# Clear R environment
rm(list = ls())
# Setwd
setwd("C:/RB")
# Load data set
library(readxl)
birth <- read_excel("birth.xls",sheet="Sheet1")
View(birth)Data Analysis
Subsetting
birth1 <- subset(birth, select=-c(id))
View(birth1)Data cleaning
#Data cleaning
birth1$ui<-ordered(birth$ui,levels=c(0,1),
labels=c("No","Yes"))
birth1$smoke<-ordered(birth$smoke,levels=c(0,1),
labels=c("No","Yes"))
birth1$ht<-ordered(birth$ht,levels=c(0,1),
labels=c("No","Yes"))birth1$smoke<-as.factor(birth1$smoke)
birth1$race<-as.factor(birth1$race)
birth1$ht<-as.factor(birth1$ht)
birth1$ui<-as.factor(birth1$ui)library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(gtsummary)
library(flextable)
Attaching package: 'flextable'
The following object is masked from 'package:gtsummary':
continuous_summary
library(officer)
Attaching package: 'officer'
The following object is masked from 'package:readxl':
read_xlsx
library(broom)p08 <-birth1 %>%
tbl_summary(
by = low, # Uncomment if you want group-wise summary
statistic = list(
all_continuous() ~ "{median} ({p25}, {p75})",
all_categorical() ~ "{n} ({p}%)"
),
percent = "column",
missing = "no"
) %>%
add_overall() %>%
add_p(pvalue_fun = ~style_pvalue(.x, digits = 2)) %>%
modify_footnote(all_stat_cols() ~ "Median (IQR)") %>%
modify_spanning_header(c("stat_1", "stat_2") ~ "**Birth Status **") %>%
modify_caption("Table 1: Maternal mothers characteristics") %>%
bold_labels() %>%
add_n() %>%
as_flex_table()
sect_properties <- prop_section(page_size = page_size(orient = "portrait"))#, width = 8.3, height = 11.7)
save_as_docx(p08,path="Table1a.docx", pr_section = sect_properties)
p08
| Birth Status |
| |||
|---|---|---|---|---|---|
Characteristic | N | Overall | 0 | 1 | p-value2 |
age | 189 | 23.0 (19.0, 26.0) | 23.0 (19.0, 28.0) | 22.0 (19.0, 25.0) | 0.25 |
lwt | 189 | 121 (110, 140) | 124 (113, 147) | 120 (103, 130) | 0.013 |
race | 189 | 0.082 | |||
Black | 26 (14%) | 15 (12%) | 11 (19%) | ||
Other | 67 (35%) | 42 (32%) | 25 (42%) | ||
White | 96 (51%) | 73 (56%) | 23 (39%) | ||
smoke | 189 | 74 (39%) | 44 (34%) | 30 (51%) | 0.026 |
ptl | 189 | <0.001 | |||
0 | 159 (84%) | 118 (91%) | 41 (69%) | ||
1 | 24 (13%) | 8 (6.2%) | 16 (27%) | ||
2 | 5 (2.6%) | 3 (2.3%) | 2 (3.4%) | ||
3 | 1 (0.5%) | 1 (0.8%) | 0 (0%) | ||
ht | 189 | 12 (6.3%) | 5 (3.8%) | 7 (12%) | 0.052 |
ui | 189 | 28 (15%) | 14 (11%) | 14 (24%) | 0.020 |
ftv | 189 | 0.29 | |||
0 | 100 (53%) | 64 (49%) | 36 (61%) | ||
1 | 47 (25%) | 36 (28%) | 11 (19%) | ||
2 | 30 (16%) | 23 (18%) | 7 (12%) | ||
3 | 7 (3.7%) | 3 (2.3%) | 4 (6.8%) | ||
4 | 4 (2.1%) | 3 (2.3%) | 1 (1.7%) | ||
6 | 1 (0.5%) | 1 (0.8%) | 0 (0%) | ||
1Median (IQR) | |||||
2Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test | |||||