalAnalysis(n60).csv', header = T, sep = "," )
filtered_raw60 <- raw60[-which(raw60$Procedure.Block. == "InterimBreak"), ]
filtered_raw60 <- filtered_raw60 %>%  mutate_at(c("Subject", "ConCode", "SetID", "IntentionType", 
                                                 "BoundednessType", "Verb", "Trial", "BlockID"), as.factor)
unique(is.na(filtered_raw60$TargetS.RESP))
## [1] FALSE
critical_raw60 <- filtered_raw60 %>% filter(IntentionType != "Filler") %>% 
  mutate(TarRes = case_when(TargetS.RESP=="f"~"bu", TargetS.RESP=="j"~"mei")) %>% 
  mutate(PreAns = case_when(PredictedAnswer=="不"~"bu", 
                            PredictedAnswer=="沒"~"mei",
                            PredictedAnswer=="不或沒"~"both"))
critical_raw60 <- critical_raw60 %>% mutate_at(c("TarRes", "PreAns"), as.factor)
critical_raw60_revisedV <- critical_raw60
critical_raw60_revisedV$IntentionWord <- ifelse(critical_raw60_revisedV$SetID == "s25" & 
                                                critical_raw60_revisedV$ConCode == "D" &
                                                critical_raw60_revisedV$IntentionWord == "可望", "非得", 
                                         ifelse(critical_raw60_revisedV$SetID == "s25" & 
                                                critical_raw60_revisedV$ConCode == "C" & 
                                                critical_raw60_revisedV$IntentionWord == "期盼", "可望",
                                         ifelse(critical_raw60_revisedV$SetID == "s03" & 
                                                critical_raw60_revisedV$ConCode == "B" & 
                                                critical_raw60_revisedV$IntentionWord == "甘願", "應當",
                                         ifelse(critical_raw60_revisedV$SetID == "s04" & 
                                                critical_raw60_revisedV$ConCode == "B" & 
                                                critical_raw60_revisedV$IntentionWord == "甘願", "非得",
                                                critical_raw60_revisedV$IntentionWord))))

n60_res_critical <- critical_raw60_revisedV %>% mutate(Bu = ifelse(critical_raw60_revisedV$TargetS.RESP == "f", 1, 0)) %>% mutate(Mei = ifelse(critical_raw60_revisedV$TargetS.RESP == "j", 1, 0))

unique(is.na(n60_res_critical$IntentionType))
## [1] FALSE
unique(is.na(n60_res_critical$BoundednessType))
## [1] FALSE
str(n60_res_critical)
## 'data.frame':    7200 obs. of  29 variables:
##  $ ExperimentName    : chr  "ProjectXRC_Questionnaire_v0_Subject01" "ProjectXRC_Questionnaire_v0_Subject01" "ProjectXRC_Questionnaire_v0_Subject01" "ProjectXRC_Questionnaire_v0_Subject01" ...
##  $ Subject           : Factor w/ 60 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Block             : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ BlockList         : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Procedure.Block.  : chr  "SessionProc1" "SessionProc1" "SessionProc1" "SessionProc1" ...
##  $ Trial             : Factor w/ 60 levels "1","2","3","4",..: 1 3 4 7 9 10 14 16 17 18 ...
##  $ BlockID           : Factor w/ 30 levels "b01","b02","b03",..: 8 8 8 8 22 22 22 22 5 5 ...
##  $ ListID            : chr  "List2A" "List2A" "List2A" "List2A" ...
##  $ SetID             : Factor w/ 90 levels "f01","f02","f03",..: 48 52 50 46 76 78 74 80 44 46 ...
##  $ ConCode           : Factor w/ 8 levels "A","B","C","D",..: 2 4 3 1 2 3 1 4 3 4 ...
##  $ IntentionType     : Factor w/ 3 levels "Filler","Intention",..: 3 3 2 2 3 2 2 3 2 3 ...
##  $ BoundednessType   : Factor w/ 4 levels "Boundedness",..: 1 4 1 4 1 1 4 4 1 4 ...
##  $ Verb              : Factor w/ 30 levels "打","生","丟",..: 18 11 18 12 26 2 14 25 12 12 ...
##  $ ContextS          : chr  "表弟那次去酒吧應當就只點汽水," "哥哥向來理應超時工作當志工," "表妹上次決心要避免引起過敏," "小傑每次旅行都期盼有新發現," ...
##  $ ContextS.RT       : int  3225 4447 3413 3853 2433 5108 3246 2437 2090 3041 ...
##  $ TargetS           : chr  "所以他_____喝調酒。" "所以他_____拿加班費。" "所以她_____喝牛奶。" "所以他_____做計畫。" ...
##  $ TargetS.RT        : int  2262 4117 2557 3557 5064 3520 4516 4081 2442 3009 ...
##  $ TargetS.RESP      : chr  "j" "f" "f" "j" ...
##  $ PredictedAnswer   : chr  "沒" "不或沒" "不或沒" "不" ...
##  $ IntentionWord     : chr  "應當" "理應" "決心" "期盼" ...
##  $ BoundednessWord   : chr  "那次" "向來" "上次" "每次" ...
##  $ OptionA           : chr  "(A)不" "(A)不" "(A)不" "(A)不" ...
##  $ OptionB           : chr  "(B)沒" "(B)沒" "(B)沒" "(B)沒" ...
##  $ TargetS.OnsetTime : int  16837 33807 42416 62149 74539 85548 108278 121451 128328 134558 ...
##  $ TargetS.OffsetTime: int  19099 37924 44974 65706 79603 89068 112794 125532 130770 137568 ...
##  $ TarRes            : Factor w/ 2 levels "bu","mei": 2 1 1 2 2 1 2 1 2 1 ...
##  $ PreAns            : Factor w/ 3 levels "both","bu","mei": 3 1 1 2 3 1 2 1 1 1 ...
##  $ Bu                : num  0 1 1 0 0 1 0 1 0 1 ...
##  $ Mei               : num  1 0 0 1 1 0 1 0 1 0 ...

#Data Wrangling for Reaction Time

n60_rt_num <- n60_res_critical %>% mutate_at("TargetS.RT", as.numeric)
str(n60_rt_num)
## 'data.frame':    7200 obs. of  29 variables:
##  $ ExperimentName    : chr  "ProjectXRC_Questionnaire_v0_Subject01" "ProjectXRC_Questionnaire_v0_Subject01" "ProjectXRC_Questionnaire_v0_Subject01" "ProjectXRC_Questionnaire_v0_Subject01" ...
##  $ Subject           : Factor w/ 60 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Block             : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ BlockList         : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Procedure.Block.  : chr  "SessionProc1" "SessionProc1" "SessionProc1" "SessionProc1" ...
##  $ Trial             : Factor w/ 60 levels "1","2","3","4",..: 1 3 4 7 9 10 14 16 17 18 ...
##  $ BlockID           : Factor w/ 30 levels "b01","b02","b03",..: 8 8 8 8 22 22 22 22 5 5 ...
##  $ ListID            : chr  "List2A" "List2A" "List2A" "List2A" ...
##  $ SetID             : Factor w/ 90 levels "f01","f02","f03",..: 48 52 50 46 76 78 74 80 44 46 ...
##  $ ConCode           : Factor w/ 8 levels "A","B","C","D",..: 2 4 3 1 2 3 1 4 3 4 ...
##  $ IntentionType     : Factor w/ 3 levels "Filler","Intention",..: 3 3 2 2 3 2 2 3 2 3 ...
##  $ BoundednessType   : Factor w/ 4 levels "Boundedness",..: 1 4 1 4 1 1 4 4 1 4 ...
##  $ Verb              : Factor w/ 30 levels "打","生","丟",..: 18 11 18 12 26 2 14 25 12 12 ...
##  $ ContextS          : chr  "表弟那次去酒吧應當就只點汽水," "哥哥向來理應超時工作當志工," "表妹上次決心要避免引起過敏," "小傑每次旅行都期盼有新發現," ...
##  $ ContextS.RT       : int  3225 4447 3413 3853 2433 5108 3246 2437 2090 3041 ...
##  $ TargetS           : chr  "所以他_____喝調酒。" "所以他_____拿加班費。" "所以她_____喝牛奶。" "所以他_____做計畫。" ...
##  $ TargetS.RT        : num  2262 4117 2557 3557 5064 ...
##  $ TargetS.RESP      : chr  "j" "f" "f" "j" ...
##  $ PredictedAnswer   : chr  "沒" "不或沒" "不或沒" "不" ...
##  $ IntentionWord     : chr  "應當" "理應" "決心" "期盼" ...
##  $ BoundednessWord   : chr  "那次" "向來" "上次" "每次" ...
##  $ OptionA           : chr  "(A)不" "(A)不" "(A)不" "(A)不" ...
##  $ OptionB           : chr  "(B)沒" "(B)沒" "(B)沒" "(B)沒" ...
##  $ TargetS.OnsetTime : int  16837 33807 42416 62149 74539 85548 108278 121451 128328 134558 ...
##  $ TargetS.OffsetTime: int  19099 37924 44974 65706 79603 89068 112794 125532 130770 137568 ...
##  $ TarRes            : Factor w/ 2 levels "bu","mei": 2 1 1 2 2 1 2 1 2 1 ...
##  $ PreAns            : Factor w/ 3 levels "both","bu","mei": 3 1 1 2 3 1 2 1 1 1 ...
##  $ Bu                : num  0 1 1 0 0 1 0 1 0 1 ...
##  $ Mei               : num  1 0 0 1 1 0 1 0 1 0 ...
n60_res_num.d2 <- n60_rt_num %>% mutate(zRT = as.numeric(scale(TargetS.RT))) %>% filter(abs(zRT) <= 3)%>% mutate(logRT=log(TargetS.RT))
str(n60_res_num.d2)  ### 7062 obs. 
## 'data.frame':    7062 obs. of  31 variables:
##  $ ExperimentName    : chr  "ProjectXRC_Questionnaire_v0_Subject01" "ProjectXRC_Questionnaire_v0_Subject01" "ProjectXRC_Questionnaire_v0_Subject01" "ProjectXRC_Questionnaire_v0_Subject01" ...
##  $ Subject           : Factor w/ 60 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Block             : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ BlockList         : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Procedure.Block.  : chr  "SessionProc1" "SessionProc1" "SessionProc1" "SessionProc1" ...
##  $ Trial             : Factor w/ 60 levels "1","2","3","4",..: 1 3 4 7 9 10 14 16 17 18 ...
##  $ BlockID           : Factor w/ 30 levels "b01","b02","b03",..: 8 8 8 8 22 22 22 22 5 5 ...
##  $ ListID            : chr  "List2A" "List2A" "List2A" "List2A" ...
##  $ SetID             : Factor w/ 90 levels "f01","f02","f03",..: 48 52 50 46 76 78 74 80 44 46 ...
##  $ ConCode           : Factor w/ 8 levels "A","B","C","D",..: 2 4 3 1 2 3 1 4 3 4 ...
##  $ IntentionType     : Factor w/ 3 levels "Filler","Intention",..: 3 3 2 2 3 2 2 3 2 3 ...
##  $ BoundednessType   : Factor w/ 4 levels "Boundedness",..: 1 4 1 4 1 1 4 4 1 4 ...
##  $ Verb              : Factor w/ 30 levels "打","生","丟",..: 18 11 18 12 26 2 14 25 12 12 ...
##  $ ContextS          : chr  "表弟那次去酒吧應當就只點汽水," "哥哥向來理應超時工作當志工," "表妹上次決心要避免引起過敏," "小傑每次旅行都期盼有新發現," ...
##  $ ContextS.RT       : int  3225 4447 3413 3853 2433 5108 3246 2437 2090 3041 ...
##  $ TargetS           : chr  "所以他_____喝調酒。" "所以他_____拿加班費。" "所以她_____喝牛奶。" "所以他_____做計畫。" ...
##  $ TargetS.RT        : num  2262 4117 2557 3557 5064 ...
##  $ TargetS.RESP      : chr  "j" "f" "f" "j" ...
##  $ PredictedAnswer   : chr  "沒" "不或沒" "不或沒" "不" ...
##  $ IntentionWord     : chr  "應當" "理應" "決心" "期盼" ...
##  $ BoundednessWord   : chr  "那次" "向來" "上次" "每次" ...
##  $ OptionA           : chr  "(A)不" "(A)不" "(A)不" "(A)不" ...
##  $ OptionB           : chr  "(B)沒" "(B)沒" "(B)沒" "(B)沒" ...
##  $ TargetS.OnsetTime : int  16837 33807 42416 62149 74539 85548 108278 121451 128328 134558 ...
##  $ TargetS.OffsetTime: int  19099 37924 44974 65706 79603 89068 112794 125532 130770 137568 ...
##  $ TarRes            : Factor w/ 2 levels "bu","mei": 2 1 1 2 2 1 2 1 2 1 ...
##  $ PreAns            : Factor w/ 3 levels "both","bu","mei": 3 1 1 2 3 1 2 1 1 1 ...
##  $ Bu                : num  0 1 1 0 0 1 0 1 0 1 ...
##  $ Mei               : num  1 0 0 1 1 0 1 0 1 0 ...
##  $ zRT               : num  -0.234 0.538 -0.111 0.305 0.932 ...
##  $ logRT             : num  7.72 8.32 7.85 8.18 8.53 ...
nrow(n60_rt_num) - nrow(n60_res_num.d2) ### 138
## [1] 138
(nrow(n60_rt_num) - nrow(n60_res_num.d2))/nrow(n60_rt_num)*100 ##  1.916667% data loss
## [1] 1.916667

#Data Wrangling for AQ

wideAQ <- read.csv('AQ(n60).csv', header = T, sep = "," )
longAQ <- wideAQ %>% gather("QuestionID","Response",Q01:Q50) %>% mutate_at(c("SubjectID", "Gender", "Age", "QuestionID", "Response"), as.factor)
longAQ_score <- longAQ %>% mutate(QuestionType = ifelse(QuestionID %in% c("Q01", "Q03","Q08", "Q10", "Q11", "Q14", "Q15", "Q17", "Q24", "Q25", "Q27", "Q28", "Q29", "Q30", "Q31", "Q32", "Q34", "Q36", "Q37", "Q38", "Q40", "Q44", "Q47", "Q48", "Q49", "Q50"), "lowQ", "highQ")) %>% 
  mutate(Score = case_when(QuestionType=="lowQ" & Response %in% c("稍微不同意", "完全不同意")~1,
                           QuestionType=="lowQ" & Response %in% c("稍微同意", "完全同意")~0,
                           QuestionType=="highQ" & Response %in% c("稍微不同意", "完全不同意")~0,
                           QuestionType=="highQ" & Response %in% c("稍微同意", "完全同意")~1)) %>% 
  mutate_at(c("SubjectID", "Gender", "Age", "QuestionID", "Response", "QuestionType"), as.factor)

AQscore_sub <- longAQ_score %>% na.omit() %>% group_by(SubjectID) %>% summarize(total_score = sum(Score)) %>% ungroup()
mean_AQ <- mean(AQscore_sub$total_score, na.rm = TRUE)
AQscore_sub$AQgroup <- ifelse(AQscore_sub$total_score < mean_AQ, 1, 2)
AQscore_sub$AQgroup <- as.factor(AQscore_sub$AQgroup)
names(AQscore_sub) <- c("Subject", "AQscore", "AQgroup")
AQscore_sub$Subject <- c(1:60)
AQscore_sub <- AQscore_sub %>% mutate_at(c("Subject", "AQgroup"), as.factor)
str(AQscore_sub)
## tibble [60 × 3] (S3: tbl_df/tbl/data.frame)
##  $ Subject: Factor w/ 60 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ AQscore: num [1:60] 24 21 16 23 25 34 22 19 17 23 ...
##  $ AQgroup: Factor w/ 2 levels "1","2": 2 1 1 2 2 2 1 1 1 2 ...

使用afex()計算2-way interaction對選擇「不」比例的影響

n60_res_critical.AQ <- merge(n60_res_critical, AQscore_sub, by="Subject", all=T)

lrt.inter.bu <- mixed(Bu ~ BoundednessType*IntentionType + (BoundednessType+IntentionType|Subject) + (BoundednessType+IntentionType|SetID), family = binomial, data = n60_res_critical.AQ, method="LRT")
## Contrasts set to contr.sum for the following variables: BoundednessType, IntentionType, Subject, SetID
anova(lrt.inter.bu)
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: Bu ~ BoundednessType * IntentionType + (BoundednessType + IntentionType | 
## Model:     Subject) + (BoundednessType + IntentionType | SetID)
## Data: n60_res_critical.AQ
## Df full model: 16
##                               Df   Chisq Chi Df Pr(>Chisq)    
## BoundednessType               15 75.0308      1  < 2.2e-16 ***
## IntentionType                 15  0.5608      1  0.4539568    
## BoundednessType:IntentionType 15 13.7826      1  0.0002052 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(lrt.inter.bu)
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: Bu ~ BoundednessType * IntentionType + (BoundednessType + IntentionType | 
## Model:     Subject) + (BoundednessType + IntentionType | SetID)
## Data: n60_res_critical.AQ
## Df full model: 16
##                          Effect df     Chisq p.value
## 1               BoundednessType  1 75.03 ***   <.001
## 2                 IntentionType  1      0.56    .454
## 3 BoundednessType:IntentionType  1 13.78 ***   <.001
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

#afex()for 3-way interaction (Negators Selection and AQ)

lrt.inter.bu.AQ <- mixed(Bu ~ BoundednessType*IntentionType*AQgroup + (BoundednessType|Subject) + (1|SetID), family = binomial, data = n60_res_critical.AQ, method="LRT")
## Contrasts set to contr.sum for the following variables: BoundednessType, IntentionType, AQgroup, Subject, SetID
anova(lrt.inter.bu.AQ)
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: Bu ~ BoundednessType * IntentionType * AQgroup + (BoundednessType | 
## Model:     Subject) + (1 | SetID)
## Data: n60_res_critical.AQ
## Df full model: 12
##                                       Df   Chisq Chi Df Pr(>Chisq)    
## BoundednessType                       11 78.5348      1  < 2.2e-16 ***
## IntentionType                         11  2.1895      1  0.1389538    
## AQgroup                               11  0.2514      1  0.6160692    
## BoundednessType:IntentionType         11 12.3700      1  0.0004363 ***
## BoundednessType:AQgroup               11  1.3989      1  0.2369059    
## IntentionType:AQgroup                 11  9.3900      1  0.0021817 ** 
## BoundednessType:IntentionType:AQgroup 11  0.0502      1  0.8227747    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(lrt.inter.bu.AQ)
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: Bu ~ BoundednessType * IntentionType * AQgroup + (BoundednessType | 
## Model:     Subject) + (1 | SetID)
## Data: n60_res_critical.AQ
## Df full model: 12
##                                  Effect df     Chisq p.value
## 1                       BoundednessType  1 78.53 ***   <.001
## 2                         IntentionType  1      2.19    .139
## 3                               AQgroup  1      0.25    .616
## 4         BoundednessType:IntentionType  1 12.37 ***   <.001
## 5               BoundednessType:AQgroup  1      1.40    .237
## 6                 IntentionType:AQgroup  1   9.39 **    .002
## 7 BoundednessType:IntentionType:AQgroup  1      0.05    .823
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

#afex()for 3-way interaction (Reaction Time and AQ)

critical.rt.filter.AQ <- merge(n60_res_num.d2, AQscore_sub, by="Subject", all=T)

lrt.inter.rt.AQ <- mixed(logRT ~ IntentionType*BoundednessType*AQgroup + (1|Subject) + (IntentionType|SetID), data = critical.rt.filter.AQ, method="LRT")
## Contrasts set to contr.sum for the following variables: IntentionType, BoundednessType, AQgroup, Subject, SetID
## REML argument to lmer() set to FALSE for method = 'PB' or 'LRT'
anova(lrt.inter.rt.AQ)
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: logRT ~ IntentionType * BoundednessType * AQgroup + (1 | Subject) + 
## Model:     (IntentionType | SetID)
## Data: critical.rt.filter.AQ
## Df full model: 13
##                                       Df  Chisq Chi Df Pr(>Chisq)   
## IntentionType                         12 8.5852      1   0.003389 **
## BoundednessType                       12 2.7937      1   0.094634 . 
## AQgroup                               12 0.5037      1   0.477880   
## IntentionType:BoundednessType         12 0.5032      1   0.478093   
## IntentionType:AQgroup                 12 0.1296      1   0.718812   
## BoundednessType:AQgroup               12 0.0468      1   0.828706   
## IntentionType:BoundednessType:AQgroup 12 3.7161      1   0.053890 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(lrt.inter.rt.AQ)
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: logRT ~ IntentionType * BoundednessType * AQgroup + (1 | Subject) + 
## Model:     (IntentionType | SetID)
## Data: critical.rt.filter.AQ
## Df full model: 13
##                                  Effect df   Chisq p.value
## 1                         IntentionType  1 8.59 **    .003
## 2                       BoundednessType  1  2.79 +    .095
## 3                               AQgroup  1    0.50    .478
## 4         IntentionType:BoundednessType  1    0.50    .478
## 5                 IntentionType:AQgroup  1    0.13    .719
## 6               BoundednessType:AQgroup  1    0.05    .829
## 7 IntentionType:BoundednessType:AQgroup  1  3.72 +    .054
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

#afex()跟emmeans()結合以對應pairwise comparison的結果是否符合

#2-Way的組間比較,用2-way的模型
emm <- emmeans(lrt.inter.bu, ~ BoundednessType * IntentionType)
pairwise_results <- pairs(emm, adjust = "tukey")
print(pairwise_results)
##  contrast                                              estimate    SE  df
##  Boundedness Intention - UnBoundedness Intention         -2.079 0.175 Inf
##  Boundedness Intention - Boundedness NonIntention        -0.140 0.116 Inf
##  Boundedness Intention - UnBoundedness NonIntention      -1.787 0.208 Inf
##  UnBoundedness Intention - Boundedness NonIntention       1.940 0.176 Inf
##  UnBoundedness Intention - UnBoundedness NonIntention     0.293 0.118 Inf
##  Boundedness NonIntention - UnBoundedness NonIntention   -1.647 0.172 Inf
##  z.ratio p.value
##  -11.902  <.0001
##   -1.204  0.6242
##   -8.600  <.0001
##   10.998  <.0001
##    2.479  0.0632
##   -9.559  <.0001
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
emm_AQ <- emmeans(lrt.inter.bu.AQ, ~ BoundednessType * IntentionType | AQgroup)
pairwise_AQresults <- pairs(emm_AQ, adjust = "tukey")
print(pairwise_AQresults)
## AQgroup = 1:
##  contrast                                              estimate    SE  df
##  Boundedness Intention - UnBoundedness Intention        -1.8067 0.209 Inf
##  Boundedness Intention - Boundedness NonIntention        0.0687 0.107 Inf
##  Boundedness Intention - UnBoundedness NonIntention     -1.3765 0.207 Inf
##  UnBoundedness Intention - Boundedness NonIntention      1.8754 0.209 Inf
##  UnBoundedness Intention - UnBoundedness NonIntention    0.4302 0.107 Inf
##  Boundedness NonIntention - UnBoundedness NonIntention  -1.4452 0.207 Inf
##  z.ratio p.value
##   -8.661  <.0001
##    0.645  0.9174
##   -6.662  <.0001
##    8.979  <.0001
##    4.012  0.0004
##   -6.986  <.0001
## 
## AQgroup = 2:
##  contrast                                              estimate    SE  df
##  Boundedness Intention - UnBoundedness Intention        -2.1624 0.217 Inf
##  Boundedness Intention - Boundedness NonIntention       -0.2923 0.112 Inf
##  Boundedness Intention - UnBoundedness NonIntention     -2.0440 0.216 Inf
##  UnBoundedness Intention - Boundedness NonIntention      1.8702 0.215 Inf
##  UnBoundedness Intention - UnBoundedness NonIntention    0.1184 0.111 Inf
##  Boundedness NonIntention - UnBoundedness NonIntention  -1.7518 0.214 Inf
##  z.ratio p.value
##   -9.987  <.0001
##   -2.599  0.0461
##   -9.468  <.0001
##    8.700  <.0001
##    1.065  0.7111
##   -8.173  <.0001
## 
## Results are given on the log odds ratio (not the response) scale. 
## P value adjustment: tukey method for comparing a family of 4 estimates
#"1"="低AQ組", "2"="高AQ組"