Introduction
Wanna (want to) is an English contraction whose use depends
on specific syntactic restrictions. In some wh-questions, contraction is
permitted, as in who do you wanna
meet? . However, in other cases it is no acceptable, as in
who do you want to meet to?
. This difference is explained by a well-known syntactic
constraint on wanna-contraction.
Contraction is not possible in wh-questions when the wh-word
functions as the subject of the infinitival clause. In these cases,
want to can’t be reduced to wanna. When the wh-word is
not the subject of the infinitival clause, contraction is allowed.
Therefore, the availability of wanna-contraction depends on whether a
subject intervenes between want and to.
This analyses examines data from four participants groups: L1 adults,
L1 children, adult L2 learners, and child L2 learners. Each participant
judged sentences that differed in clause type (if vs. who) and gap
condition (gap vs. not gap). A gap refers to an unfilled grammatical
position in the sentence, which may be a subject or an objec, while no
gap indicates that all positions are filled.
1. Acceptability Across
Groups
Mean acceptability judgments were plotted for every combination of
clause type (if Vs. Who) and condition (gap Vs. no gap) to compare how
participant responded to different sentences types. In the following
graph, the bars show the average proportion of acceptable responses per
group. The figure indicates that the four groups responded differently
to the conditions.
library(tidyverse)
library(ggplot2)
library(readxl)
OSF <- OSF %>%
arrange(group)
dat_summary <- OSF %>%
group_by(group, clause, gap) %>%
summarise(mean_accept = mean(judgment, na.rm = TRUE))
dat_summary$group <- factor(dat_summary$group,
levels = c("L1_adults", "L2_adults",
"L1_children", "L2_children"))
ggplot(dat_summary, aes(x = gap, y = mean_accept, fill = clause)) +
geom_col(position = "dodge") +
facet_wrap(~ group, nrow=2) +
labs(title = "Acceptability Across Groups", x = "Gap Condition", y = "Mean Acceptability"
)

Overall, this column graph displays that if no gap sentences
received higher acceptability rating than the the gap sentence
specifically across adult groups, who showed low ratings for if
gap sentences. In contrast who gap sentences were rated
higher than if gap sentences.
2. Gap-only: if vs. who (points +
error bars)
Are who-sentences more accepted than
if-sentences when there is a gap?
The table below reports mean acceptability ratings for if
and who clauses in the gap condition across participant
groups.
gap_data <- OSF %>%
filter(gap == "gap")
gap_data %>%
group_by(group, clause) %>%
summarise(
mean_accept = mean(judgment, na.rm = TRUE),
.groups = "drop"
)
gap_data %>%
group_by(group, clause) %>%
summarise(
mean_accept = mean(judgment, na.rm = TRUE),
se_accept = sd(judgment, na.rm = TRUE) / sqrt(n()),
.groups = "drop"
) %>%
ggplot(aes(x = clause, y = mean_accept)) +
geom_point(size = 3) +
geom_errorbar(
aes(
ymin = mean_accept - se_accept,
ymax = mean_accept + se_accept
),
width = 0.15
) +
facet_wrap(~ group) +
labs(
x = "Clause Type",
y = "Mean Acceptability (gap condition)"
) +
theme_minimal()

This graph visualizes these means on the table and includes standard
errors that facilitates comparison across groups.
Across groups, who-clauses receive higher acceptability ratings than
if-clauses in the gap condition. This contrast is strongest in L1 adults
who rated who-gap sentences very high and if-gap
sentences very low. L2 adults and children show the same pattern, but
the difference is smaller, suggesting weaker sensitivity to the
syntactic constraint on wanna contraction.
Conclusion
This analyses shows a consistent preference for who-clauses over
if-clauses. This effect is strongest among L1 adults, while the effect
is weaker in L2 learners and children.
LS0tDQp0aXRsZTogIjxzcGFuIHN0eWxlPSdjb2xvcjogcHVycGxlOyBmb250LXdlaWdodDpib2xkJz4gV2FubmEtQ29udHJhY3Rpb24gQWNjZXB0YWJpbGl0eSA8L3NwYW4+Ig0Kb3V0cHV0OiBodG1sX25vdGVib29rDQpjc3M6IHN0eWxlcy5jc3MNCg0KLS0tDQojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwdXJwbGU7Ij5JbnRyb2R1Y3Rpb24gPC9zcGFuPg0KKldhbm5hKiAod2FudCB0bykgaXMgYW4gRW5nbGlzaCBjb250cmFjdGlvbiB3aG9zZSB1c2UgZGVwZW5kcyBvbiBzcGVjaWZpYyBzeW50YWN0aWMgcmVzdHJpY3Rpb25zLiBJbiBzb21lIHdoLXF1ZXN0aW9ucywgY29udHJhY3Rpb24gaXMgcGVybWl0dGVkLCBhcyBpbiA8c3BhbiBzdHlsZT0iY29sb3I6IHB1cnBsZTsiPip3aG8gZG8geW91IHdhbm5hIG1lZXQ/KiA8L3NwYW4+LiBIb3dldmVyLCBpbiBvdGhlciBjYXNlcyBpdCBpcyBubyBhY2NlcHRhYmxlLCBhcyBpbiA8c3BhbiBzdHlsZT0iY29sb3I6IHB1cnBsZTsiPip3aG8gZG8geW91IHdhbnQgdG8gbWVldCB0bz8qIDwvc3Bhbj4uIFRoaXMgZGlmZmVyZW5jZSBpcyBleHBsYWluZWQgYnkgYSB3ZWxsLWtub3duIHN5bnRhY3RpYyBjb25zdHJhaW50IG9uIHdhbm5hLWNvbnRyYWN0aW9uLiANCg0KQ29udHJhY3Rpb24gaXMgbm90IHBvc3NpYmxlIGluIHdoLXF1ZXN0aW9ucyB3aGVuIHRoZSB3aC13b3JkIGZ1bmN0aW9ucyBhcyB0aGUgc3ViamVjdCBvZiB0aGUgaW5maW5pdGl2YWwgY2xhdXNlLiBJbiB0aGVzZSBjYXNlcywgKndhbnQgdG8qIGNhbid0IGJlIHJlZHVjZWQgdG8gKndhbm5hKi4gV2hlbiB0aGUgd2gtd29yZCBpcyBub3QgdGhlIHN1YmplY3Qgb2YgdGhlIGluZmluaXRpdmFsIGNsYXVzZSwgY29udHJhY3Rpb24gaXMgYWxsb3dlZC4gVGhlcmVmb3JlLCB0aGUgYXZhaWxhYmlsaXR5IG9mIHdhbm5hLWNvbnRyYWN0aW9uIGRlcGVuZHMgb24gd2hldGhlciBhIHN1YmplY3QgaW50ZXJ2ZW5lcyBiZXR3ZWVuICp3YW50KiBhbmQgKnRvKi4NCg0KVGhpcyBhbmFseXNlcyBleGFtaW5lcyBkYXRhIGZyb20gZm91ciBwYXJ0aWNpcGFudHMgZ3JvdXBzOiBMMSBhZHVsdHMsIEwxIGNoaWxkcmVuLCBhZHVsdCBMMiBsZWFybmVycywgYW5kIGNoaWxkIEwyIGxlYXJuZXJzLiBFYWNoIHBhcnRpY2lwYW50IGp1ZGdlZCBzZW50ZW5jZXMgdGhhdCBkaWZmZXJlZCBpbiBjbGF1c2UgdHlwZSAoaWYgdnMuIHdobykgYW5kIGdhcCBjb25kaXRpb24gKGdhcCB2cy4gbm90IGdhcCkuIEEgZ2FwIHJlZmVycyB0byBhbiB1bmZpbGxlZCBncmFtbWF0aWNhbCBwb3NpdGlvbiBpbiB0aGUgc2VudGVuY2UsIHdoaWNoIG1heSBiZSBhIHN1YmplY3Qgb3IgYW4gb2JqZWMsIHdoaWxlIG5vIGdhcCBpbmRpY2F0ZXMgdGhhdCBhbGwgcG9zaXRpb25zIGFyZSBmaWxsZWQuDQoNCiMjIyAxLiA8c3BhbiBzdHlsZT0iY29sb3I6IHB1cnBsZTsiPkFjY2VwdGFiaWxpdHkgQWNyb3NzIEdyb3Vwczwvc3Bhbj4NCk1lYW4gYWNjZXB0YWJpbGl0eSBqdWRnbWVudHMgd2VyZSBwbG90dGVkIGZvciBldmVyeSBjb21iaW5hdGlvbiBvZiBjbGF1c2UgdHlwZSAoaWYgVnMuIFdobykgYW5kIGNvbmRpdGlvbiAoZ2FwIFZzLiBubyBnYXApIHRvIGNvbXBhcmUgaG93IHBhcnRpY2lwYW50IHJlc3BvbmRlZCB0byBkaWZmZXJlbnQgc2VudGVuY2VzIHR5cGVzLiBJbiB0aGUgZm9sbG93aW5nIGdyYXBoLCB0aGUgYmFycyBzaG93IHRoZSBhdmVyYWdlIHByb3BvcnRpb24gb2YgYWNjZXB0YWJsZSByZXNwb25zZXMgcGVyIGdyb3VwLiBUaGUgZmlndXJlIGluZGljYXRlcyB0aGF0IHRoZSBmb3VyIGdyb3VwcyByZXNwb25kZWQgZGlmZmVyZW50bHkgdG8gdGhlIGNvbmRpdGlvbnMuDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KHJlYWR4bCkNCg0KDQpPU0YgPC0gT1NGICU+JQ0KIGFycmFuZ2UoZ3JvdXApDQoNCmRhdF9zdW1tYXJ5IDwtIE9TRiAlPiUNCmdyb3VwX2J5KGdyb3VwLCBjbGF1c2UsIGdhcCkgJT4lDQpzdW1tYXJpc2UobWVhbl9hY2NlcHQgPSBtZWFuKGp1ZGdtZW50LCBuYS5ybSA9IFRSVUUpKQ0KDQpkYXRfc3VtbWFyeSRncm91cCA8LSBmYWN0b3IoZGF0X3N1bW1hcnkkZ3JvdXAsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgbGV2ZWxzID0gYygiTDFfYWR1bHRzIiwgIkwyX2FkdWx0cyIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkwxX2NoaWxkcmVuIiwgIkwyX2NoaWxkcmVuIikpDQoNCmdncGxvdChkYXRfc3VtbWFyeSwgYWVzKHggPSBnYXAsIHkgPSBtZWFuX2FjY2VwdCwgZmlsbCA9IGNsYXVzZSkpICsNCiAgZ2VvbV9jb2wocG9zaXRpb24gPSAiZG9kZ2UiKSArDQogIGZhY2V0X3dyYXAofiBncm91cCwgbnJvdz0yKSArDQogIGxhYnModGl0bGUgPSAiQWNjZXB0YWJpbGl0eSBBY3Jvc3MgR3JvdXBzIiwgeCA9ICJHYXAgQ29uZGl0aW9uIiwgeSA9ICJNZWFuIEFjY2VwdGFiaWxpdHkiDQogICkNCmBgYA0KT3ZlcmFsbCwgdGhpcyBjb2x1bW4gZ3JhcGggZGlzcGxheXMgdGhhdCAqaWYgbm8gZ2FwKiBzZW50ZW5jZXMgcmVjZWl2ZWQgaGlnaGVyIGFjY2VwdGFiaWxpdHkgcmF0aW5nIHRoYW4gdGhlIHRoZSAqZ2FwKiBzZW50ZW5jZSBzcGVjaWZpY2FsbHkgYWNyb3NzIGFkdWx0IGdyb3Vwcywgd2hvIHNob3dlZCBsb3cgcmF0aW5ncyBmb3IgKmlmIGdhcCogc2VudGVuY2VzLiBJbiBjb250cmFzdCAqd2hvIGdhcCogc2VudGVuY2VzIHdlcmUgcmF0ZWQgaGlnaGVyIHRoYW4gKmlmIGdhcCogc2VudGVuY2VzLiANCg0KIyMjIDIuIDxzcGFuIHN0eWxlPSJjb2xvcjogcHVycGxlOyI+IEdhcC1vbmx5OiBpZiB2cy4gd2hvIChwb2ludHMgKyBlcnJvciBiYXJzKTwvc3Bhbj4NCjxzcGFuIHN0eWxlPSJjb2xvcjogcHVycGxlOyI+QXJlIHdoby1zZW50ZW5jZXMgbW9yZSBhY2NlcHRlZCB0aGFuIGlmLXNlbnRlbmNlcyB3aGVuIHRoZXJlIGlzIGEgZ2FwPzwvc3Bhbj4NCg0KVGhlIHRhYmxlIGJlbG93IHJlcG9ydHMgbWVhbiBhY2NlcHRhYmlsaXR5IHJhdGluZ3MgZm9yICppZiogYW5kICp3aG8qIGNsYXVzZXMgaW4gdGhlIGdhcCBjb25kaXRpb24gYWNyb3NzIHBhcnRpY2lwYW50IGdyb3Vwcy4NCmBgYHtyfQ0KICBnYXBfZGF0YSA8LSBPU0YgJT4lDQogIGZpbHRlcihnYXAgPT0gImdhcCIpDQpnYXBfZGF0YSAlPiUNCiAgZ3JvdXBfYnkoZ3JvdXAsIGNsYXVzZSkgJT4lDQogIHN1bW1hcmlzZSgNCiAgICBtZWFuX2FjY2VwdCA9IG1lYW4oanVkZ21lbnQsIG5hLnJtID0gVFJVRSksDQogICAgLmdyb3VwcyA9ICJkcm9wIg0KICApDQpnYXBfZGF0YSAlPiUNCiAgZ3JvdXBfYnkoZ3JvdXAsIGNsYXVzZSkgJT4lDQogIHN1bW1hcmlzZSgNCiAgICBtZWFuX2FjY2VwdCA9IG1lYW4oanVkZ21lbnQsIG5hLnJtID0gVFJVRSksDQogICAgc2VfYWNjZXB0ICAgPSBzZChqdWRnbWVudCwgbmEucm0gPSBUUlVFKSAvIHNxcnQobigpKSwNCiAgICAuZ3JvdXBzID0gImRyb3AiDQogICkgJT4lDQogIGdncGxvdChhZXMoeCA9IGNsYXVzZSwgeSA9IG1lYW5fYWNjZXB0KSkgKw0KICBnZW9tX3BvaW50KHNpemUgPSAzKSArDQogIGdlb21fZXJyb3JiYXIoDQogICAgYWVzKA0KICAgICAgeW1pbiA9IG1lYW5fYWNjZXB0IC0gc2VfYWNjZXB0LA0KICAgICAgeW1heCA9IG1lYW5fYWNjZXB0ICsgc2VfYWNjZXB0DQogICAgKSwNCiAgICB3aWR0aCA9IDAuMTUNCiAgKSArDQogIGZhY2V0X3dyYXAofiBncm91cCkgKw0KICBsYWJzKA0KICAgIHggPSAiQ2xhdXNlIFR5cGUiLA0KICAgIHkgPSAiTWVhbiBBY2NlcHRhYmlsaXR5IChnYXAgY29uZGl0aW9uKSINCiAgKSArDQogIHRoZW1lX21pbmltYWwoKQ0KYGBgDQpUaGlzIGdyYXBoIHZpc3VhbGl6ZXMgdGhlc2UgbWVhbnMgb24gdGhlIHRhYmxlIGFuZCBpbmNsdWRlcyBzdGFuZGFyZCBlcnJvcnMgdGhhdCBmYWNpbGl0YXRlcyBjb21wYXJpc29uIGFjcm9zcyBncm91cHMuDQoNCkFjcm9zcyBncm91cHMsIHdoby1jbGF1c2VzIHJlY2VpdmUgaGlnaGVyIGFjY2VwdGFiaWxpdHkgcmF0aW5ncyB0aGFuIGlmLWNsYXVzZXMgaW4gdGhlIGdhcCBjb25kaXRpb24uIFRoaXMgY29udHJhc3QgaXMgc3Ryb25nZXN0IGluIEwxIGFkdWx0cyB3aG8gcmF0ZWQgKndoby1nYXAqIHNlbnRlbmNlcyB2ZXJ5IGhpZ2ggYW5kICppZi1nYXAqIHNlbnRlbmNlcyB2ZXJ5IGxvdy4gTDIgYWR1bHRzIGFuZCBjaGlsZHJlbiBzaG93IHRoZSBzYW1lIHBhdHRlcm4sIGJ1dCB0aGUgZGlmZmVyZW5jZSBpcyBzbWFsbGVyLCBzdWdnZXN0aW5nIHdlYWtlciBzZW5zaXRpdml0eSB0byB0aGUgc3ludGFjdGljIGNvbnN0cmFpbnQgb24gKndhbm5hKiBjb250cmFjdGlvbi4NCg0KIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcHVycGxlOyI+IENvbmNsdXNpb248L3NwYW4+DQpUaGlzIGFuYWx5c2VzIHNob3dzIGEgY29uc2lzdGVudCBwcmVmZXJlbmNlIGZvciB3aG8tY2xhdXNlcyBvdmVyIGlmLWNsYXVzZXMuIFRoaXMgZWZmZWN0IGlzIHN0cm9uZ2VzdCBhbW9uZyBMMSBhZHVsdHMsIHdoaWxlIHRoZSBlZmZlY3QgaXMgd2Vha2VyIGluIEwyIGxlYXJuZXJzIGFuZCBjaGlsZHJlbi4NCg==